1
|
Liao S, Kang K, Yao Z, Lu Y. Nervous system contributions to small cell lung cancer: Lessons from diverse oncological studies. Biochim Biophys Acta Rev Cancer 2025; 1880:189252. [PMID: 39725176 DOI: 10.1016/j.bbcan.2024.189252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The nervous system plays a vital role throughout the entire lifecycle and it may regulate the formation, development and metastasis of tumors. Small cell lung cancer is a typical neuroendocrine tumor, and it is naturally equipped with neurotropism. In this review, we firstly summarize current preclinical and clinical evidence to demonstrate the reciprocal crosstalk among the nervous system, tumor, and tumor microenvironment in various ways, including neurotransmitter-receptor pathways, innervations of nerve fibers, different types of synapse formation by neurons, astrocytes, and cancer cells, neoneurogenesis. Futherly, we emphasize how the nervous system interacts with small cell lung cancer and discuss the limitations of current research methods for examining the interactions. We propose that integrating neuroscience, development biology, and tumor biology can be a promising direction to provide new insights into development and metastasis of small cell lung cancer and raise some novel treatment strategies.
Collapse
Affiliation(s)
- Shuangsi Liao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Wirt JL, Assis Ferreira L, Jesus CHA, Woodward TJ, Oliva I, Xu Z, Crystal JD, Pepin RH, Silverman RB, Hohmann AG. Efficacy of GABA aminotransferase inactivator OV329 in models of neuropathic and inflammatory pain without tolerance or addiction. Proc Natl Acad Sci U S A 2025; 122:e2318833121. [PMID: 39793055 PMCID: PMC11725897 DOI: 10.1073/pnas.2318833121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects. We postulated that inhibition of GABA's degradation enzyme, GABA aminotransferase (GABA-AT), would increase endogenous GABA levels and produce analgesia. We evaluated antinociceptive efficacy of the potent GABA-AT inhibitor OV329 in rodent models of neuropathic and inflammatory pain and assessed possible side effects (i.e., reward and motor impairment). OV329 attenuated the development and maintenance of mechanical and cold hypersensitivities induced by the chemotherapeutic agent paclitaxel. Prophylactic OV329, administered systemically, normalized paclitaxel-induced increases in glutamate levels and suppressed neuropathic nociception. Intrathecal OV329 suppressed paclitaxel-induced mechanical hypersensitivity, elevating GABA, and reducing glutamate levels in the lumbar spinal cord, consistent with a spinal site of action. Furthermore, OV329 largely synergized with paclitaxel to enhance 4T1 tumor cell line cytotoxicity without altering viability of nontumor cells. OV329 also attenuated inflammation-induced mechanical hypersensitivity induced by intraplanar injection of complete Freund's adjuvant (CFA) with efficacy comparable to morphine. Unlike morphine, OV329 did not produce reward in a conditioned place preference assay in mice and was not self-administered intravenously by rats. Antinociceptive efficacy of OV329 was observed at doses that did not impair motor function or produce tolerance following chronic dosing. Thus, inhibition of GABA-AT with OV329 represents a unique therapeutic strategy to alleviate neuropathic and inflammatory pain with no apparent abuse liability, potentially producing a beneficial spectrum of pharmacological effects through enzymatic regulation.
Collapse
Affiliation(s)
- Jonah L. Wirt
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Luana Assis Ferreira
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | | | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Idaira Oliva
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | - Zhili Xu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | - Jonathon D. Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Robert H. Pepin
- Mass Spectrometry Facility, Department of Chemistry, Indiana University, Bloomington, IN
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL
- Department of Pharmacology, Northwestern University, Chicago, IL 60208
| | - Andrea G. Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Gill Institute for Neuroscience, Indiana University, Bloomington, IN47405
| |
Collapse
|
3
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
4
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
5
|
Wang C, Ni J, Zhai D, Xu Y, Wu Z, Chen Y, Liu N, Du J, Shen Y, Liu G, Yang Y, You L, Hu W. Stress-induced epinephrine promotes hepatocellular carcinoma progression via the USP10-PLAGL2 signaling loop. Exp Mol Med 2024; 56:1150-1163. [PMID: 38689092 PMCID: PMC11148159 DOI: 10.1038/s12276-024-01223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with a poor prognosis. Our previous study demonstrated that Pleomorphic adenoma gene like-2 (PLAGL2) was a potential therapeutic target in HCC. However, the mechanisms that lead to the upregulation of PLAGL2 in HCC remain unclear. The present study revealed that stress-induced epinephrine increased the expression of PLAGL2, thereby promoting the progression of HCC. Furthermore, PLAGL2 knockdown inhibited epinephrine-induced HCC development. Mechanistically, epinephrine upregulated ubiquitin-specific protease 10 (USP10) to stabilize PLAGL2 via the adrenergic β-receptor-2-c-Myc (ADRB2-c-Myc) axis. Furthermore, PLAGL2 acted as a transcriptional regulator of USP10, forming a signaling loop. Taken together, these results reveal that stress-induced epinephrine activates the PLAGL2-USP10 signaling loop to enhance HCC progression. Furthermore, PLAGL2 plays a crucial role in psychological stress-mediated promotion of HCC progression.
Collapse
Affiliation(s)
- Chen Wang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiaping Ni
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Dongqing Zhai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yanchao Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, PR China
| | - Zijie Wu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuyuan Chen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750001, Ningxia, PR China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750001, Ningxia, PR China
| | - Yumeng Shen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Guilai Liu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
- Lingang Laboratory, Shanghai, 200032, PR China.
| |
Collapse
|
6
|
Li M, Yang J, Li J, Zhou Y, Li X, Ma Z, Li X, Ma H, Ye X. Epiberberine induced p53/p21-dependent G2/M cell cycle arrest and cell apoptosis in gastric cancer cells by activating γ-aminobutyric acid receptor- β3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155198. [PMID: 38006806 DOI: 10.1016/j.phymed.2023.155198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND PURPOSE Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -β3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.
Collapse
Affiliation(s)
- Mengmeng Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaye Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Juan Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yuan Zhou
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hang Ma
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Puzderova B, Belvoncikova P, Grossmannova K, Csaderova L, Labudova M, Fecikova S, Pastorek J, Barathova M. Propranolol, Promising Chemosensitizer and Candidate for the Combined Therapy through Disruption of Tumor Microenvironment Homeostasis by Decreasing the Level of Carbonic Anhydrase IX. Int J Mol Sci 2023; 24:11094. [PMID: 37446271 DOI: 10.3390/ijms241311094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemotherapy represents a persisting medical problem, ranking among main causes of chemotherapy failure and cancer mortality. There is a possibility to utilize and repurpose already existing therapeutics which were not primarily intended for oncological treatment. Overactivation of adrenergic receptors and signaling dysregulation promotes tumor progression, metastatic potential, immune system evasion, tumor angiogenesis and drug resistance. The non-selective beta-blocker propranolol, approved in infantile haemangioma treatment, has a high potential for use in cancer therapy. We analyzed the effects of propranolol and 5-fluorouracil combination on sensitive and resistant cells derived from colorectal carcinoma in monolayers, single-component and co-culture spheroids and in vivo mouse models. Our results revealed that propranolol is able to exert its effect not only in chemosensitive colorectal cells, but also in 5-fluorouracil resistant cells. Propranolol disrupts the hypoxic adaptation machinery by inhibiting HIF1α, carbonic anhydrase IX, and activates apoptosis, which may be important in the management of chemo-resistant patients. We showed that propranolol slows down the growth of xenografts formed from colorectal cancer cells, even from cells already adapted to the β-blocker. We provide clear evidence that blockade of β-adrenergic receptors affects essential signaling pathways modulating tumor microenvironment and thus the response to anticancer therapy. Our findings indicate that propranolol could be repurposed to serve as chemosensitizer in combined therapy aimed at disrupting homeostasis of tumor microenvironment.
Collapse
Affiliation(s)
- Barbora Puzderova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Petra Belvoncikova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Grossmannova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Lucia Csaderova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Martina Labudova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Silvia Fecikova
- National Institute of Lung Disaeses, Thorax Surgery and Tuberculosis, Vyšné Hágy 1, 059 84 Vysoké Tatry, Slovakia
| | | | - Monika Barathova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
9
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Profiling the Adrenergic System in Breast Cancer and the Development of Metastasis. Cancers (Basel) 2022; 14:cancers14225518. [PMID: 36428611 PMCID: PMC9688855 DOI: 10.3390/cancers14225518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies and preclinical models suggest that chronic stress might accelerate breast cancer (BC) growth and the development of metastasis via sympathetic neural mechanisms. Nevertheless, the role of each adrenergic pathway (α1, α2, and β) in human samples remains poorly depicted. Herein, we propose to characterize the profile of the sympathetic system (e.g., release of catecholamines, expression of catecholamine metabolic enzymes and adrenoreceptors) in BC patients, and ascertain its relevance in the development of distant metastasis. Our results demonstrated that BC patients exhibited increased plasma levels of catecholamines when compared with healthy donors, and this increase was more evident in BC patients with distant metastasis. Our analysis using the BC-TCGA database revealed that the genes coding the most expressed adrenoreceptors in breast tissues (ADRA2A, ADRA2C, and ADRB2, by order of expression) as well as the catecholamine synthesizing (PNMT) and degrading enzyme (MAO-A and MAO-B) genes were downregulated in BC tissues. Importantly, the expression of ADRA2A, ADRA2C, and ADRB2 was correlated with metastatic BC and BC subtypes, and thus the prognosis of the disease. Overall, we gathered evidence that under stressful conditions, both the α2- and β2-signaling pathways might work on a synergetic matter, thus paving the way for the development of new therapeutic approaches.
Collapse
|
11
|
Le TT, Payne SL, Buckwald MN, Hayes LA, Parker SR, Burge CB, Oudin MJ. Sensory nerves enhance triple-negative breast cancer invasion and metastasis via the axon guidance molecule PlexinB3. NPJ Breast Cancer 2022; 8:116. [PMID: 36333352 PMCID: PMC9636220 DOI: 10.1038/s41523-022-00485-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In breast cancer, nerve presence has been correlated with more invasive disease and worse prognosis, yet the mechanisms by which different types of peripheral nerves drive tumor progression remain poorly understood. In this study, we identified sensory nerves as more abundant in human triple-negative breast cancer (TNBC) tumors. Co-injection of sensory neurons isolated from the dorsal root ganglia (DRG) of adult female mice with human TNBC cells in immunocompromised mice increased the number of lung metastases. Direct in vitro co-culture of human TNBC cells with the dorsal root ganglia (DRG) of adult female mice revealed that TNBC cells adhere to sensory neuron fibers leading to an increase in migration speed. Species-specific RNA sequencing revealed that co-culture of TNBC cells with sensory nerves upregulates the expression of genes associated with cell migration and adhesion in cancer cells. We demonstrated that lack of the semaphorin receptor PlexinB3 in cancer cells attenuate their adhesion to and migration on sensory nerves. Together, our results identify a mechanism by which nerves contribute to breast cancer migration and metastasis by inducing a shift in TNBC cell gene expression and support the rationale for disrupting neuron-cancer cell interactions to target metastasis.
Collapse
Affiliation(s)
- Thanh T Le
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Samantha L Payne
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Maia N Buckwald
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Lily A Hayes
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Savannah R Parker
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | | | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
12
|
Pansare AV, Pansare SV, Pansare PV, More BP, Nagarkar AA, Barbezat M, Donde KJ, Patil VR, Terrasi GP. Economical gold recovery cycle from bio-sensing AuNPs: an application for nanowaste and COVID-19 testing kits. Dalton Trans 2022; 51:14686-14699. [PMID: 36098266 DOI: 10.1039/d2dt01405j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the controlled growth of biologically active compounds: gold nanoparticles (AuNPs) in various shapes, including their green synthesis, characterization, and studies of their applications towards biological, degradation and recycling. Using spectroscopic methods, studies on responsive binding mechanisms of AuNPs with biopolymers herring sperm deoxyribonucleic acid (hsDNA), bovine serum albumin (BSA), dyes degradation study, and exquisitely gold separation studies/recovery from nanowaste, COVID-19 testing kits, and pregnancy testing kits are discussed. The sensing ability of the AuNPs with biopolymers was investigated via various analytical techniques. The rate of degradation of various dyes in the presence and absence of AuNPs was studied by deploying stirring, IR, solar, and UV-Vis methods. AuNPs were found to be the most active cytotoxic agent against human breast cancer cell lines such as MCF-7 and MDAMB-468. Furthermore, an economical process for the recovery of gold traces from nanowaste, COVID-19 detection kits, and pregnancy testing kits was developed using inexpensive and eco-friendly α-cyclodextrin sugar. This method was found to be easy and safest in comparison with the universally accepted cyanidation process. In the future, small gold jewelry makers and related industries would benefit from the proposed gold-recycling process and it might contribute to their socio-economic growth. The methodologies proposed are also beneficial for trace-level forensic investigation.
Collapse
Affiliation(s)
- Amol V Pansare
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| | - Shubham V Pansare
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Priyanka V Pansare
- Ramnarain Ruia Autonomous College, University of Mumbai, Matunga (E), India.
| | - Bhausaheb P More
- Directorate of Forensic Science Laboratories Mumbai, Home Department, Government of Maharashtra-98, India
| | - Amit A Nagarkar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138 USA
| | - Michel Barbezat
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| | - Kamini J Donde
- Ramnarain Ruia Autonomous College, University of Mumbai, Matunga (E), India.
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Giovanni P Terrasi
- Composite group, Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology-Empa, 8600 Dübendorf, Switzerland.
| |
Collapse
|
13
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Lourenço C, Conceição F, Jerónimo C, Lamghari M, Sousa DM. Stress in Metastatic Breast Cancer: To the Bone and Beyond. Cancers (Basel) 2022; 14:1881. [PMID: 35454788 PMCID: PMC9028241 DOI: 10.3390/cancers14081881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) remains as one the most prevalent cancers diagnosed in industrialised countries. Although the overall survival rate is high, the dissemination of BRCA cells to distant organs correlates with a significantly poor prognosis. This is due to the fact that there are no efficient therapeutic strategies designed to overcome the progression of the metastasis. Over the past decade, critical associations between stress and the prevalence of BRCA metastases were uncovered. Chronic stress and the concomitant sympathetic hyperactivation have been shown to accelerate the progression of the disease and the metastases incidence, specifically to the bone. In this review, we provide a summary of the sympathetic profile on BRCA. Additionally, the current knowledge regarding the sympathetic hyperactivity, and the underlying adrenergic signalling pathways, involved on the development of BRCA metastasis to distant organs (i.e., bone, lung, liver and brain) will be revealed. Since bone is a preferential target site for BRCA metastases, greater emphasis will be given to the contribution of α2- and β-adrenergic signalling in BRCA bone tropism and the occurrence of osteolytic lesions.
Collapse
Affiliation(s)
- Catarina Lourenço
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology—ICBAS-UP, 4050-313 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
16
|
Li D, Hu LN, Zheng SM, La T, Wei LY, Zhang XJ, Zhang ZH, Xing J, Wang L, Li RQ, Zhu Q, Thorne RF, Feng YC, Hondermarck H, Zhang XD, Li L, Gao JN. High nerve density in breast cancer is associated with poor patient outcome. FASEB Bioadv 2022; 4:391-401. [PMID: 35664834 PMCID: PMC9164247 DOI: 10.1096/fba.2021-00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Dong Li
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Li Na Hu
- Department of Pathology Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Si Min Zheng
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Ting La
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute The University of Newcastle NSW 2308 Australia
| | - Li Yuan Wei
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Xiao Jun Zhang
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Zhen Hua Zhang
- Department of Pathology Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Jun Xing
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Li Wang
- School of Basic Medicine Sciences Zhengzhou University Henan 450053 China
| | - Ruo Qi Li
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Qin Zhu
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Rick F. Thorne
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute The University of Newcastle NSW 2308 Australia
- Translational Research Institute Henan Provincial People’s Hospital and People's Hospital of Zhengzhou University Academy of Medical Science Zhengzhou University Henan 450053 China
| | - Yu Chen Feng
- School of Medicine and Public Health and Hunter Medical Research Institute The University of Newcastle NSW 2308 Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute The University of Newcastle NSW 2308 Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute The University of Newcastle NSW 2308 Australia
- Translational Research Institute Henan Provincial People’s Hospital and People's Hospital of Zhengzhou University Academy of Medical Science Zhengzhou University Henan 450053 China
| | - Li Li
- Department of Pathology Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| | - Jin Nan Gao
- Department of Breast Surgery Third Hospital of Shanxi Medical University and Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan Shanxi 030032 China
| |
Collapse
|
17
|
Duarte D, Vale N. Combining repurposed drugs to treat colorectal cancer. Drug Discov Today 2021; 27:165-184. [PMID: 34592446 DOI: 10.1016/j.drudis.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
The drug development process, especially of antineoplastic agents, has become increasingly costly and ineffective. Drug repurposing and drug combination are alternatives to de novo drug development, being low cost, rapid, and easy to apply. These strategies allow higher efficacy, decreased toxicity, and overcoming of drug resistance. The combination of antineoplastic agents is already being applied in cancer therapy, but the combination of repurposed drugs is still under-explored in pre- and clinical development. In this review, we provide a set of pharmacological concepts focusing on drug repurposing for treating colorectal cancer (CRC) and that are relevant for the application of new drug combinations against this disease.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
18
|
Roda N, Blandano G, Pelicci PG. Blood Vessels and Peripheral Nerves as Key Players in Cancer Progression and Therapy Resistance. Cancers (Basel) 2021; 13:cancers13174471. [PMID: 34503281 PMCID: PMC8431382 DOI: 10.3390/cancers13174471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The interactions between cancer cells and the surrounding blood vessels and peripheral nerves are critical in all the phases of tumor development. Accordingly, therapies that specifically target vessels and nerves represent promising anticancer approaches. The first aim of this review is to document the importance of blood vessels and peripheral nerves in both cancer onset and local or distant growth of tumoral cells. We then focus on the state-of-the-art therapies that limit cancer progression through the impairment of blood vessels and peripheral nerves. The mentioned literature is helpful for the scientific community to appreciate the recent advances in these two fundamental components of tumors. Abstract Cancer cells continuously interact with the tumor microenvironment (TME), a heterogeneous milieu that surrounds the tumor mass and impinges on its phenotype. Among the components of the TME, blood vessels and peripheral nerves have been extensively studied in recent years for their prominent role in tumor development from tumor initiation. Cancer cells were shown to actively promote their own vascularization and innervation through the processes of angiogenesis and axonogenesis. Indeed, sprouting vessels and axons deliver several factors needed by cancer cells to survive and proliferate, including nutrients, oxygen, and growth signals, to the expanding tumor mass. Nerves and vessels are also fundamental for the process of metastatic spreading, as they provide both the pro-metastatic signals to the tumor and the scaffold through which cancer cells can reach distant organs. Not surprisingly, continuously growing attention is devoted to the development of therapies specifically targeting these structures, with promising initial results. In this review, we summarize the latest evidence that supports the importance of blood vessels and peripheral nerves in cancer pathogenesis, therapy resistance, and innovative treatments.
Collapse
Affiliation(s)
- Niccolò Roda
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
| | - Giada Blandano
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
19
|
Fiala O, Ostašov P, Rozsypalová A, Hora M, Šorejs O, Šustr J, Bendová B, Trávníček I, Filipovský J, Fínek J, Büchler T. Impact of Concomitant Cardiovascular Medication on Survival of Metastatic Renal Cell Carcinoma Patients Treated with Sunitinib or Pazopanib in the First Line. Target Oncol 2021; 16:643-652. [PMID: 34363554 DOI: 10.1007/s11523-021-00829-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Patients with metastatic renal cell carcinoma (mRCC) are often elderly and have various comorbidities, including cardiovascular diseases. Although these patients have extensive co-exposure to targeted therapy and cardiovascular drugs, the impact of this co-exposure on outcomes for patients with mRCC remains unclear. OBJECTIVE Our objective was to evaluate the association between the use of cardiovascular medication and survival of patients with mRCC. METHODS The study included 343 consecutive patients with mRCC treated with sunitinib or pazopanib in the first line. Clinical data obtained from the Renal Cell Carcinoma Information System (RENIS) clinical registry and hospital information systems were retrospectively analyzed. Progression-free survival (PFS) and overall survival (OS) were compared according to the use of common medications, including antihypertensives (i.e., β-blockers [BBs], angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, calcium channel blockers, and diuretics), acetylsalicylic acid (aspirin), statins, and proton pump inhibitors. RESULTS The univariate Cox analysis evaluating the impact of the assessed comedications on patient survival revealed that only BBs were significantly associated with PFS (hazard ratio [HR] 0.533, p < 0.001) and OS (HR 0.641, p = 0.006). The median PFS and OS for users of BBs was 18.39 and 37.60 months versus 8.16 and 20.4 months for patients not using BBs (p < 0.001 and p < 0.001, respectively). The Cox multivariate analysis showed that the use of BBs was a significant factor for both PFS (HR 0.428, p = 0.001) and OS (HR 0.518, p = 0.001). CONCLUSIONS The results of this retrospective study suggest that the use of BBs is associated with favorable outcomes for patients with mRCC treated with sunitinib or pazopanib in the first line.
Collapse
Affiliation(s)
- Ondřej Fiala
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Pilsen, Charles University, alej Svobody 80, 304 60, Pilsen, Czech Republic.
- Laboratory of Cancer Treatment and Tissue Regeneration, Faculty of Medicine in Pilsen, Biomedical Center, Charles University, alej Svobody 76, Pilsen, Czech Republic.
| | - Pavel Ostašov
- Laboratory of Tumor Biology and Immunotherapy, Faculty of Medicine in Pilsen, Biomedical Center, Charles University, alej Svobody 76, Pilsen, Czech Republic
| | - Aneta Rozsypalová
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, Prague, Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine and University Hospital in Pilsen, Charles University, E. Beneše 13, Pilsen, Czech Republic
| | - Ondřej Šorejs
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Pilsen, Charles University, alej Svobody 80, 304 60, Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Faculty of Medicine in Pilsen, Biomedical Center, Charles University, alej Svobody 76, Pilsen, Czech Republic
| | - Jan Šustr
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Pilsen, Charles University, alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Barbora Bendová
- Department of Urology, Faculty of Medicine and University Hospital in Pilsen, Charles University, E. Beneše 13, Pilsen, Czech Republic
| | - Ivan Trávníček
- Department of Urology, Faculty of Medicine and University Hospital in Pilsen, Charles University, E. Beneše 13, Pilsen, Czech Republic
| | - Jan Filipovský
- 2nd Department of Internal Medicine, Faculty of Medicine and University Hospital in Pilsen, Charles University, E. Beneše 13, Pilsen, Czech Republic
| | - Jindřich Fínek
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Pilsen, Charles University, alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Tomáš Büchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, Prague, Czech Republic
| |
Collapse
|
20
|
Cutruzzolà F, Bouzidi A, Liberati FR, Spizzichino S, Boumis G, Macone A, Rinaldo S, Giardina G, Paone A. The Emerging Role of Amino Acids of the Brain Microenvironment in the Process of Metastasis Formation. Cancers (Basel) 2021; 13:2891. [PMID: 34207731 PMCID: PMC8227515 DOI: 10.3390/cancers13122891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment. In this review, we analyzed what makes the brain a suitable site for the development of metastases and how this microenvironment, through the continuous release of neurotransmitters and amino acids in the extracellular milieu, is able to support the metabolic needs of metastasizing cells. We also suggested a possible role for amino acids released by the brain through the endothelial cells of the blood-brain barrier into the bloodstream in triggering the process of extravasation/invasion of the brain parenchyma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alessio Paone
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (A.B.); (F.R.L.); (S.S.); (G.B.); (A.M.); (S.R.); (G.G.)
| |
Collapse
|
21
|
Madel MB, Elefteriou F. Mechanisms Supporting the Use of Beta-Blockers for the Management of Breast Cancer Bone Metastasis. Cancers (Basel) 2021; 13:cancers13122887. [PMID: 34207620 PMCID: PMC8228198 DOI: 10.3390/cancers13122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bone represents the most common site of metastasis for breast cancer and the establishment and growth of metastatic cancer cells within the skeleton significantly reduces the quality of life of patients and their survival. The interplay between sympathetic nerves and bone cells, and its influence on the process of breast cancer bone metastasis is increasingly being recognized. Several mechanisms, all dependent on β-adrenergic receptor signaling in stromal bone cells, were shown to promote the establishment of disseminated cancer cells into the skeleton. This review provides a summary of these mechanisms in support of the therapeutic potential of β-blockers for the early management of breast cancer metastasis. Abstract The skeleton is heavily innervated by sympathetic nerves and represents a common site for breast cancer metastases, the latter being the main cause of morbidity and mortality in breast cancer patients. Progression and recurrence of breast cancer, as well as decreased overall survival in breast cancer patients, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. Preclinical studies have demonstrated that sympathetic stimulation of β-adrenergic receptors in osteoblasts increases bone vascular density, adhesion of metastatic cancer cells to blood vessels, and their colonization of the bone microenvironment, whereas β-blockade prevented these events in mice with high endogenous sympathetic activity. These findings in preclinical models, along with clinical data from breast cancer patients receiving β-blockers, support the pathophysiological role of excess sympathetic nervous system activity in the formation of bone metastases, and the potential of commonly used, safe, and low-cost β-blockers as adjuvant therapy to improve the prognosis of bone metastases.
Collapse
Affiliation(s)
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
22
|
Zhang L, Yin X, Wan X, Sun Y, Cao M, Ouyang S. Rapid screening of active components group with Topoisomerase I inhibitory activity in Sophora alopecuroides L. based on ultrafiltration coupled with UPLC-QTOF-MS. Curr Pharm Biotechnol 2021; 23:998-1008. [PMID: 34080963 DOI: 10.2174/1389201022666210602105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Topoisomerase I (Topo I) is a key target of many antitumor drugs in vivo. Alkaloids in Sophora alopecuroides L. can reportedly inhibit Topo I activity, but the pharmacodynamic material basis has not yet been determined. OBJECTIVE The objective of this study is to rapidly identify active components group which inhibit Topo I in S. alopecuroides L. METHODS Affinity ultrafiltration-ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UF-UPLC-QTOF-MS) screening system based on Topo I protein was established to screen and isolate a total alkaloid fraction in S. alopecuroides L. Topo I inhibitory activity and anti-tuomor proliferation activity of the screened components were evaluated, and their molecular mechanisms were studied. RESULTS Six compounds bound specifically to Topo I were obtained. Further screening showed that matrine, cytisine, and sophoridine presented higher inhibitory activity on Topo I and were able to inhibit the proliferation of breast cancer MDA-MB-468 cells with IC50 values of 9.40 ± 1.12 mM, 17.4 ± 2.20 mM and 10.4 ± 1.37 mM, respectively. To the best of our knowledge, their dual molecular mechanisms against Topo I have been discussed here for the first time: (1) stabilization of Topo I-DNA complex and (2) inhibition or blocking of Topo I binding to DNA. CONCLUSION Matrine, cytisine, and sophoridine from S. alopecuroides L. were defined as the active components group with Topo I inhibitory activity and their pharmacological mechanism was confirmed, which provided an important base for further research and development of antitumor components fromS. alopecuroides L.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201602, China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201602, China
| | - Xi Wan
- Ruichang Hospital of Traditional Chinese Medicine, Jiujiang 332200, China
| | - Yun Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201602, China
| | - Menghui Cao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201602, China
| | - Sheng Ouyang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
23
|
Falvo P, Orecchioni S, Roma S, Raveane A, Bertolini F. Drug Repurposing in Oncology, an Attractive Opportunity for Novel Combinatorial Regimens. Curr Med Chem 2021; 28:2114-2136. [PMID: 33109033 DOI: 10.2174/0929867327999200817104912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022]
Abstract
The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.
Collapse
Affiliation(s)
- Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Roma
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
24
|
Dlamini Z, Mathabe K, Padayachy L, Marima R, Evangelou G, Syrigos KN, Bianchi A, Lolas G, Hull R. Many Voices in a Choir: Tumor-Induced Neurogenesis and Neuronal Driven Alternative Splicing Sound Like Suspects in Tumor Growth and Dissemination. Cancers (Basel) 2021; 13:cancers13092138. [PMID: 33946706 PMCID: PMC8125307 DOI: 10.3390/cancers13092138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Significant progress has recently been made in understanding the role of the neuronal system in cancer biology, in many solid tumors such as prostate, breast, pancreatic, gastric and brain cancers. Solid tumors and the nervous system appear to influence each other’s development both directly and indirectly. A recurring element in such interactions is constituted by nerve-related substances such as neurotransmitters and neurotrophins, to which the first part of the current review is devoted. The second part of the review focuses on the potential role played by alternative splicing in cancer progression associated with neural signaling. Alternative splicing is the process where pre-mRNA is cut and re-ligated in different ways to give rise to multiple protein isoforms whose expression profile is often cancer specific. Alternative splicing is known to take place in the mRNA of genes that code for proteins involved in neuronal development and the creation of new nerve fibers. The change in alternative splicing patterns that occur as tumors develop and progress may make these splice variants potential targets for the development of drug treatments. They may also serve as diagnostic or prognostic biomarkers. Abstract During development, as tissues expand and grow, they require circulatory, lymphatic, and nervous system expansion for proper function and support. Similarly, as tumors arise and develop, they also require the expansion of these systems to support them. While the contribution of blood and lymphatic systems to the development and progression of cancer is well known and is targeted with anticancer drugs, the contribution of the nervous system is less well studied and understood. Recent studies have shown that the interaction between neurons and a tumor are bilateral and promote metastasis on one hand, and the formation of new nerve structures (neoneurogenesis) on the other. Substances such as neurotransmitters and neurotrophins being the main actors in such interplay, it seems reasonable to expect that alternative splicing and the different populations of protein isoforms can affect tumor-derived neurogenesis. Here, we report the different, documented ways in which neurons contribute to the development and progression of cancer and investigate what is currently known regarding cancer-neuronal interaction in several specific cancer types. Furthermore, we discuss the incidence of alternative splicing that have been identified as playing a role in tumor-induced neoneurogenesis, cancer development and progression. Several examples of changes in alternative splicing that give rise to different isoforms in nerve tissue that support cancer progression, growth and development have also been investigated. Finally, we discuss the potential of our knowledge in alternative splicing to improve tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Correspondence:
| | - Kgomotso Mathabe
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Urology, University of Pretoria, Pretoria 0084, South Africa
| | - Llewellyn Padayachy
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Neurosurgery, University of Pretoria, Pretoria 0084, South Africa
| | - Rahaba Marima
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| | - George Evangelou
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Konstantinos N. Syrigos
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | | | - Georgios Lolas
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Rodney Hull
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| |
Collapse
|
25
|
Phase II study of propranolol feasibility with neoadjuvant chemotherapy in patients with newly diagnosed breast cancer. Breast Cancer Res Treat 2021; 188:427-432. [PMID: 33837871 DOI: 10.1007/s10549-021-06210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Propranolol regulates angiogenesis in pre-clinical models and reduces distant breast cancer (BC) metastases in observational studies. We assessed the feasibility of combining propranolol with neoadjuvant chemotherapy (NAC) in patients with BC. METHODS Women with clinical stage II-III BC undergoing NAC [weekly paclitaxel × 12, followed by dose-dense adriamycin/cyclophosphamide (AC) × 4] started propranolol 20 mg PO BID with paclitaxel #1, and increased to 80 mg extended release (ER) PO daily, as tolerated. The primary endpoint was to assess feasibility, defined as at least 75% of patients having at least 80% adherence to propranolol as prescribed. Secondary endpoints included identifying safety, rate of dose holds and modification, and rate of reaching 80 mg ER daily. The proposed sample size was 20 patients. RESULTS From November 2012 to September 2015, ten patients were enrolled. Median age was 50.5 years (range, 44-67). All patients had hormone receptor-positive/HER2-negative breast cancer. Three women had grade I bradycardia that resulted in a 1-week delay in increasing the propranolol dose. Ninety percent of women reached the target propranolol dosing of 80 mg ER daily, and 70% took the target propranolol dose until the night before surgery. Of the 4 women who dose-reduced propranolol, 1 increased to the target propranolol dose. Mean adherence to propranolol dosing was 96% (range: 91-100%). All patients went to surgery. CONCLUSION Our results support the feasibility of combining propranolol (up to 80 mg ER) with neoadjuvant taxane/anthracycline-based chemotherapy.
Collapse
|
26
|
Carey P, Low E, Harper E, Stack MS. Metalloproteinases in Ovarian Cancer. Int J Mol Sci 2021; 22:3403. [PMID: 33810259 PMCID: PMC8036623 DOI: 10.3390/ijms22073403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor-microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis.
Collapse
Affiliation(s)
- Preston Carey
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ethan Low
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth Harper
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M. Sharon Stack
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
27
|
Zhong J, Shan W, Zuo Z. Norepinephrine inhibits migration and invasion of human glioblastoma cell cultures possibly via MMP-11 inhibition. Brain Res 2021; 1756:147280. [PMID: 33515535 DOI: 10.1016/j.brainres.2021.147280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Growing evidence has shown that the stress hormones affect tumor progression. Patients with surgery to remove tumor often have increased norepinephrine during the perioperative period. However, the effect of norepinephrine on the progression of glioblastoma has not yet studied. Therefore, the present study aimed at investigating the effects of norepinephrine on the migration and invasion of the human glioblastoma U87 and U251 cell lines and the mechanism for the effects. METHODS The U87 and U251 cells were treated with 0, 0.1, 1, 5, 10 or 50 μM norepinephrine. A scratch wound healing assay and a transwell invasion assay were used to investigate cell migration and invasion, respectively. The Human Tumor Metastasis RT2 Profiler PCR Array was used to detect the expression of 84 genes known to be involved in metastasis. RESULTS Following norepinephrine treatment, the ability of the U87 and U251 cells to migrate and invade was significantly decreased. Human Tumor Metastasis RT2 Profiler PCR Array assay showed that matrix metallopeptidase-11 (MMP-11) was decreased following norepinephrine treatment. The β-adrenergic receptor blocker (AR) propranolol blunted the suppressive effect of norepinephrine on the migration and invasion of U251 cells but did not have such an effect on the invasion of U87 cells. MMP-11 silencing inhibited the migration and invasion of U87 and U251 cells. The Cancer Genome Atlas data showed that patients with higher expression of MMP-11 in the glioblastoma tissues had poorer prognosis. CONCLUSION Our results indicate that norepinephrine inhibits the migration and invasion of human glioblastoma cells. This effect may be mediated by the decrease of MMP-11. β-AR may be a regulatory factor for this effect in U251 cells.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
28
|
Hunt PJ, Kabotyanski KE, Calin GA, Xie T, Myers JN, Amit M. Interrupting Neuron-Tumor Interactions to Overcome Treatment Resistance. Cancers (Basel) 2020; 12:E3741. [PMID: 33322770 PMCID: PMC7762969 DOI: 10.3390/cancers12123741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurons in the tumor microenvironment release neurotransmitters, neuroligins, chemokines, soluble growth factors, and membrane-bound growth factors that solid tumors leverage to drive their own survival and spread. Tumors express nerve-specific growth factors and microRNAs that support local neurons and guide neuronal growth into tumors. The development of feed-forward relationships between tumors and neurons allows tumors to use the perineural space as a sanctuary from therapy. Tumor denervation slows tumor growth in animal models, demonstrating the innervation dependence of growing tumors. Further in vitro and in vivo experiments have identified many of the secreted signaling molecules (e.g., acetylcholine, nerve growth factor) that are passed between neurons and cancer cells, as well as the major signaling pathways (e.g., MAPK/EGFR) involved in these trophic interactions. The molecules involved in these signaling pathways serve as potential biomarkers of disease. Additionally, new treatment strategies focus on using small molecules, receptor agonists, nerve-specific toxins, and surgical interventions to target tumors, neurons, and immune cells of the tumor microenvironment, thereby severing the interactions between tumors and surrounding neurons. This article discusses the mechanisms underlying the trophic relationships formed between neurons and tumors and explores the emerging therapies stemming from this work.
Collapse
Affiliation(s)
- Patrick J. Hunt
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Katherine E. Kabotyanski
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
| | - George A. Calin
- Translational Molecular Pathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Moran Amit
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| |
Collapse
|
29
|
Gosain R, Gage-Bouchard E, Ambrosone C, Repasky E, Gandhi S. Stress reduction strategies in breast cancer: review of pharmacologic and non-pharmacologic based strategies. Semin Immunopathol 2020; 42:719-734. [PMID: 32948909 PMCID: PMC7704484 DOI: 10.1007/s00281-020-00815-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cancer diagnosed in women. It is associated with multiple symptoms in both patients and caregivers, such as stress, anxiety, depression, sleep disturbance, and fatigue. Stress appears to promote cancer progression via activation of the sympathetic nervous system releasing epinephrine and norepinephrine as well as activation of hypothalamic-pituitary-adrenal axis releasing cortisol. These stress hormones have been shown to promote the proliferation of cancer cells. This review focuses on stress-reducing strategies which may decrease cancer progression by abrogating these pathways, with a main focus on the β-adrenergic signaling pathway. Patients utilize both non-pharmacologic and pharmacologic strategies to reduce stress. Non-pharmacologic stress-reduction strategies include complementary and alternative medicine techniques, such as meditation, yoga, acupuncture, exercise, use of natural products, support groups and psychology counseling, herbal compounds, and multivitamins. Pharmacologic strategies include abrogating the β2-adrenergic receptor signaling pathway to antagonize epinephrine and norepinephrine action on tumor and immune cells. β-Blocker drugs may play a role in weakening the pro-migratory and pro-metastatic effects induced by stress hormones in cancer and strengthening the anti-tumor immune response. Preclinical models have shown that non-selective β1/2-blocker use is associated with a decrease in tumor growth and metastases and clinical studies have suggested their positive impact on decreasing breast cancer recurrence and mortality. Thus, non-pharmacological approaches, along with pharmacological therapies part of clinical trials are available to cancer patients to reduce stress, and have promise to break the cycle of cancer and stress.
Collapse
Affiliation(s)
- Rohit Gosain
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Medicine, UPMC Hillman Cancer Center, Chautauqua, NY, USA.
| | - Elizabeth Gage-Bouchard
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elizabeth Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
30
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
31
|
Liu J, Qu L, Wan C, Xiao M, Ni W, Jiang F, Fan Y, Lu C, Ni R. A novel β2-AR/YB-1/β-catenin axis mediates chronic stress-associated metastasis in hepatocellular carcinoma. Oncogenesis 2020; 9:84. [PMID: 32973139 PMCID: PMC7515897 DOI: 10.1038/s41389-020-00268-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
β-Adrenergic receptor (β-AR) signalling is strongly associated with tumour progression by the coupling of β-ARs with either a G protein or β-arrestin; however, the related mechanism underlying hepatocellular carcinoma (HCC) metastasis is not clear. Here, we reveal that the transcription factor Y-box binding protein 1 (YB-1) interacts with β2-adrenergic receptor (β2-AR) following stimulation with the agonist isoproterenol (ISO). Clinicopathological analysis demonstrated that β2-AR is significantly correlated with YB-1, which favours the progression of HCC. The binding of YB-1 with β2-AR resulted in YB-1 phosphorylation at serine 102 (S102) via the β-arrestin-1-dependent activation of the PI3K/AKT pathway, followed by the translocation of YB-1 to the nucleus to carry out its tumour-related function. β2-AR-mediated activation of YB-1 facilitated epithelial-to-mesenchymal transition (EMT) and HCC metastasis. The interference of YB-1 expression significantly attenuated liver tumour metastasis induced by chronic stress. Analysis of the transcriptional profile and chromatin immunoprecipitation (ChIP) identified β-catenin as a crucial target of YB-1. Our results unveiled a novel β2-AR-mediated regulatory axis in HCC metastasis that might be helpful for the development of HCC therapeutics.
Collapse
Affiliation(s)
- Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yihui Fan
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
32
|
Ebrahimi S, Javid H, Alaei A, Hashemy SI. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs. Clin Genet 2020; 98:322-330. [PMID: 32266968 DOI: 10.1111/cge.13750] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
The neuropeptide substance P (SP) triggers a variety of tumor-promoting signaling pathways through the activation of neurokinin-1receptor (NK1R), a class of neurokinin G protein-coupled receptors superfamily. Recent researches in our and other laboratories have shown the overexpression of both SP and NK1R in breast cancer (BC) patients. SP/NK1R signaling is strongly implicated in the pathogenesis of BC through affecting cell proliferation, migration, metastasis, angiogenesis, and resistance. Therefore, SP/NK1R signaling responses must be rigorously regulated; otherwise, they would contribute to a more aggressive BC phenotype. Recently, microRNAs (miRNAs) as a specific class of epigenetic regulators have been shown to regulate NK1R and thus, controlling SP/NK1R signaling responses in BC. This review summarizes the current knowledge of the role of SP/NK1R signaling and its therapeutic potentials in BC. We also provide an overview regarding the effects of miRNA-mediated NK1R regulatory mechanisms in controlling BC tumorigenesis to gain a clearer view and thus better management of cancer.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Alaei
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Lee HM, Sia APE, Li L, Sathasivam HP, Chan MSA, Rajadurai P, Tsang CM, Tsao SW, Murray PG, Tao Q, Paterson IC, Yap LF. Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma. Sci Rep 2020; 10:6115. [PMID: 32273550 PMCID: PMC7145851 DOI: 10.1038/s41598-020-63150-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Hui Min Lee
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Alice Pei Eal Sia
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Melissa Sue Ann Chan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chi Man Tsang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong.,Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Pokfulam, Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong
| | - Paul G Murray
- Health Research Institute, University of Limerick, Limerick, Ireland.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Fiala O, Ostasov P, Sorejs O, Liska V, Buchler T, Poprach A, Finek J. Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients. Cancers (Basel) 2019; 11:cancers11121856. [PMID: 31769417 PMCID: PMC6966537 DOI: 10.3390/cancers11121856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Beta-adrenergic signalling plays an important role in several cancer-related processes, including angiogenesis. The impact of beta-blocker use on prognosis of cancer patients treated with antiangiogenic agents is unclear. The aim of this study was to evaluate the association between the incidental use of beta-blockers and the outcomes of patients with metastatic colorectal cancer (mCRC) treated with bevacizumab-based therapy. Methods: Clinical data from 514 mCRC patients treated with bevacizumab between 2005 and 2019 were analysed retrospectively. The association of progression-free survival (PFS) and overall survival (OS) with the incidental use of beta-blockers and other common antihypertensive drugs was assessed. Results: The median PFS and OS for patients using beta-blockers was 11.40 (95% confidence interval (CI) 10.10–13.61) months and 26.8 (95% CI 22.2–32.2) months compared with 8.30 (95% CI 7.80–9.57) and 21.0 (95% CI 17.8–23.8) months for patients not using beta-blockers (p = 0.006 and p = 0.009, respectively). In the Cox multivariate analysis, the use of beta-blockers was a significant factor predicting both PFS (hazard ratio (HR) = 0.763 (95% CI 0.606–0.960), p = 0.021) and OS (HR = 0.730 (95% CI 0.560–0.951), p = 0.020). Conclusions: The results of the present retrospective study suggest that there is a significant association between the use of beta-blockers and favourable outcomes of mCRC patients treated with bevacizumab-based therapy.
Collapse
Affiliation(s)
- Ondrej Fiala
- Department of Oncology and Radiotherapy, Medical School and University Hospital in Pilsen, Charles University, alej Svobody 80, 30460 Pilsen, Czech Republic; (O.S.); (J.F.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 32300 Pilsen, Czech Republic; (P.O.); (V.L.)
- Correspondence: ; Tel.: +42-0728-655-488
| | - Pavel Ostasov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 32300 Pilsen, Czech Republic; (P.O.); (V.L.)
| | - Ondrej Sorejs
- Department of Oncology and Radiotherapy, Medical School and University Hospital in Pilsen, Charles University, alej Svobody 80, 30460 Pilsen, Czech Republic; (O.S.); (J.F.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 32300 Pilsen, Czech Republic; (P.O.); (V.L.)
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 32300 Pilsen, Czech Republic; (P.O.); (V.L.)
- Department of Surgery, Medical School and University Hospital in Pilsen, Charles University, alej Svobody 80, 30460 Pilsen, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 14059 Prague, Czech Republic;
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care and Faculty of Medicine, Masaryk Memorial Cancer Institute and Masaryk University, Zluty kopec 7, 65653 Brno, Czech Republic;
| | - Jindrich Finek
- Department of Oncology and Radiotherapy, Medical School and University Hospital in Pilsen, Charles University, alej Svobody 80, 30460 Pilsen, Czech Republic; (O.S.); (J.F.)
| |
Collapse
|
35
|
Ravi M, Sneka MK, Joshipura A. The culture conditions and outputs from breast cancer cell line in vitro experiments. Exp Cell Res 2019; 383:111548. [PMID: 31398351 DOI: 10.1016/j.yexcr.2019.111548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
One of the major cancer types that have gained significant importance globally is the breast cancer due to its socio-economic impact. Breast cancer research is an area of considerable importance and several types of material are available for research applications. These include cancer cell lines which can be utilized in several ways. Cell lines are convenient to use and recently about 84 human breast cancer cell lines were classified by molecular sub-typing. These cells lines come under five major molecular subtypes namely the luminal A and B, HER-2+, triple- A and B subtypes. These cell lines have been well characterized and were utilized for understanding various aspects of breast cancers. Also, apart from providing an understanding of the molecular mechanisms associated with breast cancers, these cell lines have contributed significantly to areas such as drug testing. We present in this review the features of these cell lines, the studies conducted using them and the outcome of such studies. Also, the details about the culture conditions and study outcomes of the cell lines grown in 3-dimensional (3D) systems are presented.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - M Kaviya Sneka
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Aastha Joshipura
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| |
Collapse
|
36
|
Assessment of adrenaline-induced DNA damage in whole blood cells with the comet assay. Arh Hig Rada Toksikol 2019; 69:304-308. [PMID: 30864376 DOI: 10.2478/aiht-2018-69-3154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/01/2018] [Indexed: 02/04/2023] Open
Abstract
Harmful effects of elevated levels of catecholamines are mediated by various mechanisms, including gene transcription and formation of oxidation products. The aim of this study was to see whether the molecular mechanisms underlying the damaging action of adrenaline on DNA are mediated by reactive oxygen species (ROS). To do that, we exposed human whole blood cells to 10 μmol L-1adrenaline or 50 μmol L-1H2O2(used as positive control) that were separately pre-treated or post-treated with 500 μmol L-1of quercetin, a scavenger of free radicals. Quercetin significantly reduced DNA damage in both pre- and post-treatment protocols, which suggests that adrenaline mainly acts via the production of ROS. This mechanism is also supported by gradual lowering of adrenaline and H2O2-induced DNA damage 15, 30, 45, and 60 min after treatment. Our results clearly show that DNA repair mechanisms are rather effective against ROS-mediated DNA damage induced by adrenaline.
Collapse
|
37
|
Trinca F, Infante P, Dinis R, Inácio M, Bravo E, Caravana J, Reis T, Marques S. Depression and quality of life in patients with breast cancer undergoing chemotherapy and monoclonal antibodies. Ecancermedicalscience 2019; 13:937. [PMID: 31552110 PMCID: PMC6727885 DOI: 10.3332/ecancer.2019.937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 11/19/2022] Open
Abstract
Background Depression is one of the major psychiatric morbidities in cancer patients. The purpose of our study was to evaluate the impact of depressive symptoms in the quality of life (QoL) of patients with breast cancer undergoing chemotherapy and monoclonal antibodies treatments. Methods Observational, cross-sectional study conducted between April and November 2016. To evaluate the QoL, the EORTC QLQ-C30 and QLQ-BR23 questionnaire were used. The patients were screened for depressive symptoms using the Hospital Anxiety and Depression Scale (HADS-D) and those with a positive HADS-D positive questionnaire were referenced to the Psychiatry and Mental Health Department for further assessment and follow-up. Results We included 45 female patients. Sixteen (35.6%) patients had a positive HADS-D questionnaire and depressive symptoms confirmed by a psychiatric physician. Of those patients, 7 (15.6%) had a major depressive episode confirmed by psychiatric interview. There was a significant association of depressive symptoms with the future perspectives scale (p = 0.022), breast symptoms scale (p = 0.011) and arm symptom scale (p = 0.005). Significant differences were found in the fatigue (p = 0.024), pain (p = 0.037) and dyspnea (p = 0.009) subscales being worse in patients with depressive symptoms. The association between having depressive symptoms or not was shown to be significant or marginally significant for the variables stage of the tumour (p = 0.057), presence of distant metastasis (p = 0.072) and previous diagnosis of depression (p = 0.011). The patients treated with regimens containing monoclonal antibodies presented better outcomes in various subscales of the EORTC QLQ-C30 and QLQ-B23 questionnaires than those patients treated with chemotherapy regimens without monoclonal antibodies. Conclusions Despite the small sample of our study, this study provided evidence that depressive symptoms in patients with breast cancer undergoing chemotherapy and monoclonal antibodies treatments detrimentally reduced various aspects of QoL.
Collapse
Affiliation(s)
- Francisco Trinca
- Department of Medical Oncology, Hospital do Espírito Santo de Évora EPE, 7000-811 Évora, Portugal
| | - Paulo Infante
- Department of Mathematics/ECT and Center for Research in Mathematics and Applications/IIFA, University of Évora, 7000-671 Évora, Portugal
| | - Rui Dinis
- Department of Medical Oncology, Hospital do Espírito Santo de Évora EPE, 7000-811 Évora, Portugal
| | - Mariana Inácio
- Department of Medical Oncology, Hospital do Espírito Santo de Évora EPE, 7000-811 Évora, Portugal
| | - Emílio Bravo
- Department of Medical Oncology, Hospital do Espírito Santo de Évora EPE, 7000-811 Évora, Portugal
| | - Jorge Caravana
- Department of Surgery, Hospital do Espírito Santo de Évora EPE, 7000-811 Évora, Portugal
| | - Teresa Reis
- Department of Psychiatry and Mental Health, Hospital do Espírito Santo de Évora EPE, 7000-811 Évora, Portugal
| | - Sofia Marques
- Department of Psychiatry and Mental Health, Hospital do Espírito Santo de Évora EPE, 7000-811 Évora, Portugal
| |
Collapse
|
38
|
Effects of β-Adrenergic Antagonists on Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer. J Clin Med 2019; 8:jcm8050575. [PMID: 31035526 PMCID: PMC6572477 DOI: 10.3390/jcm8050575] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023] Open
Abstract
Introduction: Locally advanced non-small cell lung cancer (NSCLC) is highly resistant to chemoradiotherapy, and many cancer patients experience chronic stress. Studies that suggest stimulation of β-adrenergic receptors (β-AR) promotes tumor invasion and therapy resistance. We investigated whether β-AR inhibition with beta-blockers acts as a chemotherapy and radiation sensitizer in vitro and in patients treated with chemoradiation for locally advanced NSCLC. Methods: We investigated the effects of the non-selective beta-blocker propranolol on two human lung adenocarcinoma cell lines (PC9, A549) treated with radiation or cisplatin. We retrospectively evaluated 77 patients with Stage IIIA NSCLC who received induction chemoradiation followed by surgery. Pathological and imaging response, metastatic rate, and survival were analyzed using SPSS v22.0 and PrismGraphpad6. Results: Propranolol combined with radiation or cisplatin decreased clonogenic survival of PC9 and A549 cells in vitro (p < 0.05). Furthermore, propranolol decreased expression of phospho-protein kinase A (p-PKA), a β-adrenergic pathway downstream activation target, in both cell lines compared to irradiation or cisplatin alone (p < 0.05). In patients treated for Stage IIIA NSCLC, 16 took beta-blockers, and 61 did not. Beta-blockade is associated with a trend to improved overall survival (OS) at 1 year (81.3% vs 57.4%, p = 0.08) and distant metastasis-free survival (DMFS) (2.6 years vs. 1.3 years, p = 0.16). Although beta-blocker use was associated with decreased distant metastases (risk ratio (RR) 0.19; p = 0.03), it did not affect primary tumor pathological response (p = 0.40) or imaging response (p = 0.36). Conclusions: β-AR blockade enhanced radiation and cisplatin sensitivity of human lung cancer cells in vitro. Use of beta-blockers is associated with decreased distant metastases and potentially improved OS and DMFS. Additional studies are warranted to evaluate the role of beta-blockers as a chemoradiation sensitizer in locally advanced NSCLC.
Collapse
|
39
|
Tobin SJ, Wakefield DL, Terenius L, Vukojević V, Jovanović-Talisman T. Ethanol and Naltrexone Have Distinct Effects on the Lateral Nano-organization of Mu and Kappa Opioid Receptors in the Plasma Membrane. ACS Chem Neurosci 2019; 10:667-676. [PMID: 30418735 DOI: 10.1021/acschemneuro.8b00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complex spatiotemporal organization of proteins and lipids in the plasma membrane is an important determinant of receptor function. Certain substances, such as ethanol, can penetrate into the hydrophobic regions of the plasma membrane. By altering protein-lipid and protein-protein interactions, these substances can modify the dynamic lateral organization and the function of plasma membrane receptors. To assess changes in plasma membrane receptor organization, we used photoactivated localization microscopy (PALM). This single molecule localization microscopy technique was employed to quantitatively characterize the effects of pharmacologically relevant concentrations of ethanol and naltrexone (an opioid receptor antagonist and medication used to treat alcohol use disorders) on the lateral nano-organization of mu and kappa opioid receptors (MOR and KOR, respectively). Ethanol affected the lateral organization of MOR and KOR similarly: It reduced the size and occupancy of opioid receptor nanodomains and increased the fraction of opioid receptors residing outside of nanodomains. In contrast, naltrexone affected MOR and KOR lateral organization differently. It significantly increased KOR surface density, nanodomain size, and the occupancy of KOR nanodomains. However, naltrexone marginally affected these parameters for MOR. Pretreatment with naltrexone largely protected against ethanol-induced changes in MOR and KOR lateral organization. Based on these data, we propose a putative mechanism of naltrexone action that operates in addition to its canonical antagonistic effect on MOR- and KOR-mediated signaling.
Collapse
Affiliation(s)
- Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Lars Terenius
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Vladana Vukojević
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Tijana Jovanović-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
40
|
Gutierrez S, Boada MD. Neuropeptide-induced modulation of carcinogenesis in a metastatic breast cancer cell line (MDA-MB-231 LUC+). Cancer Cell Int 2018; 18:216. [PMID: 30598641 PMCID: PMC6303888 DOI: 10.1186/s12935-018-0707-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Metastatic cancer to bone is well-known to produce extreme pain. It has been suggested that the magnitude of this perceived pain is associated with disease progression and poor prognosis. These data suggest a potential cross-talk between cancer cells and nociceptors that contribute not only to pain, but also to cancer aggressiveness although the underlying mechanisms are yet to be stablished. Methods The in vitro dose dependent effect of neuropeptides (NPs) (substance P [SP], calcitonin gene-related peptide and neurokinin A [NKA]) and/or its combination, on the migration and invasion of MDA-MB-231LUC+ were assessed by wound healing and collagen-based cell invasion assays, respectively. The effect of NPs on the expression of its receptors (SP [NK1] and neurokinin A receptors [NK2], CALCRL and RAMP1) and kininogen (high-molecular-weight kininogen) release to the cell culture supernatant of MDA-MB-231LUC+, were measured using western-blot analysis and an ELISA assay, respectively. Statistical significance was tested using one-way ANOVA, repeated measures ANOVA, or the paired t-test. Post-hoc testing was performed with correction for multiple comparisons as appropriate. Results Our data show that NPs strongly modify the chemokinetic capabilities of a cellular line commonly used as a model of metastatic cancer to bone (MDA-MB-231LUC+) and increased the expression of their receptors (NK1R, NK2R, RAMP1, and CALCRL) on these cells. Finally, we demonstrate that NPs also trigger the acute release of HMWK (Bradykinin precursor) by MDA-MB-231LUC+, a molecule with both tumorigenic and pro-nociceptive activity. Conclusions Based on these observations we conclude that NPs exposure modulates this breast cancer cellular line aggressiveness by increasing its ability to migrate and invade new tissues. Furthermore, these results also support the pro nociceptive and cancer promoter role of the peripheral nervous system, during the initial stages of the disease.
Collapse
Affiliation(s)
- Silvia Gutierrez
- Department of Anesthesiology, Pain Mechanisms Lab, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - M Danilo Boada
- Department of Anesthesiology, Pain Mechanisms Lab, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| |
Collapse
|
41
|
Perioperative Stress, Inflammation, and Cancer Progression:
Opportunities for Intervention in Breast and Colorectal Cancer Surgery Utilizing
Beta-Adrenergic Blockade and COX-2 Inhibition. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Feng Y, Hu X, Liu G, Lu L, Zhao W, Shen F, Ma K, Sun C, Zhu C, Zhang B. M3 muscarinic acetylcholine receptors regulate epithelial-mesenchymal transition, perineural invasion, and migration/metastasis in cholangiocarcinoma through the AKT pathway. Cancer Cell Int 2018; 18:173. [PMID: 30450012 PMCID: PMC6219094 DOI: 10.1186/s12935-018-0667-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background Cholangiocarcinoma is a highly malignant tumor type that is not sensitive to radiotherapy or chemotherapy due to aggressive perineural invasion and metastasis. Unfortunately, the mechanisms underlying these processes and the signaling factors involved are largely unknown. In this study, we analyzed the role of M3 muscarinic acetylcholine receptors (M3-mAChR) in cell migration, perineural invasion, and metastasis during cholangiocarcinoma. Methods We assessed 60 human cholangiocarcinoma tissue samples and 30 normal biliary tissues. Immunohistochemical staining was used to detect M3-mAChR expression and the relationship between expression and clinical prognosis was evaluated. The biological functions of M3-mAChR in cholangiocarcinoma cell migration, perineural invasion, and epithelial–mesenchymal transition (EMT) were investigated using the human cholangiocarcinoma cell lines FRH0201 and RBE in conjunction with various techniques, including agonist/antagonist treatment, RNA interference, M3-mAChR overexpression, dorsal root ganglion co-culturing, immunohistochemistry, western blotting, etc. Results M3-mAChR were highly expressed in cholangiocarcinoma tissue and expression was closely related to differentiation and lymphatic metastasis, affecting patient survival. Treatment with the M3-mAChR agonist pilocarpine and M3-mAChR overexpression significantly promoted migration and perineural invasion, while the M3-mAChR antagonist atropine blocked these effects. Similarly, M3-mAChR knock-down also weakened cell migration and perineural invasion. The expression of phosphatase and tensin homolog, AKT, E-cadherin, vimentin, and Snail, which are components of the phosphatidylinositol 3-kinase/AKT signaling pathway and EMT, were altered by pilocarpine, and these effects were again blocked by atropine. Notably, AKT knock-down decreased M3-mAChR expression and reversed the downstream effects of this receptor. Conclusions M3-mAChR are involved in tumor cell migration, perineural invasion, and EMT during cholangiocarcinoma, and these effects are modulated via the AKT signaling pathway.
Collapse
Affiliation(s)
- Yujie Feng
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Xiao Hu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Guangwei Liu
- 2Department of Outpatient, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Lianfang Lu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Wei Zhao
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Fangzhen Shen
- 3Department of Oncology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Kai Ma
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Chuandong Sun
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Chengzhan Zhu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| | - Bingyuan Zhang
- 1Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong China
| |
Collapse
|
43
|
β2ARs stimulation in osteoblasts promotes breast cancer cell adhesion to bone marrow endothelial cells in an IL-1β and selectin-dependent manner. J Bone Oncol 2018; 13:1-10. [PMID: 30245970 PMCID: PMC6146568 DOI: 10.1016/j.jbo.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Progression and recurrence of breast cancer, as well as reduced survival of patients with breast cancer, are associated with chronic stress, a condition known to impact the hypothalamic-pituitary axis and the autonomic nervous system. Preclinical and clinical evidence support the involvement of the sympathetic nervous system in the control of bone remodeling and in pathologies of the skeleton, including bone metastasis. In experimental mouse models of skeletal metastasis, administration of the βAR agonist isoproterenol (ISO), used as a surrogate of norepinephrine, the main neurotransmitter of sympathetic neurons, was shown to favor bone colonization of metastatic breast cancer cells via an increase bone marrow vascularity. However, successful extravasation of cancer cells into a distant organ is known to be favored by an activated endothelium, itself stimulated by inflammatory signals. Based on the known association between high sympathetic outflow, the expression of inflammatory cytokines and bone metastasis, we thus asked whether βAR stimulation in osteoblasts may alter the vascular endothelium to favor cancer cell engraftment within the skeleton. To address this question, we used conditioned medium (CM) from PBS or ISO-treated bone marrow stromal cells (BMSCs) in adhesion assays with bone marrow endothelial cells (BMECs) or the endothelial cell line C166. We found that ISO treatment in differentiated BMSCs led to a robust induction of the pro-inflammatory cytokines interleukin-1 beta (IL-1β) and interleukin-6 (IL-6). The CM from ISO-treated BMSCs increased the expression of E- and P-selectin in BMECs and the adhesion of human MDA-MB-231 breast cancer cells to these cells in short-term static and dynamic adhesion assays, and a blocking antibody against IL-1β, but not IL-6, reduced this effect. Direct IL-1β treatment of BMECs had a similar effect, whereas the impact of IL-6 treatment on the expression of adhesion molecules by BMECs and on the adhesion of cancer cells to BMECs was negligible. Collectively, these in vitro results suggest that in the context of the multicellular and dynamic bone marrow environment, sympathetic activation and subsequent βAR stimulation in osteoblasts may profoundly remodel the density but also the activation status of bone marrow vessels to favor the skeletal engraftment of circulating breast cancer cells. β2AR activation in osteoblasts increases the expression of pro-inflammatory cytokines IL-1β and IL-6. IL-1β promotes the adhesion of breast cancer cells to endothelium via an endothelial increase in E- and P-selectin expression. IL-1β blockade and selectin inhibition inhibits breast cancer cell adhesion to endothelial cells.
Collapse
|
44
|
Wan C, Wu M, Zhang S, Chen Y, Lu C. α7nAChR-mediated recruitment of PP1γ promotes TRAF6/NF-κB cascade to facilitate the progression of Hepatocellular Carcinoma. Mol Carcinog 2018; 57:1626-1639. [PMID: 30074282 DOI: 10.1002/mc.22885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
The cholinergic signaling pathways have been recently implicated in the development of various human cancers. However, the underlying molecular mechanism remains largely unclear. In the present study, we reported that α7 nicotinic acetylcholine receptor (α7nAChR), an important member of nicotinic acetylcholine receptors, interacts with Protein Phosphatase-1γ (PP1γ) in human Hepatocellular Carcinoma (HCC) tissues. In addition, we found that α7nAChR facilitates the ubiquitination and activation of TRAF6 in a PP1γ-dependent manner in HCC cells. Furthermore, we showed that ligand-bounded α7nAChR induces the degradation of IκBα, leading to resultant phosphorylation and nuclear accumulation of NF-κB p65. Accordingly, acetylcholine triggers the expression of critical NF-κB target genes, such as Cyclin D1 and PCNA, as well as the proliferation of HCC cells in a PP1γ- and α7nAChR-dependent manner. Furthermore, we revealed that nicotine-triggered α7nAChR activation promotes oncosphere formation and in vivo tumor growth of HCC cells. Moreover, we showed that the protein levels of both α7nAChR and PP1γ are significantly upregulated in human HCC specimens compared with adjacent non-cancerous ones, and that upregulated expression of the two proteins predict significantly worsened prognosis in HCC patients. These findings together indicate that the cholinergic receptor α7nAChR exerts a facilitating role in HCC development through PP1γ-dependent TRAF6/NF-κB signaling.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Miaomiao Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shusen Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Respiratory Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Yuyan Chen
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
45
|
Early transcriptional response of human ovarian and fallopian tube surface epithelial cells to norepinephrine. Sci Rep 2018; 8:8291. [PMID: 29844388 PMCID: PMC5974302 DOI: 10.1038/s41598-018-26670-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/17/2018] [Indexed: 01/14/2023] Open
Abstract
Evidence from human and animal studies suggests that chronic behavioral stress and resulting activation of the sympathetic nervous system may influence initiation and progression of tumors. However, the underlying mechanisms for these observations are poorly understood. The purpose of this study is to explore the effects of adrenergic signaling on cell line models derived from normal cells presumed to originate epithelial ovarian cancers. Here we explored the effects of the stress-related hormone, norepinephrine, on the transcriptional program of normal immortalized ovarian (iOSE) and fallopian tube (iFTSEC) surface epithelial cells. Analysis of RNA-Seq data of treated and untreated cells revealed a significant overlap between the responses in iOSE and iFTSEC cells. Most genes modulated by norepinephrine in ovarian and fallopian tube epithelial cells are already expressed in normal ovarian and fallopian tissue and cells. For several genes, expression changes were reflected at the protein level. Genes in immune-related and developmental pathways were enriched in the set of genes modulated by norepinephrine. We identified HOXA5, SPIB, REL, SRF, SP1, NFKB1, MEF2A, E2F1, and EGR1 transcription factor binding sites to be highly enriched in our dataset. These data represent the early transcriptional response to norepinephrine in cells postulated to originate epithelial ovarian cancer.
Collapse
|
46
|
Anti-tumor effects of propranolol: Adjuvant activity on a transplanted murine breast cancer model. Biomed Pharmacother 2018; 104:45-51. [PMID: 29758415 DOI: 10.1016/j.biopha.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 11/21/2022] Open
Abstract
Propranolol (Pro), a non-specific β-adrenergic blocking drug, competitively prevents the binding of catecholamines to receptors and suppresses cancer cells. The anti-tumor activity of propranolol has been proved in different kinds of cancers. In this study, we assessed the adjuvant activity of propranolol combined with a tumor vaccine model on the immunological parameters of breast tumor-bearing mice. Breast tumor pieces were implanted into the flank of inbred BALB/C female mice from stock mice. Tumor-bearing mice were treated with tumor antigen lysate vaccine and propranolol/Vaccine (Pro/Vac) combination (as treatment groups), propranolol and PBS (as control groups) for 5 consecutive days, every 12 h. Moreover, all experimental groups received vaccine for three times with one-week interval via s.c injection. After immunization courses, spleens of tumor-bearing mice were removed and dissected, cell suspension was stimulated in vitro, and the cytokine levels in supernatant of splenocytes were measured via commercial ELISA kits. Compared with the vaccine group, immunization with tumor lysate in combination with propranolol significantly increased IL-2, IL-4, IL-12, IL-17, and IFN-γ cytokines. Considering the suppression of tumor growth, propranolol seems to be a potent immunomodulator capable of inducing cellular immune responses against breast cancer.
Collapse
|
47
|
Abstract
Laboratory studies have suggested that adrenergic blockers may inhibit the proliferation and migration of cancer cells, but epidemiological evidence of their effect on cancer incidence has proven inconsistent. We therefore conducted a case-control study using the Clinical Practice Research Datalink to assess the effect of adrenergic blockers on the incidence of prostate, lung, bowel and breast cancers. From among patients aged 18 years or older who contributed at least 2 years of prospectively gathered data between 1 January 1987 and 31 December 2012, we selected incident cases of relevant cancers and controls, frequency matched 10 : 1 by age. Logistic regression was used to adjust effect estimates for age, sex, smoking, alcohol use, and a number of potentially confounding comorbidities and coprescriptions. A total of 18 968 colorectal, 19 082 lung, 21 608 prostate and 29 109 breast cancers were identified. We found no evidence of a protective effect of adrenergic blockade in lung and prostate cancers and found a slightly increased risk for colorectal and breast cancers in users. This was largely explained by the effects of confounding in multivariate analyses, with final odds ratio estimates for lung, colorectal, breast and prostate cancers of 0.99 [95% confidence interval (0.96-1.04)], 1.14 (1.09-1.18), 1.10 (1.06-1.14), and 1.01 (0.98-1.05), respectively, for β-blocker exposure, and final odds ratio estimates for lung, colorectal and breast cancer of 1.03 (0.97-1.09), 1.13 (1.07-1.20), and 1.08 (1.00-1.17), respectively, for α-blocker exposure. We found no evidence to suggest that adrenergic blocker use prevents common cancers. Indeed, we found a slightly increased risk for colorectal and breast cancers, which may reflect residual confounding.
Collapse
|
48
|
Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem 2018; 447:77-92. [PMID: 29417338 DOI: 10.1007/s11010-018-3294-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Cancer remains a global health problem and approximately 1.7 million new cancer cases are diagnosed every year worldwide. Although diverse molecules are currently being explored as targets for cancer therapy the tumor treatment and therapy is highly tricky. Secondary messengers are important for hormone-mediated signaling pathway. Cyclic AMP (cAMP), a secondary messenger responsible for various physiological processes regulates cell metabolism by activating Protein kinase A (PKA) and by targeting exchange protein directly activated by cAMP (EPAC). EPAC is present in two isoforms EPAC1 and EPAC2, which exhibit different tissue distribution and is involved in GDP/GTP exchange along with activating Rap1- and Rap2-mediated signaling pathways. EPAC is also known for its dual role in cancer as pro- and anti-proliferative in addition to metastasis. Results after perturbing EPAC activity suggests its involvement in cancer cell migration, proliferation, and cytoskeleton remodeling which makes it a potential therapeutic target for cancer treatments.
Collapse
|
49
|
Konieczna L, Roszkowska A, Stachowicz-Stencel T, Synakiewicz A, Bączek T. Bioanalysis of a panel of neurotransmitters and their metabolites in plasma samples obtained from pediatric patients with neuroblastoma and Wilms' tumor. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1074-1075:99-110. [DOI: 10.1016/j.jchromb.2017.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 01/22/2023]
|
50
|
Pansare AV, Kulal DK, Shedge AA, Patil VR. hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs. Dalton Trans 2018; 45:12144-55. [PMID: 27402164 DOI: 10.1039/c6dt01457g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Selenium nanoparticles (SeNPs) have attracted great attention because of their superior optical properties and wide utilization in biological and biomedical studies. This paper reports an environmentally benign procedure of greener monodispersible SeNP synthesis using the reducing power of Trigonella foenum-graecum extract, characterization and their protective effect against unfolded (Herring sperm DNA) hsDNA. We investigated the anti-cancer activity of SeNPs against MCF-7, MDA MB 435 and COLO-205 cells. The photocatalytic activity of SeNPs was investigated for the degradation of a Sunset Yellow FCF (SYFCF) dye using ultraviolet-B light. The reduction of the Se ion to SeNPs was monitored by ultraviolet-visible spectroscopy (UV-vis). The size and morphology of the SeNPs were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Dynamic Light Scattering (DLS). The SeNPs were stable, and the diameter was homogeneous at around 5-12 nm. Interactions of various concentrations of SeNPs with hsDNA were systematically investigated by UV-vis, fluorescence, circular dichroism (CD), polarimetry and FTIR spectroscopy under physiological conditions. The results from fluorescence spectroscopy indicated that SeNPs quenched the fluorescence intensity of hsDNA with increasing concentrations. The modified Stern-Volmer quenching rate constant Ksv, binding constant K and binding sites n at different temperatures and the corresponding thermodynamic parameters ΔH°, ΔG° and ΔS° were calculated. Hoechst 33258 and methyl green (MG) site markers, melting experiment (Tm), viscosity measurements and sequence specificity verification by DNA bases clarified that SeNPs bind to hsDNA via a groove site. The rate of photocatalytic degradation of the SYFCF dye in the presence and absence of photocatalysts (SeNPs) was studied using UV-vis, the results showed appreciable degradation of the SYFCF dye. Our results suggested that nano Se can be used as a promising selenium species with potential application in cancer treatment. These nanoparticles were found to be the most active cytotoxic agent prepared in a new green synthesis manner, causing >50% inhibition of MCF-7, MDA MB-435 and COLO-205 cell proliferation at concentrations <10(-7) M. Hence these SeNPs could be recognized as promising materials for biomedical applications.
Collapse
Affiliation(s)
- Amol V Pansare
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Dnyaneshwar K Kulal
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Amol A Shedge
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| | - Vishwanath R Patil
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400098, India.
| |
Collapse
|