1
|
Ramos-Jiménez A, Hernández-Torres RP, Hernández-Ontiveros DA, Ortiz-Ortiz M, López-Fregoso RJ, Martínez-Sanz JM, Rodríguez-Uribe G, Hernández-Lepe MA. An Update of the Promise of Glycine Supplementation for Enhancing Physical Performance and Recovery. Sports (Basel) 2024; 12:265. [PMID: 39453231 PMCID: PMC11510825 DOI: 10.3390/sports12100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Glycine, the simple amino acid, is a key component of muscle metabolism with proven cytoprotective effects and hypothetical benefits as a therapeutic nutrient. Cell, in vitro, and animal studies suggest that glycine enhances protection against muscle wasting by activating anabolic pathways and inhibiting proteolytic gene expression. Some evidence indicates that glycine supplementation may enhance peak power output, reduce lactic acid accumulation during high-intensity exercise, and improve sleep quality and recovery. This literature review critically explores glycine's potential as an ergogenic aid and its relevance to muscle regeneration, muscle strength, endurance exercise performance, and sleep quality. It also underscores key areas for future research. It is concluded that more randomized controlled clinical trials in humans are needed to confirm glycine's potential as a dietary supplement to support muscle function, recovery, and overall athletic performance as an ergogenic aid and to establish nutritional recommendations for athletic performance. Also, it is essential to consider that high doses (>500 mg/kg of body mass) could induce cytotoxic effects and contribute to acute glutamate toxicity.
Collapse
Affiliation(s)
- Arnulfo Ramos-Jiménez
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Department of Health Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juarez, Chihuahua 32310, Mexico
| | - Rosa Patricia Hernández-Torres
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Faculty of Physical Culture Sciences, Autonomous University of Chihuahua, Chihuahua 31000, Mexico
| | - David Alfredo Hernández-Ontiveros
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Medical and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - Melinna Ortiz-Ortiz
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Medical and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - Reymond Josué López-Fregoso
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Medical and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - José Miguel Martínez-Sanz
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Nursing Department, Faculty of Health Sciences, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain
| | - Genaro Rodríguez-Uribe
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Medical and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
- Academic Body “Salud Personalizada (UABC-CA-336)”, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - Marco Antonio Hernández-Lepe
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism (LaNCoCoME), Tijuana 22390, Mexico; (A.R.-J.); (R.P.H.-T.); (D.A.H.-O.); (M.O.-O.); (R.J.L.-F.); (J.M.M.-S.); (G.R.-U.)
- Medical and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
- Academic Body “Salud Personalizada (UABC-CA-336)”, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
2
|
Szabó G, Brlecic P, Loganathan S, Wagner F, Rastan A, Doenst T, Karck M, Veres G. Custodiol-N versus Custodiol: a prospective randomized double-blind multicenter phase III trial in patients undergoing elective coronary bypass surgery. Eur J Cardiothorac Surg 2022; 62:6586795. [PMID: 35579350 DOI: 10.1093/ejcts/ezac287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE HTK-Solution (Custodiol) is a well-established cardioplegic and organ preservation solution. We currently developed a novel HTK-based solution, Custodiol-N, which includes iron chelators to reduce oxidative injury, as well as L-arginine, to improve endothelial function. In this first in-human study, Custodiol-N compared to Custodiol in patients undergoing elective coronary artery bypass surgery. The aim of this comparison was to evaluate the safety and ability of Custodiol-N to protect cardiac tissue. METHODS The study was designed as a prospective randomized double-blind non-inferiority trial. Primary end-point was area under the curve (AUC) of creatine kinase MB (CK-MB) within the first 24 h after surgery. Secondary end-points included peak CK-MB and troponin-T and AUC of troponin-T release, cardiac index, cumulative catecholamine dose, ICU-stay and mortality. All values in the abstract are given as mean ± SD, p < 0.05 was considered statistically significant. RESULTS Early termination of the trial was performed per protocol as the primary non-inferiority end-point was reached after inclusion of 101 patients. CK-MB AUC (878 ± 549 vs 779 ± 439 h* U/l, non-inferiority p < 0.001, Custodiol vs Custodiol-N) and troponin-T AUC (12990 ± 8347 vs 13498 ± 6513 h*pg/ml, noninferiority p < 0.001, Custodiol vs Custodiol-N) were similar in both groups. Although the trial was designed for non-inferiority, peak CK-MB (52 ± 40 vs. 42 ± 28 U/l, superiority p < 0.03, Custodiol vs Custodiol-N) was significantly lower in the Custodiol-N group. CONCLUSION This study shows that Custodiol-N is safe and provides similar cardiac protection as the established HTK-Custodiol solution. Significantly reduced peak CK-MB levels in the Custodiol-N group in the full analysis set may implicate a beneficial effect on ischaemia/reperfusion injury in the setting of coronary bypass surgery.
Collapse
Affiliation(s)
- Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, 69120, Germany.,Department of Cardiac Surgery, University of Halle, Halle (Saale), 06120, Germany
| | - Paige Brlecic
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, 69120, Germany.,Department of Cardiac Surgery, University of Halle, Halle (Saale), 06120, Germany
| | - Florian Wagner
- Department of Cardiac Surgery, University of Hamburg, Hamburg, 20251, Germany
| | - Ardawan Rastan
- Cardiac Surgery, Heart Center Rotenburg, Rotenburg, 36199, Germany
| | - Torsten Doenst
- Department of Cardiac Surgery, University of Jena, Jena, 07747, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, 69120, Germany
| | - Gábor Veres
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, 69120, Germany.,Department of Cardiac Surgery, University of Halle, Halle (Saale), 06120, Germany
| |
Collapse
|
3
|
Hoyer DP, Benkö T, Gallinat A, Lefering R, Kaths M, Kribben A, Korth J, Rauen U, Treckmann JW, Paul A. HTK-N as a new preservation solution for human kidney preservation: Results of a pilot randomized controlled clinical phase II trial in living donor transplantation. Clin Transplant 2021; 36:e14543. [PMID: 34813125 DOI: 10.1111/ctr.14543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND HTK-N was developed based on the traditional HTK preservation solution, resulting in stronger protection against reactive oxygen species as well as better tolerance to hypothermia and ischemia. Aim of the present study was to compare HTK-N to HTK in clinical kidney transplantation demonstrating safety and non-inferiority. METHODS We performed a randomized controlled single blinded clinical phase II trial in patients undergoing living donor kidney transplantation. After retroperitoneoscopic nephrectomy kidneys were either perfused and stored with classical HTK solution or the new HTK-N solution. Primary endpoint was the glomerular filtration rate (eGFR according to CKD EPI) 3 months after transplantation. Secondary endpoints included graft and patient survival beside others. RESULTS The study included 42 patients, of which 22 were randomized in the HTK-N group and 20 in the HTK group. The primary end point showed a mean eGFR of 55.4 ± 14.0 ml/min/1.73 m2 in the HTK group compared to a GFR of 57.2 ± 16.7 ml/min/m2 in the HTK-N group (P = .72). Regarding secondary endpoints, there were no apparent differences. Posttransplant graft and patient survival was 100%. CONCLUSION This study is the first clinical application of HTK-N for kidney preservation and demonstrates non-inferiority compared to HTK in the setting of living donor kidney transplantation.
Collapse
Affiliation(s)
- Dieter P Hoyer
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Tamas Benkö
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Anja Gallinat
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Rolf Lefering
- Institute of Research in Operative Medicine, University Witten, Herdecke, Germany
| | - Moritz Kaths
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Juergen W Treckmann
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Paul
- General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Kniepeiss D, Houben P, Stiegler P, Berghold A, Riedl R, Kahn J, Schemmer P. A prospective, randomized, single-blind, multicentre, phase III study on organ preservation with Custodiol-N solution compared with Custodiol® solution in organ transplantation (kidney, liver and pancreas). Trials 2020; 21:62. [PMID: 31924234 PMCID: PMC6954515 DOI: 10.1186/s13063-019-3823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Organ preservation before transplantation is still a challenge. Both the University of Wisconsin and Bretschneider's histidine-tryptophan-ketoglutarate (HTK; Custodiol®) solution are standard for liver, kidney and pancreas preservation. Organ preservation with both solutions is comparable; recently, however, Custodiol® solution has been modified to Custodiol-N according to the needs of today. Thus, our study was defined to study its effect in clinical transplantation. METHODS Patients undergoing kidney transplantation (n = 412) (including approximately 30 combined kidney-pancreas) or liver transplantation (n = 202) receive grafts that have been cold stored in either Custodiol® or Custodiol-N to demonstrate noninferiority of Custodiol-N regarding both graft function and graft injury after transplantation. DISCUSSION Preclinical data have clearly shown that Custodiol-N is superior to Custodiol® in cold static organ preservation via mechanisms including inhibition of hypoxic cell injury, cold-induced cell injury and avoidance of adverse effects during warm exposure to the solution. Further clinical safety data on Custodiol-N for cardioplegia are available. Thus, this study was designed to compare Custodiol® with Custodiol-N for the first time in a prospective, randomized, single-blinded, multicentre, phase III clinical transplantation trial. TRIAL REGISTRATION Eudra-CT, 2017-002198-20. Registered on 28 November 2018.
Collapse
Affiliation(s)
- Daniela Kniepeiss
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Philipp Houben
- Department of General, Visceral and Transplant Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Judith Kahn
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria. .,Transplant Center Graz (TCG), Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria.
| |
Collapse
|
5
|
Glycine Protects against Hypoxic-Ischemic Brain Injury by Regulating Mitochondria-Mediated Autophagy via the AMPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4248529. [PMID: 30881590 PMCID: PMC6381570 DOI: 10.1155/2019/4248529] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/10/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is detrimental to newborns and is associated with high mortality and poor prognosis. Thus, the primary aim of the present study was to determine whether glycine could (1) attenuate HIE injury in rats and hypoxic stress in PC12 cells and (2) downregulate mitochondria-mediated autophagy dependent on the adenosine monophosphate- (AMP-) activated protein kinase (AMPK) pathway. Experiments conducted using an in vivo HIE animal model and in vitro hypoxic stress to PC12 cells revealed that intense autophagy associated with mitochondrial function occurred during in vivo HIE injury and in vitro hypoxic stress. However, glycine treatment effectively attenuated mitochondria-mediated autophagy. Additionally, after identifying alterations in proteins within the AMPK pathway in rats and PC12 cells following glycine treatment, cyclosporin A (CsA) and 5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside (AICAR) were administered in these models and indicated that glycine protected against HIE and CoCl2 injury by downregulating mitochondria-mediated autophagy that was dependent on the AMPK pathway. Overall, glycine attenuated hypoxic-ischemic injury in neurons via reductions in mitochondria-mediated autophagy through the AMPK pathway both in vitro and in vivo.
Collapse
|
6
|
Heidari R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Ommati MM, Abdoli N, Aghaei F, Esfandiari A, Azarpira N, Niknahad H. Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice. Biomed Pharmacother 2018; 97:1086-1095. [DOI: 10.1016/j.biopha.2017.10.166] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
|
7
|
Fahanik-Babaei J, Shayanfar F, Khodaee N, Saghiri R, Eliassi A. Electro-pharmacological profiles of two brain mitoplast anion channels: Inferences from single channel recording. EXCLI JOURNAL 2017; 16:531-545. [PMID: 28694756 PMCID: PMC5491910 DOI: 10.17179/excli2016-808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
We have characterized the conduction and blocking properties of two different chloride channels from brain mitochondrial inner membranes after incorporation into planar lipid bilayers. Our experiments revealed the existence of channels with a mean conductance of 158 ± 7 and 301 ± 8 pS in asymmetrical 200 mM cis/50 mM trans KCl solutions. We determined that the channels were ten times more permeable for Cl− than for K+, calculated from the reversal potential using the Goldman-Hodgkin-Katz equation. The channels were bell-shaped voltage dependent, with maximum open probability 0.9 at ± 20 mV. Two mitochondrial chloride channels were blocked after the addition of 10 µM DIDS. In addition, 158 pS chloride channel was blocked by 300 nM NPPB, acidic pH and 2.5 mM ATP, whereas the 301 pS chloride channel was blocked by 600 µM NPPB but not by acidic pH or ATP. Gating and conducting behaviors of these channels were unaffected by Ca2+. These results demonstrate that the 158 pS anion channel present in brain mitochondrial inner membrane, is probably identical to IMAC and 301 pS Cl channel displays different properties than those classically described for mitochondrial anion channels.
Collapse
Affiliation(s)
- Javad Fahanik-Babaei
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shayanfar
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Khodaee
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Faculty of Paramedical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Weinberg JM, Bienholz A, Venkatachalam MA. The role of glycine in regulated cell death. Cell Mol Life Sci 2016; 73:2285-308. [PMID: 27066896 PMCID: PMC4955867 DOI: 10.1007/s00018-016-2201-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
The cytoprotective effects of glycine against cell death have been recognized for over 28 years. They are expressed in multiple cell types and injury settings that lead to necrosis, but are still not widely appreciated or considered in the conceptualization of cell death pathways. In this paper, we review the available data on the expression of this phenomenon, its relationship to major pathophysiologic pathways that lead to cell death and immunomodulatory effects, the hypothesis that it involves suppression by glycine of the development of a hydrophilic death channel of molecular dimensions in the plasma membrane, and evidence for its impact on disease processes in vivo.
Collapse
Affiliation(s)
- Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Room 1560, MSRB II, Ann Arbor, MI, 48109-0676, USA.
| | - Anja Bienholz
- Department of Nephrology, University Duisburg-Essen, 45122, Essen, Germany
| | - M A Venkatachalam
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, 78234, USA
| |
Collapse
|
9
|
Giffin MM, Shi L, Gennaro ML, Sohaskey CD. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence. PLoS One 2016; 11:e0155522. [PMID: 27203084 PMCID: PMC4874671 DOI: 10.1371/journal.pone.0155522] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/29/2016] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation.
Collapse
Affiliation(s)
- Michelle M. Giffin
- Department of Veterans Affairs Medical Center, Long Beach, CA, United States of America
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Maria L. Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Charles D. Sohaskey
- Department of Veterans Affairs Medical Center, Long Beach, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gefen A, Weihs D. Mechanical cytoprotection: A review of cytoskeleton-protection approaches for cells. J Biomech 2016; 49:1321-1329. [DOI: 10.1016/j.jbiomech.2015.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/28/2022]
|
11
|
Lu Y, Zhang J, Ma B, Li K, Li X, Bai H, Yang Q, Zhu X, Ben J, Chen Q. Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis in mice. Neurochem Int 2012; 61:649-58. [DOI: 10.1016/j.neuint.2012.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/18/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
12
|
Petrat F, Boengler K, Schulz R, de Groot H. Glycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia-reperfusion injury: current knowledge. Br J Pharmacol 2012; 165:2059-72. [PMID: 22044190 DOI: 10.1111/j.1476-5381.2011.01711.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischaemia is amongst the leading causes of death. Despite this importance, there are only a few therapeutic approaches to protect from ischaemia-reperfusion injury (IRI). In experimental studies, the amino acid glycine effectively protected from IRI. In the prevention of IRI by glycine in cells and isolated perfused or cold-stored organs (tissues), direct cytoprotection plays a crucial role, most likely by prevention of the formation of pathological plasma membrane pores. Under in vivo conditions, the mechanism of protection by glycine is less clear, partly due to the physiological presence of the amino acid. Here, inhibition of the inflammatory response in the injured tissue is considered to contribute decisively to the glycine-induced reduction of IRI. However, attenuation of IRI recently achieved in experimental animals by low-dose glycine treatment regimens suggests additional/other (unknown) protective mechanisms. Despite the convincing experimental evidence and the large therapeutic width of glycine, there are only a few clinical trials on the protection from IRI by glycine with ambivalent results. Thus, both the mechanism(s) behind the protection of glycine against IRI in vivo and its true clinical potential remain to be addressed in future experimental studies/clinical trials.
Collapse
Affiliation(s)
- Frank Petrat
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | | | | | | |
Collapse
|
13
|
Foucreau N, Renault D, Hidalgo K, Lugan R, Pétillon J. Effects of diet and salinity on the survival, egg laying and metabolic fingerprints of the ground-dwelling spider Arctosa fulvolineata (Araneae, Lycosidae). Comp Biochem Physiol A Mol Integr Physiol 2012; 163:388-95. [PMID: 22796366 DOI: 10.1016/j.cbpa.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 11/17/2022]
Abstract
Soil salinity and the salinity of trophic resources may alter the osmoregulatory processes of arthropod, challenging the smooth regulation of body water, and, ultimately, survival. The intra and extracellular build-up of osmolytes represent a common strategy to attenuate acute hyperosmotic stress in several arthropod species. In the present study, we aimed to determine the impact of substrate and trophic resource salinities on salt tolerance in the female wolf spider, Arctosa fulvolineata, which is considered a specialist salt marsh species. We evaluated adult female survival and egg laying, and quantified the osmo-induced accumulation of compatible solutes (GC-MS). Three concentrations of substrate salinity were tested (0‰, 35‰ and 70‰) under three trophic conditions (starved spiders, spiders fed with salt prey [intertidal amphipods] and spiders fed with unsalted prey [freshwater amphipods]). We found no support for diet preferences in female A. fulvolineata, which exhibited similar predation rates on freshwater and marine amphipods. Survival and egg-laying were significantly impaired when female A. fulvolineata were exposed to hypersaline conditions for 12 days. Our results showed an increase in the level of several compatible solutes when spiders were exposed for 12 days to saline conditions. For instance, α-alanine, β-alanine, arginine, asparagine, aspartate, homoserine, glutamine, glycine, proline and serine levels were 4-10 times higher under hypersaline conditions. The osmo-induced accumulation of amino acids may increase the osmolality of body fluids, thus enhancing the smooth regulation of body fluids and survival ability of wolf spider under extreme saline conditions.
Collapse
Affiliation(s)
- Natacha Foucreau
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Glycine-induced cytoprotection is mediated by ERK1/2 and AKT in renal cells with ATP depletion. Eur J Cell Biol 2010; 90:333-41. [PMID: 21122942 DOI: 10.1016/j.ejcb.2010.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 10/03/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022] Open
Abstract
Glycine receptor (GlyR) activation by glycine protects cells against ATP depletion. However, the underlying mechanisms remain unclear. To define signaling pathways responsible for the GlyR mediated cytoprotection, we examined the phosphorylation status of key kinases signaling pathways in Madin-Darby canine kidney (MDCK) cells. Our results indicated that growing the ATP-depleted MDCK cells in glycine-containing media increased the level of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2), Ets-like transcription factor-1 (Elk1), AKT, and Forkhead box O-class 1 (FoxO1), decreased the level of phosphorylated p38 mitogen-activated protein kinase, while having little effect on the phosphorylation status of c-Jun N-terminal kinase 1 and 2. Similar phosphorylation changes in these molecules took place in the GlyRα1 stably expressing HEK-293 cell. We also showed that treating MDCK cells with ERK1/2 inhibitor PD98059 or AKT inhibitor LY294002 diminished cytoprotection against cell death by glycine, as determined by assessment of lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide activity. In contrast, treatment with p38 inhibitor SB203580 enhanced the glycine-induced cytoprotection. Finally, RNAi-mediated silencing of GlyRα1 abolished the glycine-induced changes in phosphorylation status of the above kinases in ATP-depleted cells. Taken together, our results suggest that the ERK1/2 and AKT signaling pathways are involved in the glycine-GlyR protection of MDCK cells against death induced by ATP depletion.
Collapse
|
15
|
|
16
|
Benko T, Frede S, Gu Y, Best J, Baba HA, Schlaak JF, de Groot H, Fandrey J, Rauen U. Glycine pretreatment ameliorates liver injury after partial hepatectomy in the rat. J INVEST SURG 2010; 23:12-20. [PMID: 20233000 DOI: 10.3109/08941930903469466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Living donor liver transplantation subjects the donor to a major hepatectomy. Pharmacological or nutritive protection of the liver during the procedure is desirable to ensure that the remnant is able to maintain sufficient function. The aim of our study was to analyze the effects of pretreatments with alpha-tocopherol (vitamin E), the flavonoid silibinin and/or the amino acid L-glycine on the donor in a rat model. METHODS Male Wistar rats were pretreated with L-glycine (5% in chow, 5 days), alpha-tocopherol (100 mg/kg body weight by gavage, 3 days) and/or silibinin (100 mg/kg body weight, i.p., 5 days). Thereafter, 90% partial hepatectomy was performed without portal vein clamping. RESULTS Glycine pretreatment markedly decreased transaminase release (AST, 12 hr: glycine 1292 +/- 192 U/L, control 2311 +/- 556 U/L, p < .05; ALT, 12 hr: glycine 1013 +/- 278 U/L, control 2038 +/- 500 U/L, p < .05), serum ALP activity and serum bilirubin levels (p < .05). Prothrombin time was reduced, and histologically, liver injury was also decreased in the glycine group. Silibinin pretreatment was less advantageous and pretreatment with alpha-tocopherol at this very high dose showed some adverse effects. Combined, i.e., triple pretreatment was less advantageous than glycine alone. Liver resection induced HIF-1alpha accumulation and HIF-1alpha accumulation was also decreased by glycine pretreatment. CONCLUSION The decrease of liver injury and improvement of liver function after pretreatment with glycine suggests that glycine pretreatment might be beneficial for living liver donors as well as for patients subjected to partial hepatectomy for other reasons.
Collapse
Affiliation(s)
- Tamas Benko
- Department of Surgery and Transplantation, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kominkova V, Malekova L, Tomaskova Z, Slezak P, Szewczyk A, Ondrias K. Modulation of intracellular chloride channels by ATP and Mg2+. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1300-12. [PMID: 20206596 DOI: 10.1016/j.bbabio.2010.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/03/2010] [Accepted: 02/26/2010] [Indexed: 12/15/2022]
Abstract
We report the effects of ATP and Mg2+ on the activity of intracellular chloride channels. Mitochondrial and lysosomal membrane vesicles isolated from rat hearts were incorporated into bilayer lipid membranes, and single chloride channel currents were measured. The observed chloride channels (n=112) possessed a wide variation in single channel parameters and sensitivities to ATP. ATP (0.5-2 mmol/l) modulated and/or inhibited the chloride channel activities (n=38/112) in a concentration-dependent manner. The inhibition effect was irreversible (n=5/93) or reversible (n=15/93). The non-hydrolysable ATP analogue AMP-PNP had a similar inhibition effect as ATP, indicating that phosphorylation did not play a role in the ATP inhibition effect. ATP modulated the gating properties of the channels (n=6/93), decreased the channels' open dwell times and increased the gating transition rates. ATP (0.5-2 mmol/l) without the presence of Mg2+ decreased the chloride channel current (n=12/14), whereas Mg2+ significantly reversed the effect (n=4/4). We suggest that ATP-intracellular chloride channel interactions and Mg2+ modulation of these interactions may regulate different physiological and pathological processes.
Collapse
Affiliation(s)
- Viera Kominkova
- Institute of Molecular Physiology and Genetics, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, 83334 Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
18
|
Winnike JH, Li Z, Wright FA, Macdonald JM, O'Connell TM, Watkins PB. Use of Pharmaco-Metabonomics for Early Prediction of Acetaminophen-Induced Hepatotoxicity in Humans. Clin Pharmacol Ther 2010; 88:45-51. [DOI: 10.1038/clpt.2009.240] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Howard A, Tahir I, Javed S, Waring SM, Ford D, Hirst BH. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J Physiol 2010; 588:995-1009. [PMID: 20123783 DOI: 10.1113/jphysiol.2009.186262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glycine protects mammalian intestine against oxidative damage caused by ischaemia-reperfusion (IR) injury and prevents or reverses experimentally-induced colitis. However the mechanism of protection remains largely unknown. The objectives of the current study were to demonstrate directly glycine-mediated protection of human intestinal epithelial cells and to determine the requirement for glycine uptake by the specific transporter GLYT1. Exogenous glycine protected human intestinal Caco-2 and HCT-8 cells against the oxidative agent tert-butylhydroperoxide and reduced the intracellular concentration of reactive oxygen species, when applied prior to but not concomitant with the oxidative challenge. Glycine given prior to oxidative challenge preserved intracellular glutathione concentration but had no effect on the rate of glycine uptake. Protection was dependent on GLYT1 activity, being blocked by a specific GLYT1 inhibitor, supporting a requirement for intracellular glycine accumulation. Maintained intracellular glutathione content is indicated as a mechanism through which the protective effect may in part be mediated. However expression of the genes encoding GLYT1 and the glutathione synthesising enzymes glutamate-cysteine ligase, both catalytic and modifier subunits, and glutathione synthetase was not altered by glycine or tert-butylhydroperoxide, suggesting transcriptional regulation is not involved. This work has demonstrated a novel role of GLYT1 in intestine and shown that intestinal epithelial cells respond directly to oxidative challenge without reliance on extra-epithelial tissues or functions such as neurone, blood-flow or immune responses for antioxidant defence. The protective actions of glycine and maintenance of epithelial antioxidant defences suggest it may be beneficial in treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Alison Howard
- Institute for Cell and Molecular Biosciences, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, U.K
| | | | | | | | | | | |
Collapse
|
20
|
Alpha-methyltyrosine inhibits formation of reactive oxygen species and diminishes apoptosis in PC12 cells. Brain Res 2009; 1296:137-47. [DOI: 10.1016/j.brainres.2009.07.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 12/21/2022]
|
21
|
Wang CL, Teo KY, Han B. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells. Cryobiology 2008; 57:52-9. [PMID: 18588870 DOI: 10.1016/j.cryobiol.2008.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl-water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl-glycine-water mixture has two distinct eutectic phase change events - binary eutectic solidification of water-glycine, and ternary eutectic solidification of NaCl-glycine-water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n=9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to -8.5 degrees C decreased from 85.9+/-1.8% to 38.5+/-1.0% on the occurrence of binary eutectic solidification of glycine-water (n=3 for each group). With 20% glycine supplement, the viability of the cells frozen to -8.5 degrees C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to -15 degrees C, the viability drastically decreased from 62.5+/-2.0% to 3.6+/-0.7% (n=3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water-glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.
Collapse
Affiliation(s)
- Chuo-Li Wang
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, 500 West First Street, Arlington, TX 76019, USA
| | | | | |
Collapse
|
22
|
Pan C, Bai X, Fan L, Ji Y, Li X, Chen Q. Cytoprotection by glycine against ATP-depletion-induced injury is mediated by glycine receptor in renal cells. Biochem J 2006; 390:447-53. [PMID: 15836436 PMCID: PMC1198924 DOI: 10.1042/bj20050141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is known that glycine protects mammalian cells against ischaemic cell injury by preventing cellular membrane leakage. However, the molecular mechanisms have not yet been clearly elucidated. The purpose of the present study was to clarify whether GlyR (glycine receptor) acts as a key mediator in cytoprotection of glycine. cDNA encoding human GlyRa1 (a1-subunit of glycine receptor) was transfected into HEK-293 cells. The membrane integrity of the cells with or without GlyRa1 was examined by the uptake of marker compounds, the release of LDH (lactate dehydrogenase) and the exclusion of Trypan Blue. Glycine prevented the permeability of 70 kDa dextrans and 140 kDa LDH in the cells in which GlyR was expressed under conditions of ATP depletion. The inhibition of endogenous GlyR expression by RNA interference attenuated the cytoprotection by glycine. Furthermore, the mutation of Tyr202 to phenylalanine in GlyRa1 blocked the glycine-mediated cytoprotection, while the mutation of Tyr202 to leucine abolished the cytoprotection by strychnine. Our results suggested that the cytoprotection of glycine against ATP-depletion-induced injury might be mediated by GlyR.
Collapse
Affiliation(s)
- Chao Pan
- *Atherosclerosis Research Centre, Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiaoming Bai
- *Atherosclerosis Research Centre, Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Leming Fan
- *Atherosclerosis Research Centre, Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yong Ji
- †Provincial Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiaoyu Li
- †Provincial Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Qi Chen
- *Atherosclerosis Research Centre, Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Rauen U, de Groot H. New Insights into the Cellular and Molecular Mechanisms of Cold Storage Injury. J Investig Med 2004. [DOI: 10.1177/108155890405200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Solid organ grafts, but also other biologic materials requiring storage for a few hours to a few days, are usually stored under hypothermic conditions. To decrease graft injury during cold storage, organ preservation solutions were developed many years ago. However, since then, modern biochemical and cell biologic methods have allowed further insights into the molecular and cellular mechanisms of cold storage injury, including further insights into alterations of the cellular ion homeostasis, the occurrence of a mitochondrial permeability transition, and the occurrence of free–radical-mediated hypothermic injury and cold-induced apoptosis. These new aspects of cold storage injury, which are not covered by preservation solutions in current clinical use and offer the potential for improvement of organ and tissue preservation, are presented here.
Collapse
Affiliation(s)
- Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| | - Herbert de Groot
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| |
Collapse
|
24
|
Ruiz-Meana M, Pina P, Garcia-Dorado D, Rodríguez-Sinovas A, Barba I, Miró-Casas E, Mirabet M, Soler-Soler J. Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition. J Physiol 2004; 558:873-82. [PMID: 15218075 PMCID: PMC1665014 DOI: 10.1113/jphysiol.2004.068320] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Post-ischaemic reperfusion may precipitate cardiomyocyte death upon correction of intracellular acidosis due in part to mitochondrial permeability transition. We investigated whether glycine, an amino acid with poorly understood cytoprotective properties, may interfere with this mechanism. In cardiomyocyte cultures, addition of glycine during re-energization following 1 h of simulated ischaemia (NaCN/2-deoxyglucose, pH 6.4) completely prevented necrotic cell death associated with pH normalization. Glycine also protected against cell death associated with pH normalization in reoxygenated rat hearts. Glycine prevented cyclosporin-sensitive swelling and calcein release associated with re-energization in rat heart mitochondria submitted to simulated ischaemia or to Ca(2+) stress under normoxia. NMR spectroscopy revealed a marked glycine depletion in re-energized cardiomyocytes that was reversed by exposure to 3 mm glycine. These results suggest that intracellular glycine exerts a previously unrecognized inhibition on mitochondrial permeability transition in cardiac myocytes, and that intracellular glycine depletion during myocardial hypoxia/reoxygenation makes the cell more vulnerable to necrotic death.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Unidad de Investigacion B, Hospital Universitario Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Grosser N, Oberle S, Berndt G, Erdmann K, Hemmerle A, Schröder H. Antioxidant action of l-alanine: heme oxygenase-1 and ferritin as possible mediators. Biochem Biophys Res Commun 2004; 314:351-5. [PMID: 14733911 DOI: 10.1016/j.bbrc.2003.12.089] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The amino acid L-alanine has been shown to exert long-term cytoprotection by as yet unidentified molecular mechanisms. Using cultured human endothelial cells (ECV 304), the present study investigates the effect of L-alanine on hydrogen peroxide-mediated cytotoxicity and expression of the antioxidant stress proteins, heme oxygenase-1 (HO-1) and ferritin. Pretreatment with L-alanine (0.3-3mM) protected endothelial cells from hydrogen peroxide-dependent cytotoxicity and increased the surviving endothelial cell fraction by 76%. The described protection was associated with a significant induction of heme oxygenase activity and ferritin protein synthesis. A protective effect similar to L-alanine was observed when preincubating the cells with iron-free apoferritin or the antioxidant HO-1 product, bilirubin. The present study demonstrates that L-alanine stimulates expression of the antioxidant defense proteins HO-1 and ferritin in endothelial cells. Increased heme oxygenase activity and ferritin expression improve endothelial dysfunction suggesting an antiatherogenic potential of L-alanine.
Collapse
Affiliation(s)
- Nina Grosser
- Department of Pharmacology and Toxicology, School of Pharmacy, Martin Luther University, 06120 Wolfgang-Langenbeck-Str. 4, Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Hoeger U, Abe H. β-Alanine and other free amino acids during salinity adaptation of the polychaete Nereis japonica. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:161-71. [PMID: 14720601 DOI: 10.1016/s1095-6433(03)00286-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The free amino acid pool was measured in the body wall muscle and in coelomic cells (eleocytes) of the polychaete Nereis japonica following adaptation to salinities between 6 and 44 per thousand. Beta-Alanine and glycine were the major amino acids comprising 35-60% of the total free amino acid pool in the body wall. In eleocytes, glutamate and lysine in addition to beta-alanine and glycine were the dominant free amino acids. In the body wall, the concentrations of beta-alanine were closely correlated with the ambient salinity between 12 and 35 per thousand. The concentrations of glycine rose initially but remained unchanged at concentrations above 26 per thousand. In both body wall and eleocytes, the mean total primary amine concentrations were correlated with the ambient salinities between 12 and 35 per thousand. The sum of amino acids determined by HPLC showed the same correlation in both tissues, but accounted only for 60-85% of the concentrations of total primary amines. The total protein content of the body wall was slightly higher at 44 per thousand compared to the lower salinities indicating dehydration of the tissues. Eleocytes swell at 6 per thousand and showed irregular amino acid concentrations indicating a loss of metabolic integrity.
Collapse
Affiliation(s)
- Ulrich Hoeger
- Laboratory of Marine Biochemistry, Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|