1
|
Chrestia JF, Turani O, Araujo NR, Hernando G, Esandi MDC, Bouzat C. Regulation of nicotinic acetylcholine receptors by post-translational modifications. Pharmacol Res 2023; 190:106712. [PMID: 36863428 DOI: 10.1016/j.phrs.2023.106712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
2
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
3
|
Miick SM, Jalali S, Dwyer BP, Havens J, Thomas D, Jimenez MA, Simpson MT, Zile B, Huss KL, Campbell RM. Development of a Microplate-Based, Electrophoretic Fluorescent Protein Kinase A Assay: Comparison with Filter-Binding and Fluorescence Polarization Assay Formats. ACTA ACUST UNITED AC 2016; 10:329-38. [PMID: 15964934 DOI: 10.1177/1087057104272909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A microplate-based electrophoretic assay has been developed for the serine/threonine kinase protein kinase A (PKA). The ElectroCapture™ PKA assay developed uses a positively charged, lissamine-rhodamine–labeled kemptide peptide substrate for the kinase reaction and Nanogen’s ElectroCapture™ HTS Workstation and 384-well laminated membrane plates to electrophoretically separate the negatively charged phosphorylated peptide product from the kinase reaction mix. After the electrophoretic separation, the amount of rhodamine-labeled phosphopeptide product was quantified using a Tecan Ultra384 fluorescence reader. The ElectroCapture™ PKA assay was validated with both known PKA inhibitors and library compounds. The pKiappresults obtained in the ElectroCapture™ PKA assay were comparable to those generated with current radioactive filter-binding assay and antibody-based competitive fluorescence polarization PKA assay formats.
Collapse
|
4
|
Ochoa ELM, Lasalde-Dominicci J. Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 2008; 27:609-39. [PMID: 17554626 PMCID: PMC4676572 DOI: 10.1007/s10571-007-9149-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 04/13/2007] [Indexed: 02/08/2023]
Abstract
Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Enrique L. M. Ochoa
- Department of Psychiatry, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Jose Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3360, Puerto Rico
| |
Collapse
|
5
|
Pollock VV, Pastoor TE, Wecker L. Cyclic AMP-dependent protein kinase (PKA) phosphorylates Ser362 and 467 and protein kinase C phosphorylates Ser550 within the M3/M4 cytoplasmic domain of human nicotinic receptor alpha4 subunits. J Neurochem 2007; 103:456-66. [PMID: 17897355 DOI: 10.1111/j.1471-4159.2007.04853.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies have suggested that the expression, translocation, and function of alpha4beta2 nicotinic receptors may be modulated by alpha4 subunit phosphorylation, but little direct evidence exists to support this idea. The objective of these experiments was to identify specific serine/threonine residues on alpha4 subunits that are phosphorylated in vivo by cAMP-dependent protein kinase and protein kinase C (PKC). To accomplish this, DNAs coding for human alpha4 subunits containing alanines in place of serines/threonines predicted to represent phosphorylation sites were constructed, and transiently transfected with the DNA coding for wild-type beta2 subunits into SH-EP1 cells. Cells were pre-incubated with (32)Pi and incubated in the absence or presence of forskolin or phorbol 12,13-dibutyrate. Immunoprecipitated alpha4 subunits were subjected to immunoblot, autoradiographic and phosphoamino acid analyses, and two-dimensional phosphopeptide mapping. Results confirmed the presence of two alpha4 protein bands, a major band of 71/75 kDa and a minor band of 80/85 kDa. Phosphoamino acid analysis of the major band indicated that only serine residues were phosphorylated. Phosphopeptide maps demonstrated that Ser362 and 467 on the M3/M4 cytoplasmic domain of the alpha4 subunit represent major cAMP-dependent protein kinase phosphorylation sites, while Ser550 also contained within this major intracellular loop is a major site for protein kinase C phosphorylation.
Collapse
Affiliation(s)
- Veronica V Pollock
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | |
Collapse
|
6
|
Exley R, Moroni M, Sasdelli F, Houlihan LM, Lukas RJ, Sher E, Zwart R, Bermudez I. Chaperone protein 14-3-3 and protein kinase A increase the relative abundance of low agonist sensitivity human alpha 4 beta 2 nicotinic acetylcholine receptors in Xenopus oocytes. J Neurochem 2006; 98:876-85. [PMID: 16787419 DOI: 10.1111/j.1471-4159.2006.03915.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha4 and beta2 nicotinic acetylcholine (nACh) receptor subunits expressed heterologously in Xenopus oocytes assemble into a mixture of receptors with high and low agonist sensitivity whose relative abundance is influenced by the heteropentamer subunit ratio. We have found that inhibition of protein kinase A by KT5720 decreased maximal [3H]cytisine binding and acetylcholine (ACh)-induced current responses, and increased the relative proportion of alpha4beta2 receptors with high agonist sensitivity. Mutation of serine 467, a putative protein kinase A substrate in a chaperone protein binding motif within the large cytoplasmic domain of the alpha4 subunit, to alanine or asparate decreased or increased, respectively, maximal [3H]cytisine binding and ACh response amplitude. Expression of alpha4S467A mutant subunits decreased steady levels of alpha4 and the relative proportion of alpha4beta2 receptors with low agonist sensitivity, whilst expression of alpha4S467D increased steady levels of alpha4 and alpha4beta2 receptors with low agonist sensitivity. Difopein, an inhibitor of chaperone 14-3-3 proteins, decreased [3H]cytisine binding and ACh responses and increased the proportion of alpha4beta2 with high sensitivity to activation by ACh. Thus, post-translational modification affecting steady-state levels of alpha4 subunits provides a possible means for physiologically relevant, chaperone-mediated variation in the relative proportion of high and low agonist sensitivity alpha4beta2 nACh receptors.
Collapse
Affiliation(s)
- Richard Exley
- School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kuo YP, Xu L, Eaton JB, Zhao L, Wu J, Lukas RJ. Roles for nicotinic acetylcholine receptor subunit large cytoplasmic loop sequences in receptor expression and function. J Pharmacol Exp Ther 2005; 314:455-66. [PMID: 15833891 DOI: 10.1124/jpet.105.084954] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate possible physiological roles of the large cytoplasmic loops (C2) and neighboring transmembrane domains of nicotinic acetylcholine receptor (nAChR) subunits, we generated novel fusion constructs in which human nAChR alpha4, beta2, or beta4 subunit C2 or C2 and neighboring sequences were replaced by corresponding sequences from the mouse serotonin type 3A (5-HT3A) receptor subunit. Following stable expression in human SH-EP1 cells, we found that extensive sequence substitutions involving third and fourth transmembrane domains and neighboring "proximal" C2 sequences (e.g., beta2 H322-V335 and V449-R460) did not allow functional expression of nAChR containing chimeric subunits. However, expression of functional nAChR was achieved containing wild-type alpha4 subunits and chimeric beta2 (beta2chi) subunits whose "nested" C2 domain sequences K336-S448 were replaced with the corresponding 5-HT3A subunit sequences. Whereas these findings suggested indispensable roles for M3/M4 transmembrane and/or proximal C2 sequences in alpha4beta2-nAChR function, nested C2 sequences in the beta2 subunit are not essential for functional receptor expression. Ligand-binding analyses also revealed only subtle differences in pharmacological profiles of alpha4beta2-nAChR compared with alpha4beta2chi-nAChR. Nevertheless, there was heightened emergence of agonist-mediated self-inhibition of alpha4beta2chi function, greater sensitivity to functional blockade by a number of antagonists, and faster and more complete acute desensitization of alpha4beta2chi-nAChR than for alpha4beta2-nAChR. These studies are consistent with unexpected roles of nested C2 sequences in nAChR function.
Collapse
Affiliation(s)
- Yen-Ping Kuo
- Department of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Pacheco MA, Pastoor TE, Wecker L. Phosphorylation of the alpha4 subunit of human alpha4beta2 nicotinic receptors: role of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:65-72. [PMID: 12782394 DOI: 10.1016/s0169-328x(03)00138-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study determined whether the alpha4 subunit of human alpha4beta2 neuronal nicotinic receptors is phosphorylated in situ by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). To accomplish this, human cloned epithelial cells stably transfected with the human alpha4beta2 nicotinic receptor (SH-EP1-halpha4beta2) were incubated with 32P-orthophosphate to label endogenous ATP stores, and the phosphorylation of alpha4 subunits was determined in the absence or presence of PKA or PKC activation. Autoradiographs and immunoblots indicated that alpha4 subunits immunoprecipitated from a membrane preparation of SH-EP1-halpha4beta2 cells exhibited a single 32P-labeled band corresponding to the alpha4 subunit protein; no signals were associated with untransfected SH-EP1 cells. The alpha4 subunits from SH-EP1-halpha4beta2 cells incubated in the absence of the activators exhibited a basal level of phosphorylation that was decreased in the presence of the PKA inhibitor H-89 (5 microM), but unaltered in the presence of the PKC inhibitor Ro-31-8220 (0.1 microM). Activation of PKA by forskolin (10 microM), dibutyryl-cAMP (1 mM), or Sp-8-Br-cAMP (1 mM) enhanced phosphorylation nearly threefold; the inactive isomer, Rp-8-Br-cAMP (1 mM) had no effect. In addition, the forskolin effect was totally blocked by the PKA inhibitor H-89 (5 microM). Activation of PKC by the phorbol esters PDBu (200 nM) or PMA (200 nM) increased alpha4 subunit phosphorylation approximately twofold, and the PDBu effect was blocked by the selective PKC inhibitor Ro-31-8220 (0.1 microM). These findings indicate that the alpha4 subunit of human alpha4beta2 nicotinic receptors is phosphorylated in situ by PKA and PKC.
Collapse
Affiliation(s)
- Mary A Pacheco
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612-4799, USA
| | | | | |
Collapse
|