1
|
Fang Z, Wang Y, Huang B, Chen X, Jiang R, Yin M. Depletion of G9A attenuates imiquimod-induced psoriatic dermatitis via targeting EDAR-NF-κB signaling in keratinocyte. Cell Death Dis 2023; 14:627. [PMID: 37739945 PMCID: PMC10517171 DOI: 10.1038/s41419-023-06134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
Psoriasis is a common and recurrent inflammatory skin disease characterized by inflammatory cells infiltration of the dermis and excessive proliferation, reduced apoptosis, and abnormal keratosis of the epidermis. In this study, we found that G9A, an important methyltransferase that mainly mediates the mono-methylation (me1) and di-methylation (me2) of histone 3 lysine 9 (H3K9), is highly expressed in lesions of patients with psoriasis and imiquimod (IMQ)-induced psoriasis-like mouse model. Previous studies have shown that G9A is involved in the pathogenesis of various tumors by regulating apoptosis, proliferation, differentiation, and invasion. However, the role of G9A in skin inflammatory diseases such as psoriasis remains unclear. Our data so far suggest that topical administration of G9A inhibitor BIX01294 as well as keratinocyte-specific deletion of G9A greatly alleviated IMQ-induced psoriatic alterations in mice for the first time. Mechanistically, the loss function of G9A causes the downregulation of Ectodysplasin A receptor (EDAR), consequently inhibiting the activation of NF-κB pathway, resulting in impaired proliferation and increased apoptosis of keratinocytes, therefore ameliorating the psoriatic dermatitis induced by IMQ. In total, we show that inhibition of G9A improves psoriatic-like dermatitis mainly by regulating cell proliferation and apoptosis rather than inflammatory processes, and that this molecule may be considered as a potential therapeutic target for keratinocyte hyperproliferative diseases such as psoriasis.
Collapse
Affiliation(s)
- Zhiqin Fang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
| | - Yutong Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China.
| | - Rundong Jiang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China.
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China.
- Clinical Research Center, Medical Pathology Center, Cancer Early Detection and Treatment Center, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
- Translational Medicine Research Center, School of Medicine Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
2
|
Han YH, Wang Y, Lee SJ, Jin MH, Sun HN, Kwon T. Regulation of anoikis by extrinsic death receptor pathways. Cell Commun Signal 2023; 21:227. [PMID: 37667281 PMCID: PMC10478316 DOI: 10.1186/s12964-023-01247-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023] Open
Abstract
Metastatic cancer cells can develop anoikis resistance in the absence of substrate attachment and survive to fight tumors. Anoikis is mediated by endogenous mitochondria-dependent and exogenous death receptor pathways, and studies have shown that caspase-8-dependent external pathways appear to be more important than the activity of the intrinsic pathways. This paper reviews the regulation of anoikis by external pathways mediated by death receptors. Different death receptors bind to different ligands to activate downstream caspases. The possible mechanisms of Fas-associated death domain (FADD) recruitment by Fas and TNF receptor 1 associated-death domain (TRADD) recruitment by tumor necrosis factor receptor 1 (TNFR1), and DR4- and DR5-associated FADD to induce downstream caspase activation and regulate anoikis were reviewed. This review highlights the possible mechanism of the death receptor pathway mediation of anoikis and provides new insights and research directions for studying tumor metastasis mechanisms. Video Abstract.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Yuan Wang
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56212, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Gao C, Cai X, Ma L, Xue T, Li C. Molecular characterization, expression analysis and function identification of TNFα in black rockfish (Sebastes schlegelii). Int J Biol Macromol 2023; 236:123912. [PMID: 36870626 DOI: 10.1016/j.ijbiomac.2023.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
TNFα, as a pro-inflammatory cytokine, plays an important role in inflammation and immune homeostasis maintaining. However, the knowledge about the immune functions of teleost TNFα against bacterial infections is still limited. In this study, the TNFα was characterized from black rockfish (Sebastes schlegelii). The bioinformatics analyses showed the evolutionary conservations in sequence and structure. The expression levels of Ss_TNFα mRNA were significantly up-regulated in the spleen and intestine after Aeromonas salmonicides and Edwardsiella tarda infections, and dramatically down-regulated in PBLs after LPS and poly I:C stimulations. Meanwhile, the extremely up-regulated expressions of other inflammatory cytokines (especially for IL-1β and IL17C) were observed in the intestine and spleen after bacterial infection and down-regulations were obtained in PBLs. The significant regulation with expression patterns of Ss_TNFα and other inflammatory cytokine mRNAs illustrated the variations of immunity in different tissues and cells of black rockfish. The regulated functions of Ss_TNFα in the up/downstream signaling pathways were preliminarily verified on the transcription and translation levels. Subsequently, in vitro knockdown of Ss_TNFα in the intestine cells of black rockfish confirmed the important immune roles of Ss_TNFα. Finally, the apoptotic analyses were conducted in PBLs and intestine cells of black rockfish. The rapid increases of the apoptotic rates were obtained in both PBLs and intestine cells after treatment with rSs_TNFα, but distinct apoptotic rates at the early and late stages of apoptosis were observed between these two types of cells. The results of apoptotic analyses suggested that Ss_TNFα could trigger apoptosis of different cells in different strategies in black rockfish. Overall, the findings in this study indicated the important roles of Ss_TNFα in the immune system of black rockfish during pathogenic infection, as well as the potential function on biomarker for monitoring the health status.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Lee HY, Song SY, Hwang J, Baek A, Baek D, Kim SH, Park JH, Choi S, Pyo S, Cho SR. Very early environmental enrichment protects against apoptosis and improves functional recovery from hypoxic-ischemic brain injury. Front Mol Neurosci 2023; 15:1019173. [PMID: 36824441 PMCID: PMC9942523 DOI: 10.3389/fnmol.2022.1019173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023] Open
Abstract
Appropriate rehabilitation of stroke patients at a very early phase results in favorable outcomes. However, the optimal strategy for very early rehabilitation is at present unclear due to the limited knowledge on the effects of very early initiation of rehabilitation based on voluntary exercise (VE). Environmental enrichment (EE) is a therapeutic paradigm for laboratory animals that involves complex combinations of physical, cognitive, and social stimuli, as well as VE. Few studies delineated the effect of EE on apoptosis in very early stroke in an experimental model. Although a minimal benefit of early rehabilitation in stroke models has been claimed in previous studies, these were based on a forced exercise paradigm. The aim of this study is to determine whether very early exposure to EE can effectively regulate Fas/FasL-mediated apoptosis following hypoxic-ischemic (HI) brain injury and improve neurobehavioral function. C57Bl/6 mice were housed for 2 weeks in either cages with EE or standard cages (SC) 3 h or 72 h after HI brain injury. Very early exposure to EE was associated with greater improvement in motor function and cognitive ability, reduced volume of the infarcted area, decreased mitochondria-mediated apoptosis, and decreased oxidative stress. Very early exposure to EE significantly downregulated Fas/FasL-mediated apoptosis, decreased expression of Fas, Fas-associated death domain, cleaved caspase-8/caspase-8, cleaved caspase-3/caspase-3, as well as Bax and Bcl-2, in the cerebral cortex and the hippocampus. Delayed exposure to EE, on the other hand, failed to inhibit the extrinsic pathway of apoptosis. This study demonstrates that very early exposure to EE is a potentially useful therapeutic translation for stroke rehabilitation through effective inhibition of the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Hoo Young Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea,National Traffic Injury Rehabilitation Hospital, Gyeonggi-do, Republic of Korea,Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk-Young Song
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihye Hwang
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dawoon Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jung Hyun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Rehabilitation Medicine, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungchul Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soonil Pyo
- Neuracle Science Co. Ltd., Seoul, Republic of Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Sung-Rae Cho
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea,*Correspondence: Sung-Rae Cho, ✉
| |
Collapse
|
5
|
Divergences of the RLR Gene Families across Lophotrochozoans: Domain Grafting, Exon-Intron Structure, Expression, and Positive Selection. Int J Mol Sci 2022; 23:ijms23073415. [PMID: 35408776 PMCID: PMC8998645 DOI: 10.3390/ijms23073415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Invertebrates do not possess adaptive immunity but have evolved a variety of unique repertoires of innate immune sensors. In this study, we explored the immune diversity and specificity of invertebrates based on the lophotrochozoan RLRs, a major component in antiviral immune recognition. By annotating RLRs in the genomes of 58 representative species across metazoan evolution, we explored the gene expansion of RLRs in Lophotrochozoa. Of note, the N-terminal domains of lophotrochozoan RLRs showed the most striking diversity which evolved independently by domain grafting. Exon–intron structures were revealed to be prevalent in the domain grafting of lophotrochozoan RLRs based on an analysis of sibling paralogs and orthologs. In more than half of the cases, the mechanism of ‘exonization/pseudoexonization’ led to the generation of non-canonical N-terminal domains. Transcriptomic studies revealed that many non-canonical RLRs display immune-related expression patterns. Two of these RLRs showed obvious evidence of positive selection, which may be the result of host defense selection pressure. Overall, our study suggests that the complex and unique domain arrangement of lophotrochozoan RLRs might result from domain grafting, exon–intron divergence, expression diversification, and positive selection, which may have led to functionally distinct lophotrochozoan RLRs.
Collapse
|
6
|
Rezaei-Tazangi F, Roghani-Shahraki H, Khorsand Ghaffari M, Abolhasani Zadeh F, Boostan A, ArefNezhad R, Motedayyen H. The Therapeutic Potential of Common Herbal and Nano-Based Herbal Formulations against Ovarian Cancer: New Insight into the Current Evidence. Pharmaceuticals (Basel) 2021; 14:1315. [PMID: 34959716 PMCID: PMC8705681 DOI: 10.3390/ph14121315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated death in women globally. This gynecological disorder is chiefly named the "silent killer" due to lacking an association between disease manifestations in the early stages and OCa. Because of the disease recurrence and resistance to common therapies, discovering an effective therapeutic way against the disease is a challenge. According to documents, some popular herbal formulations, such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different mechanisms. However, these herbal products may be accompanied by some pharmacological limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal and-nano-based herbal formulations with a focus on their mechanisms against OCa.
Collapse
Affiliation(s)
- Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa 7345149573, Iran;
| | | | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran;
| | - Firoozeh Abolhasani Zadeh
- Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Aynaz Boostan
- Department of Obstetrics & Gynecology, Saveh Chamran Hospital, Saveh 3919676651, Iran;
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan 8715973474, Iran
| |
Collapse
|
7
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
8
|
Yue Z, Jiang Z, Ruan B, Duan J, Song P, Liu J, Han H, Wang L. Disruption of myofibroblastic Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression. Int J Biol Sci 2021; 17:2135-2146. [PMID: 34239344 PMCID: PMC8241719 DOI: 10.7150/ijbs.60056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/08/2021] [Indexed: 01/15/2023] Open
Abstract
The phenotypic transformation of hepatic myofibroblasts (MFs) is involved in the whole process of the progression and regression of liver fibrosis. Notch signaling has been demonstrated to modulate the fibrosis. In this study, we found that Notch signaling in MFs was overactivated and suppressed with the progression and regression of hepatic fibrosis respectively, by detecting Notch signaling readouts in MFs. Moreover, we inactivated Notch signaling specifically in MFs with Sm22αCreER-RBPjflox/flox mice (RBPjMF-KO), and identified that MFs-specific down-regulation of Notch signaling significantly alleviated CCl4-induced liver fibrosis during the progression and regression. During the progression of liver fibrosis, MFs-specific blockade of Notch signaling inhibited the activation of HSCs to MFs and increases the expression of MMPs to reduce the deposition of ECM. During the regression of fibrosis, blocking Notch signaling in MFs increased the expression of HGF to promote proliferation in hepatocytes and up-regulated the expression of pro-apoptotic factors, Ngfr and Septin4, to induce apoptosis of MFs, thereby accelerating the reversal of fibrosis. Collectively, the MFs-specific disruption of Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression, which suggests a promising therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Zhensheng Yue
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China.,Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zijian Jiang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China.,Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingjing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
9
|
Wu YX, Lu HF, Lin YH, Chuang HY, Su SC, Liao YJ, Twu YC. Branched I antigen regulated cell susceptibility against natural killer cytotoxicity through its N-linked glycosylation and overall expression. Glycobiology 2021; 31:624-635. [PMID: 33403394 DOI: 10.1093/glycob/cwaa117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/14/2022] Open
Abstract
Cell surface glycosylation has been known as an important modification process that can be targeted and manipulated by malignant cells to escape from host immunosurveillance. We previously showed that the blood group branched I antigen on the leukemia cell surface can regulate the cell susceptibility against natural killer (NK) cell-mediated cytotoxicity through interfering target-NK interaction. In this work, we first identified N-linkage as the major glycosylation linkage type for branched I glycan formation on leukemia cells, and this linkage was responsible for cell sensitivity against therapeutic NK-92MI targeting. Secondly, by examining different leukemia cell surface death receptors, we showed death receptor Fas had highest expressions in both Raji and TF-1a cells. Mutations on two Fas extracellular N-linkage sites (118 and 136) for glycosylation impaired activation of Fas-mediated apoptosis during NK-92MI cytotoxicity. Last, we found that the surface I antigen expression levels enable leukemia cells to respond differently against NK-92MI targeting. In low I antigen expressing K-562 cell, reduction of I antigen presence greatly reduced leukemia cell susceptibility against NK-92MI targeting. But in other high I antigen expressing leukemia cells, similar reduction in I antigen expression did not affect cell susceptibility.
Collapse
Affiliation(s)
- Yu-Xuan Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, 45, Cheng-Hsin St., Taipei, 112, Taiwan.,Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan.,Department of Clinical Laboratory, Chung Shan Medical University Hospital, 110, Sec. 1, Jianguo N. Rd., Taichung City, 402, Taiwan
| | - Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, 222, Maijin Rd., Keelung City, 204, Taiwan.,Central Research Laboratory, Xiamen Chang Gung Hospital, 123, Xiafei Rd., Haicang District, Xiamen, China
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| |
Collapse
|
10
|
Parodi-Rullán R, Sone JY, Fossati S. Endothelial Mitochondrial Dysfunction in Cerebral Amyloid Angiopathy and Alzheimer's Disease. J Alzheimers Dis 2020; 72:1019-1039. [PMID: 31306129 DOI: 10.3233/jad-190357] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Cerebrovascular dysfunction is one of the earliest events in the pathogenesis of AD, as well as in vascular and mixed dementias. Cerebral amyloid angiopathy (CAA), the deposition of amyloid around cerebral vessels, is observed in up to 90% of AD patients and in approximately 50% of elderly individuals over 80 years of age. CAA is a strong contributor to vascular dysfunction in AD. CAA-laden brain vessels are characterized by dysfunctional hemodynamics and leaky blood-brain barrier (BBB), contributing to clearance failure and further accumulation of amyloid-β (Aβ) in the cerebrovasculature and brain parenchyma. Mitochondrial dysfunction is increasingly recognized as an important early initiator of the pathogenesis of AD and CAA. The objective of this review is to discuss the effects of Aβ on cerebral microvascular cell function, focusing on its impact on endothelial mitochondria. After introducing CAA and its etiology and genetic risk factors, we describe the pathological relationship between cerebrovascular amyloidosis and brain microvascular endothelial cell dysfunction, critically analyzing its roles in disease progression, hypoperfusion, and BBB integrity. Then, we focus on discussing the effect of Aβ challenge on endothelial mitochondrial dysfunction pathways, and their contribution to the progression of neurovascular dysfunction in AD and dementia. Finally, we report potential pharmacological and non-pharmacological mitochondria-targeted therapeutic strategies which may help prevent or delay cerebrovascular failure.
Collapse
Affiliation(s)
- Rebecca Parodi-Rullán
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Je Yeong Sone
- Department of Psychiatry, Center for Brain Health, NYU School of Medicine, New York, NY, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Liu W, Lu X, Shi P, Yang G, Zhou Z, Li W, Mao X, Jiang D, Chen C. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci Rep 2020; 10:1804. [PMID: 32019974 PMCID: PMC7000832 DOI: 10.1038/s41598-020-58642-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer patients often suffer from disease relapse and metastasis due to the presence of breast cancer stem-like cells (BCSCs). Numerous studies have reported that high levels of inflammatory factors, including tumor necrosis factor alpha (TNF-α), promote BCSCs. However, the mechanism by which TNF-α promotes BCSCs is unclear. In this study, we demonstrate that TNF-α up-regulates TAZ, a transcriptional co-activator promoting BCSC self-renewal capacity in human breast cancer cell lines. Depletion of TAZ abrogated the increase in BCSCs mediated by TNF-α. TAZ is induced by TNF-α through the non-canonical NF-κB pathway, and our findings suggest that TAZ plays a crucial role in inflammatory factor-promoted breast cancer stemness and could serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of the Chinese Academy of Sciences, Beijing, 101407, China
- Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xiaoqing Lu
- Department of breast surgery, The second hospital of Shanxi medical University, Taiyuan, 030071, China
| | - Peiguo Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Guangxi Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wei Li
- Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
- Department of Urology of the First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Xiaoyun Mao
- Breast surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
12
|
Temizkan MC, Bayraktaroglu AG, Kahraman T. Differential expression analysis of meat tenderness governing genes in different skeletal muscles of bovines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3240-3245. [PMID: 30338532 DOI: 10.1002/jsfa.9434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The aim of this study was to compare 12 different skeletal muscles of bovine (n = 15) with each other in terms of tenderness and meat-quality-related gene expressions. Tenderness values were evaluated by shear force, and ANK1, CAPN1, CAST, HSPB1, HSPA1A gene expressions were analyzed by using quantitative real-time polymerase chain reaction. RESULTS ANK1 gene showed significant differences between tender and tough muscles (P < 0.001) and was found to be more closely related to meat quality than CAPN1. No difference was found for CAST, HSPB1, and HSPA1A gene expressions between different parts of skeletal muscles (P > 0.05). The results also showed that the most convenient skeletal muscle for the meat quality studies is musculus psoas major. Furthermore, comparative use of musculus longissimus thoracis and musculus extensor digitorum muscles may give the most accurate results, rather than using other muscle groups in comparative studies between tender and tough muscles. CONCLUSION ANK1 gene is a preferable biomarker for the determination of meat quality, and CAPN1 needs further studies. However, CAST, HSPB1, and HSPA1A genes may not be suitable biomarkers for the determination of meat quality based on this study. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mehmet C Temizkan
- Department of Genetics, Institute of Health Sciences, Ankara University, Ankara, Turkey
| | - Alev G Bayraktaroglu
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Tolga Kahraman
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Yu J, Dong HW, Shi LT, Tang XY, Liu JR, Shi JH. Reproductive toxicity of perchlorate in rats. Food Chem Toxicol 2019; 128:212-222. [PMID: 30991129 DOI: 10.1016/j.fct.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Perchlorate, as an oxidizer, has many applications such as explosives and pyrotechnics, especially in rocket propellants and missile motors. Because it was found in water including wells and drinking water in the US, its effect on human health was being noted. However, the reproductive toxic effect on perchlorate is still unclear. In present study, the effects of repeated exposure to perchlorate on reproductive toxicity were evaluated in Wistar rats. The rats were treated orally with perchlorate at doses of 0.05, 1.00 or 10.00 mg/kg body weight (b.w.) daily for 8 weeks. The levels of T3 and T4 hormones in the rat serum were detected by radioimmunoassay kit. The indexes of reproduction, percentage of organ in body weight (%) and frequency of abnormal sperm cells were also analyzed in this study. DNA damage in testicular cells was evaluated by Comet assay. The levels of MDA, GSH and SOD were examined in testicle tissues of rats by ELISA. The expression of c-fos and fas protein was examined in testicle tissues by immunohistochemistry. The results showed that perchlorate did not affect the body weight of rats. Perchlorate also significantly decreased indexes of live birth and weaning in the groups of 1.00 and 10.00 mg/kg, and viability index only in the 10.00 mg/kg group (P < 0.05). Perchlorate also significantly decreased the serum level of T3 in male rats of 1.00 and 10.00 mg/kg groups, increased the rate of sperm abnormality (10.00 mg/kg), potentially caused DNA damage in testicular cells and altered the status of oxidative stress in male rats. In addition, because of the increase in the expression of fas and c-fos protein in testicle tissues, perchlorate could induce apoptosis in spermatogenesis. Thus, these findings indicate that perchlorate could cause DNA damage in testicular tissues and reduce testicular spermatogenic ability, resulting in reproductive toxicity.
Collapse
Affiliation(s)
- Jia Yu
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Hong-Wei Dong
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Li-Tian Shi
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Xuan-Yue Tang
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Jia-Ren Liu
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China; The department of Clinical Laboratory, The 4th Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, Harbin, 150001, People's Republic of China.
| | - Ji-Hong Shi
- Harbin Medical University Library, 194 XueFu Road, NanGang District, Harbin, 150081, People's Republic of China.
| |
Collapse
|
14
|
So A, Inman RD. An overview of biologic disease-modifying antirheumatic drugs in axial spondyloarthritis and psoriatic arthritis. Best Pract Res Clin Rheumatol 2019; 32:453-471. [PMID: 31171315 DOI: 10.1016/j.berh.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/23/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Biologic disease-modifying antirheumatic drugs (bDMARDs) are engineered proteins with high affinity for various proinflammatory immune mediators to reduce inflammation and its sequelae in various rheumatic diseases. These medications, introduced at the advent of the 21st century, have revolutionized the treatment of axial spondyloarthritis (including ankylosing spondylitis) and psoriatic arthritis. Currently approved bDMARDs for axial spondyloarthritis are etanercept, infliximab, adalimumab, golimumab, certolizumab pegol, and secukinumab. For psoriatic arthritis, all of these drugs are approved in addition to ixekizumab, ustekinumab, abatacept, and tofacitinib. Selection of the optimal bDMARD should consider patient comorbidity including uveitis, psoriasis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Anthony So
- Toronto Western Hospital, Suite 1E - 423, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| | - Robert Davies Inman
- Toronto Western Hospital, Suite 1E - 423, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
15
|
Hypermethylated gene ANKDD1A is a candidate tumor suppressor that interacts with FIH1 and decreases HIF1α stability to inhibit cell autophagy in the glioblastoma multiforme hypoxia microenvironment. Oncogene 2018; 38:103-119. [PMID: 30082910 PMCID: PMC6318269 DOI: 10.1038/s41388-018-0423-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 01/28/2023]
Abstract
Ectopic epigenetic mechanisms play important roles in facilitating tumorigenesis. Here, we first demonstrated that ANKDD1A is a functional tumor suppressor gene, especially in the hypoxia microenvironment. ANKDD1A directly interacts with FIH1 and inhibits the transcriptional activity of HIF1α by upregulating FIH1. In addition, ANKDD1A decreases the half-life of HIF1α by upregulating FIH1, decreases glucose uptake and lactate production, inhibits glioblastoma multiforme (GBM) autophagy, and induces apoptosis in GBM cells under hypoxia. Moreover, ANKDD1A is highly frequently methylated in GBM. The tumor-specific methylation of ANKDD1A indicates that it could be used as a potential epigenetic biomarker as well as a possible therapeutic target.
Collapse
|
16
|
Nazim UM, Moon JH, Lee JH, Lee YJ, Seol JW, Eo SK, Lee JH, Park SY. Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL- induced apoptosis. Oncotarget 2018; 7:23468-81. [PMID: 26992204 PMCID: PMC5029640 DOI: 10.18632/oncotarget.8048] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL is regarded as one of the most promising anticancer agents, because it can destruct cancer cells without showing any toxicity to normal cells. Metformin is an anti-diabetic drug with anticancer activity by inhibiting tumor cell proliferation. In this study, we demonstrated that metformin could induce TRAIL-mediated apoptotic cell death in TRAIL-resistant human lung adenocarcinoma A549 cells. Pretreatment of metformindownregulation of c-FLIP and markedly enhanced TRAIL-induced tumor cell death by dose-dependent manner. Treatment with metformin resulted in slight increase in the accumulation of microtubule-associated protein light chain LC3-II and significantly decreased the p62 protein levels by dose-dependent manner indicated that metformin induced autophagy flux activation in the lung cancer cells. Inhibition of autophagy flux using a specific inhibitor and genetically modified ATG5 siRNA blocked the metformin-mediated enhancing effect of TRAIL. These data demonstrated that downregulation of c-FLIP by metformin enhanced TRAIL-induced tumor cell death via activating autophagy flux in TRAIL-resistant lung cancer cells and also suggest that metformin may be a successful combination therapeutic strategy with TRAIL in TRAIL-resistant cancer cells including lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Uddin Md Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Seong-Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - John-Hwa Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| |
Collapse
|
17
|
3-Bromopyruvate enhances TRAIL-induced apoptosis in human nasopharyngeal carcinoma cells through CHOP-dependent upregulation of TRAIL-R2. Anticancer Drugs 2017; 28:739-749. [PMID: 28471808 DOI: 10.1097/cad.0000000000000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Past reports have shown that the sensitivity of cancer cells to TRAIL-induced apoptosis is related to their expression of TRAIL-death receptors on the cell surface. However, the level of TRAIL-death receptors expression on cancer cells is always low. Our previous research showed that nasopharyngeal carcinoma (NPC) cells have a poor sensitivity to low doses of TRAIL. Here, we evaluated combined treatment with the energy inhibitor 3-bromopyruvate (3BP) and TRAIL as a method to produce an increased apoptotic response in NPC cells. The results showed that 3BP and TRAIL together produced higher cytotoxicity and increased TRAIL-R2 expression in NPC cells compared with the effects of either 3BP or TRAIL alone. These findings led us to hypothesize that 3BP may sensitize NPC cells to TRAIL. 3BP is a metabolic blocker that inhibits hexokinase II activity, suppresses ATP production, and induces endoplasmic reticulum (ER) stress. Our results showed that 3BP also activated AMP-activated protein kinase, which we found to play an important role in the induction of ER stress by 3BP. Furthermore, the induction of TRAIL-R2 expression and the sensitization of the NPC cells to TRAIL by 3BP were reduced when we inhibited the expression of CHOP. Taken together, our results showed that a low dose of 3BP sensitized NPC cells to TRAIL-induced apoptosis by the upregulation of CHOP, which was mediated by the activation of AMP-activated protein kinase and ER stress. The results showed that 3BP is a promising candidate agent for enhancing the therapeutic response to TRAIL in NPC.
Collapse
|
18
|
Liu X, Chen Y, Zhang Y, Du J, Lv Y, Mo S, Liu Y, Ding F, Wu J, Li J. Juglone potentiates TRAIL‑induced apoptosis in human melanoma cells via activating the ROS‑p38‑p53 pathway. Mol Med Rep 2017; 16:9645-9651. [PMID: 29039537 DOI: 10.3892/mmr.2017.7806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/08/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL)‑based cancer therapy offers promise as TRAIL can kill cancer cells without apparent toxicity towards normal cells. However, intrinsic or acquired resistance to TRAIL inseveral types of cancer cell has become a major challenge in TRAIL‑based cancer therapy. Juglone is a natural compound isolated from walnut trees. In the present study, it was demonstrated that juglone sensitized melanoma cells to TRAIL‑induced cytotoxicity by MTT and crystal violet assays. Flow cytometry analysis indicated that juglone potentiated TRAIL‑induced cell death. Western blot assay demonstrated that the expressions of cleaved poly(ADP‑ribose) polymerase (PARP) and cleaved caspase 3 were markedly increased in the juglone combined with TRAIL group. Exposure to TRAIL alone did not induce the production of reactive oxygen species (ROS), activation of p38 orincrease of p53 in the TRAIL‑resistant melanoma cells, as determined by flow cytometry and western blot analysis. However, exposure to TRAIL in combination with juglone markedly increased the production of ROS, activated p38 and increased p53, compared with the cells treated with either juglone or TRAIL alone. Pretreatment with N‑acetyl cysteine, a ROS scavenger, significantly reduced the cytotoxicity of juglone in combination with TRAIL, which further supported that ROS was involved in the juglone‑induced sensitization of TRAIL. In conclusion, juglone potentiated TRAIL‑induced apoptosis in melanoma cells, and these effects were partially mediated through the ROS‑p38‑p53 pathway. These findings suggested that juglone may be a potential sensitizer for TRAIL therapy in the treatment of melanoma.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yan Chen
- Department of Dermatology, The Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yaohua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Shuming Mo
- Department of Integrative Medicine, North Huashan Hospital, Fudan University, Shanghai 201907, P.R. China
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Feng Ding
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ji Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
19
|
Nazim UM, Moon JH, Lee YJ, Seol JW, Kim YJ, Park SY. Glipizide sensitizes lung cancer cells to TRAIL-induced apoptosis via Akt/mTOR/autophagy pathways. Oncotarget 2017; 8:100021-100033. [PMID: 29245957 PMCID: PMC5724999 DOI: 10.18632/oncotarget.21754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
The combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with subsidiary agents is a promising anticancer strategy to conquer TRAIL resistance in malignant cells. Glipizide is a second-generation oral hypoglycemic medicine for the cure of type II diabetes because of its capability to selectively stimulate insulin secretion from β-cells. In this study, we revealed that glipizide could trigger TRAIL-mediated apoptotic cell death in human lung adenocarcinoma cells. Pretreatment with glipizide downregulation of p-Akt and p-mTOR in different concentrations. In addition, LC3-II and p-Akt was suppressed in the presence of LY294002, a well-known inhibitor of P13K. Treatment with glipizide commenced in a slight increase in conversion rate of LC3-I to LC3-II and significantly decreased p62 expression levels in a dose-dependent manner. This indicates that glipizide encouraged autophagy flux activation in human lung cancer cells. Inhibition of autophagy flux applying a specific inhibitor and genetically modified ATG5 siRNA enclosed glipizide-mediated enhancing effect of TRAIL. These data demonstrate that inhibition of Akt/mTOR by glipizide sensitizes TRAIL-induced tumor cell death through activating autophagy flux and also suggest that glipizide may be a combination therapeutic target with TRAIL protein in TRAIL-resistant cancer cells.
Collapse
Affiliation(s)
- Uddin Md Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Yong Ju Kim
- Department of Herbal Medicine Resources, College of Environmental and Bioresources, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| |
Collapse
|
20
|
Death of adrenocortical cells during murine acute T. cruzi infection is not associated with TNF-R1 signaling but mostly with the type II pathway of Fas-mediated apoptosis. Brain Behav Immun 2017; 65:284-295. [PMID: 28666938 DOI: 10.1016/j.bbi.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6-Tnfrsf1a tm1Imx or TNF-R1-/-) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses.
Collapse
|
21
|
Apoptosis in inner ear sensory hair cells. J Otol 2017; 12:151-164. [PMID: 29937851 PMCID: PMC6002637 DOI: 10.1016/j.joto.2017.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/13/2023] Open
Abstract
Apoptosis, or controlled cell death, is a normal part of cellular lifespan. Cell death of cochlear hair cells causes deafness; an apoptotic process that is not well understood. Worldwide, 1.3 billion humans suffer some form of hearing loss, while 360 million suffer debilitating hearing loss as a direct result of the absence of these cochlear hair cells (Worldwide Hearing, 2014). Much is known about apoptosis in other systems and in other cell types thanks to studies done since the mid-20th century. Here we review current literature on apoptosis in general, and causes of deafness and cochlear hair cells loss as a result of apoptosis. The family of B-cell lymphoma (Bcl) proteins are among the most studied and characterized. We will review current literature on the Bcl2 and Bcl6 protein interactions in relation to apoptosis and their possible roles in vulnerability and survival of cochlear hair cells.
Collapse
|
22
|
Xiang Z, Xiao S, Wang F, Qin Y, Wu J, Ma H, Li J, Yu Z. Cloning, characterization and comparative analysis of four death receptorTNFRs from the oyster Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2016; 59:288-297. [PMID: 27666188 DOI: 10.1016/j.fsi.2016.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 05/16/2023]
Abstract
Apoptosis plays an important role in homeostasis of the immune systems. The tumor necrosis factor receptors (TNFRs) play critical roles in the extrinsic apoptosis pathways and in determining cell fate. In this study, four death receptors (DR) named ChEDAR, ChTNFR27, ChTNFR5, and ChTNFR16 were identified from the oyster Crassostrea hongkongensis. These ChDRs proteins had 382, 396, 414 and 384 amino acids, respectively, with the typical domains of death receptors, such as the signal peptide (SP), transmembrane helix region (TM) and death domains. Phylogenetic analysis showed that the ChDR proteins clustered into three distinct groups, indicating that these subfamilies had common ancestors. mRNA expression of the ChDRs were detected in all 8 of the selected oyster tissues and at different stages of development. Furthermore, expression of all the genes was increased in the hemocytes of oysters challenged with pathogens or air stress. Fluorescence microscopy revealed that the full-length proteins of the ChDRs were located in the plasma membrane of HEK293T cells. Over-expression of the ChDRs activated the NF-κB-Luc reporter in HEK293T cells in a dose-dependent manner. These results indicate that the ChDRs may play important roles in the extrinsic apoptotic pathways in oysters.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis/immunology
- Base Sequence
- Cloning, Molecular
- Crassostrea/classification
- Crassostrea/genetics
- Crassostrea/immunology
- Crassostrea/microbiology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Developmental
- Immunity, Innate
- Organ Specificity
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Saccharomyces cerevisiae/physiology
- Sequence Alignment
- Signal Transduction
- Staphylococcus haemolyticus/physiology
- Vibrio alginolyticus/physiology
Collapse
Affiliation(s)
- Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Fuxuan Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yanping Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
23
|
Wiberg R, Kingham PJ, Novikova LN. A Morphological and Molecular Characterization of the Spinal Cord after Ventral Root Avulsion or Distal Peripheral Nerve Axotomy Injuries in Adult Rats. J Neurotrauma 2016; 34:652-660. [PMID: 27297543 DOI: 10.1089/neu.2015.4378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retrograde cell death in sensory dorsal root ganglion cells following peripheral nerve injury is well established. However, available data regarding the underlying mechanism behind injury induced motoneuron death are conflicting. By comparing morphological and molecular changes in spinal motoneurons after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA) 7 and 14 days postoperatively, we aimed to gain more insight about the mechanism behind injury-induced motoneuron degeneration. Morphological changes in spinal cord were assessed by using quantitative immunohistochemistry. Neuronal degeneration was revealed by decreased immunostaining for microtubule-associated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Significant motoneuron atrophy was already observed at 7 days post-injury, independently of injury type. Immunostaining for ED1 reactive microglia was significantly elevated in all experimental groups, as well as the astroglial marker glial fibrillary acidic protein (GFAP). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of genes involved in programmed cell death including caspase-3, caspase-8, and related death receptors TRAIL-R, tumor necrosis factor (TNF)-R, and Fas following VRA. In contrast, following PNA, caspase-3 and the death receptor gene expression levels did not differ from the control, and there was only a modest increased expression of caspase-8. Moreover, the altered gene expression correlated with protein changes. These results show that the spinal motoneurons reacted in a similar fashion with respect to morphological changes after both proximal and distal injury. However, the increased expression of caspase-3, caspase-8, and related death receptors after VRA suggest that injury- induced motoneuron degeneration is mediated through an apoptotic mechanism, which might involve both the intrinsic and the extrinsic pathways.
Collapse
Affiliation(s)
- Rebecca Wiberg
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden .,2 Department of Surgical and Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University , Umeå, Sweden
| | - Paul J Kingham
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden
| | - Liudmila N Novikova
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden
| |
Collapse
|
24
|
Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016; 37:8471-86. [PMID: 27059734 DOI: 10.1007/s13277-016-5035-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Collapse
|
25
|
Park MH, Kim JH, Chung YH, Lee SH. Bakuchiol sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins. Biochem Biophys Res Commun 2016; 473:586-92. [DOI: 10.1016/j.bbrc.2016.03.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
|
26
|
González-Suárez E, Sanz-Moreno A. RANK as a therapeutic target in cancer. FEBS J 2016; 283:2018-33. [PMID: 26749530 DOI: 10.1111/febs.13645] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 01/27/2023]
Abstract
The RANK signaling pathway has emerged as a new target in breast cancer as receptor activator of nuclear factor κB ligand (RANKL) and its receptor RANK mediate the pro-tumorigenic role of progesterone in the mammary gland. Thousands of cancer patients worldwide are already taking RANKL inhibitors for the management of bone metastasis, given the relevance of this pathway in osteoclastogenesis and bone resorption. RANK signaling also has multiple divergent effects in immunity and inflammation, both in the generation of active immune responses and in the induction of tolerance: it is required for lymph node organogenesis, thymic medullary epithelial development and self-tolerance, and regulates activation of several immune cells and inflammatory processes. The RANK pathway interferes with mammary epithelial differentiation and mediates the major proliferative response of mammary epithelium to progesterone and progesterone-driven expansion of mammary stem cells; it also controls hair follicle and epidermal stem cell homeostasis, pointing to RANK as a key regulator of epithelial stemness. Here we revisit the main functions of RANK signaling in bone remodeling, immune cells and epithelial differentiation. We also discuss the mechanistic evidence that supports its pleiotropic effects on cancer: from bone metastasis to immune and cancer-cell-dependent effects.
Collapse
Affiliation(s)
- Eva González-Suárez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Adrián Sanz-Moreno
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| |
Collapse
|
27
|
Ma W, Shao Y, Yang W, Li G, Zhang Y, Zhang M, Zuo C, Chen K, Wang J. Evaluation of (188)Re-labeled NGR-VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Tumour Biol 2016; 37:9121-9. [PMID: 26768609 DOI: 10.1007/s13277-016-4810-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022] Open
Abstract
Vascular endothelial growth inhibitor (VEGI) is an anti-angiogenic protein, which includes three isoforms: VEGI-174, VEGI-192, and VEGI-251. The NGR (asparagine-glycine-arginine)-containing peptides can specifically bind to CD13 (Aminopeptidase N) receptor which is overexpressed in angiogenic blood vessels and tumor cells. In this study, a novel NGR-VEGI fusion protein was prepared and labeled with (188)Re for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Single photon emission computerized tomography (SPECT) imaging results revealed that (188)Re-NGR-VEGI exhibits good tumor-to-background contrast in CD13-positive HT-1080 tumor xenografts. The CD13 specificity of (188)Re-NGR-VEGI was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with co-injection of the non-radiolabeled NGR-VEGI protein. The biodistribution results demonstrated good tumor-to-muscle ratio (4.98 ± 0.25) of (188)Re-NGR-VEGI at 24 h, which is consistent with the results from SPECT imaging. For radiotherapy, 18.5 MBq of (188)Re-NGR-VEGI showed excellent tumor inhibition effect in HT-1080 tumor xenografts with no observable toxicity, which was confirmed by the tumor size change and hematoxylin and eosin (H&E) staining of major mouse organs. In conclusion, these data demonstrated that (188)Re-NGR-VEGI has the potential as a theranostic agent for CD13-targeted tumor imaging and therapy.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC 103, Los Angeles, CA, 90033-9061, USA
| | - Yahui Shao
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
- Department of Nuclear Medicine, General Hospital of Jinan Military Region, Jinan, Shandong, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yingqi Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC 103, Los Angeles, CA, 90033-9061, USA.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
28
|
KIM JIHUN, KIM YUCHUL, PARK BYOUNGDUCK. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors. Oncol Rep 2015; 35:1020-6. [DOI: 10.3892/or.2015.4440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
|
29
|
|
30
|
Loreto C, Psaila A, Musumeci G, Castorina S, Leonardi R. Apoptosis activation in human carious dentin. An immunohistochemical study. Eur J Histochem 2015; 59:2513. [PMID: 26428882 PMCID: PMC4598594 DOI: 10.4081/ejh.2015.2513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/17/2022] Open
Abstract
The exact mechanisms and enzymes involved in caries progression are largely unclear. Apoptosis plays a key role in dentin remodelling related to damage repair; however, it is unclear whether apoptosis in decayed teeth is activated through the extrinsic or the intrinsic pathway. This ex vivo immunohistochemical study explored the localization of TRAIL, DR5, Bcl-2 and Bax, the main proteins involved in apoptosis, in teeth with advanced caries. To evaluate TRAIL, DR5, Bcl-2 and Bax immunoexpressions twelve permanent carious premolars were embedded in paraffin and processed for immunohistochemistry. The results showed that TRAIL and DR5 were overexpressed in dentin and in pulp vessels and mononuclear cells; strong Bax immunostaining was detected in dilated dentinal tubules close to the lesion, and Bcl-2 staining was weak in some dentin areas under the cavity or altogether absent. These findings suggest that both apoptosis pathways are activated in dental caries. Further studies are required to gain insights into its biomolecular mechanisms.
Collapse
|
31
|
Park MH, Hong JE, Park ES, Yoon HS, Seo DW, Hyun BK, Han SB, Ham YW, Hwang BY, Hong JT. Anticancer effect of tectochrysin in colon cancer cell via suppression of NF-kappaB activity and enhancement of death receptor expression. Mol Cancer 2015; 14:124. [PMID: 26123287 PMCID: PMC4487202 DOI: 10.1186/s12943-015-0377-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/01/2015] [Indexed: 12/21/2022] Open
Abstract
Background Flavonoids are a diverse family of natural phenolic compounds commonly found in fruits and vegetables. Epidemiologic studies showed that flavonoids also reduce the risk of colon cancer. Tectochrysin is one of the major flavonoids of Alpinia oxyphylla Miquel. However, the anti-cancer effects and the molecular mechanisms of tectochrysin in colon cancer cells have not yet been reported. We investigated whether tectochrysin could inhibit colon cancer cell growth at 1, 5, 10 μg/ml. In in vivo study, we injected a tectochrysin treatment dose of 5 mg/kg to each mouse. Results Tectochrysin suppressed the growth of SW480 and HCT116 human colon cancer cells. The expression of DR3, DR4 and Fas were significantly increased, and pro-apoptotic proteins were also increased. Tectochrysin treatment also inhibited activity of NF-κB. A docking model indicated that tectochrysin binds directly to the p50 unit. In in vivo, tumor weights and volumes in mice were reduced when treated with tectochrysin. Tectochrysin leads to apoptotic cell death in colon cancer cells through activation of death receptors expression via the inhibition of NF-κB. Conclusions Tectochrysin can be a useful agent for the treatment of colon cancer cell growth as well as an adjuvant agent for chemo-resistant cancer cells growth.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Ji Eun Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Eun Sook Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Hee Sung Yoon
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Doo Won Seo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Byung Kook Hyun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Young Won Ham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Bang Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 361-951, Republic of Korea.
| |
Collapse
|
32
|
Sarvothaman S, Undi RB, Pasupuleti SR, Gutti U, Gutti RK. Apoptosis: role in myeloid cell development. Blood Res 2015; 50:73-9. [PMID: 26157776 PMCID: PMC4486162 DOI: 10.5045/br.2015.50.2.73] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 01/28/2023] Open
Abstract
Hematopoiesis is the process that generates blood cells in an organism from the pluripotent stem cells. Hematopoietic stem cells are characterized by their ability to undergo self-renewal and differentiation. The self-renewing ability ensures that these pluripotent cells are not depleted from the bone marrow niche. A proper balance between cell death and cell survival is necessary to maintain a homeostatic condition, hence, apoptosis, or programmed cell death, is an essential step in hematopoiesis. Recent studies, however, have introduced a new aspect to this process, citing the significance of the apoptosis mediator, caspase, in cell development and differentiation. Extensive research has been carried out to study the possible role of caspases and other apoptosis related factors in the developmental processes. This review focuses on the various apoptotic factors involved in the development and differentiation of myeloid lineage cells: erythrocytes, megakaryocytes, and macrophages.
Collapse
Affiliation(s)
- Shilpa Sarvothaman
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ram Babu Undi
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Satya Ratan Pasupuleti
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Usha Gutti
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, India
| | - Ravi Kumar Gutti
- Stem Cells and Haematological Disorders Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
33
|
Ding Z, Liu Y, Yao L, Wang D, Zhang J, Cui G, Yang X, Huang X, Liu F, Shen A. Spy1 induces de-ubiquitinating of RIP1 arrest and confers glioblastoma's resistance to tumor necrosis factor (TNF-α)-induced apoptosis through suppressing the association of CLIPR-59 and CYLD. Cell Cycle 2015; 14:2149-59. [PMID: 26017671 DOI: 10.1080/15384101.2015.1041688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), a grade-IV glioma, is resistant to TNF-α induced apoptosis. CLIPR-59 modulates ubiquitination of RIP1, thus promoting Caspase-8 activation to induce apoptosis by TNF-α. Here we reported that CLIPR-59 was down-regulated in GBM cells and high-grade glioma tumor samples, which was associated with decreased cancer-free survival. In GBM cells, CLIPR-59 interacts with Spy1, resulting in its decreased association with CYLD, a de-ubiquitinating enzyme. Moreover, experimental reduction of Spy1 levels decreased GBM cells viability, while increased the lysine-63-dependent de-ubiquitinating activity of RIP1 via enhancing the binding ability of CLIPR-59 and CYLD in GBM, thus promoting Caspase-8 and Caspase-3 activation to induce apoptosis by TNF-α. These findings have identified a novel Spy1-CLIPR-59 interplay in GBM cell's resistance to TNF-α-induced apoptosis revealing a potential target in the intervention of malignant brain tumors.
Collapse
Affiliation(s)
- Zongmei Ding
- a Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Nantong University ; Nantong , Jiangsu , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang T, Shi R, Chang L, Tang K, Chen K, Yu G, Tian Y, Guo Y, He W, Song X, Xu H, Ye Z. Huachansu suppresses human bladder cancer cell growth through the Fas/Fasl and TNF- alpha/TNFR1 pathway in vitro and in vivo. J Exp Clin Cancer Res 2015; 34:21. [PMID: 25887782 PMCID: PMC4354737 DOI: 10.1186/s13046-015-0134-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/10/2015] [Indexed: 12/02/2022] Open
Abstract
Background Huachansu (HCS), a class of toxic steroids extracted from toad venom, which has been shown to be a valuable anticancer drug in many kinds of cancers. However, the effect of HCS on bladder cancer has not been elucidated. In this study, we focused on the antitumor activities and related mechanisms of HCS on bladder cancer in vitro and in vivo. Methods Cell viability of T24, EJ, RT-4, SV-HUC-1 cells after HCS treatment was measured by MTS, whereas the changes of cell morphology were observed by transmission electron microscopy. The early apoptosis induced by HCS was evaluated by flow cytometry, and the expression level of apoptosis-related molecules (Bax, Bcl-2, XIAP, PARP, cleaved-Caspases 3, 8, 9) was detected using Western blot. We then evaluated the impact of HCS on the expression of Fas/Fasl, TNF- alpha/TNFR1, and the activation of NF-Kappa B pathway, and furthermore the effect of these pathways in HCS induced-apoptosis were also detected. At last, xenograft tumor in nude mice was used to further investigate the antitumor effect of HCS in vivo. Results Our results showed that HCS could efficiently inhibit proliferation and induce apoptosis in human bladder cancer cell lines. The expression of Fas, Fasl, TNF- alpha were all elevated at both mRNA and protein level after HCS treatment. Furthermore, down regulation of TNF- alpha, TNFR1, Fas or inhibition of Fas/Fasl interaction decreased the relative number of death cells induced by HCS. In vivo, HCS treatment significantly suppressed tumor growth and induced apoptosis in xenografts tumor in nude mice. Conclusions HCS could efficiently inhibit proliferation and induce apoptosis in human bladder cancer cells in vitro and in vivo, which is largely mediated by Fas/Fasl and TNF- alpha/TNFR1 pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0134-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Yang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Runlin Shi
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Chang
- Department of Urology, Central Hospital of Wuhan, Wuhan, 430014, China.
| | - Kun Tang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ke Chen
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gan Yu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuanfeng Tian
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonglian Guo
- Department of Urology, Central Hospital of Wuhan, Wuhan, 430014, China.
| | - Wei He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaodong Song
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hua Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhangqun Ye
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
35
|
Prabowo AS, Iyer AM, Veersema TJ, Anink JJ, Schouten-van Meeteren AYN, Spliet WGM, van Rijen PC, Ferrier CH, Thom M, Aronica E. Expression of neurodegenerative disease-related proteins and caspase-3 in glioneuronal tumours. Neuropathol Appl Neurobiol 2015; 41:e1-e15. [DOI: 10.1111/nan.12143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Affiliation(s)
- A. S. Prabowo
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - A. M. Iyer
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - T. J. Veersema
- Department of Neurosurgery; University Medical Center Utrecht; Utrecht The Netherlands
- Department of Neurology; University Medical Center Utrecht; Utrecht The Netherlands
| | - J. J. Anink
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - A. Y. N. Schouten-van Meeteren
- Department of Pediatric Oncology; Emma Children's Hospital; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - W. G. M. Spliet
- Rudolf Magnus Institute for Neuroscience and Pathology; University Medical Center Utrecht; Utrecht The Netherlands
| | - P. C. van Rijen
- Department of Neurosurgery; University Medical Center Utrecht; Utrecht The Netherlands
| | - C. H. Ferrier
- Department of Neurology; University Medical Center Utrecht; Utrecht The Netherlands
- Department of Clinical Neurophysiology; University Medical Center Utrecht; Utrecht The Netherlands
| | - M. Thom
- Neuropathology Department; University College London Institute of Neurology; London UK
| | - E. Aronica
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
- SEIN - Stichting Epilepsie Instellingen Nederland; Heemstede The Netherlands
| |
Collapse
|
36
|
Oh SB, Hwang CJ, Song SY, Jung YY, Yun HM, Sok CH, Sung HC, Yi JM, Park DH, Ham YW, Han SB, Hwang BY, Hong JT. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett 2014; 353:95-103. [DOI: 10.1016/j.canlet.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/01/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023]
|
37
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Lee SY, Chen SL, Chang YH, Chen PS, Huang SY, Tzeng NS, Wang YS, Wang LJ, Lee IH, Wang TY, Yeh TL, Yang YK, Hong JS, Lu RB. The effects of add-on low-dose memantine on cytokine levels in bipolar II depression: a 12-week double-blind, randomized controlled trial. J Clin Psychopharmacol 2014; 34:337-43. [PMID: 24717258 DOI: 10.1097/jcp.0000000000000109] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Memantine, a noncompetitive N-methyl-d-aspartate receptor antagonist with a mood-stabilizing effect, and an association between bipolar disorder and proinflammatory cytokine levels have been reported. Whether adding-on memantine would reduce cytokine levels and is more effective than valproic acid (VPA) alone in bipolar II disorder was investigated. A randomized, double-blind, controlled, 12-week study was conducted. Patients undergoing regular VPA treatments were randomly assigned to a group: VPA + memantine (5 mg/d) (n = 106) or VPA + placebo (n = 108). The Hamilton Depression Rating Scale (HDRS) and Young Mania Rating Scale (YMRS) were used to evaluate clinical response. Symptom severity, plasma tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), IL-8, and IL-1 levels were examined during weeks 0, 1, 2, 4, 8, and 12. To adjust within-subject dependence over repeated assessments, multiple linear regressions with generalized estimating equation methods were used to examine the therapeutic effect. Tumor necrosis factor α levels were significantly lower in the VPA + memantine group than in the VPA + placebo group (P = 0.013). Posttreatment HDRS and YMRS scores decreased significantly in both groups, but not significant, nor was the other between-group cytokine level difference pretreatment and posttreatment. The HDRS score changes were significantly associated with IL-6 (P = 0.012) and IL-1 (P = 0.005) level changes and changes in YMRS score changes with TNF-α (P = 0.005) level changes. Treating bipolar II depression with VPA + memantine may improve the plasma TNF-α level. However, adding-on memantine may not improve clinical symptoms or cytokine levels other than TNF-α. Clinical symptoms may be correlated with certain cytokines.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- From the *Department of Psychiatry, †Institute of Behavioral Medicine, and ‡Institute of Allied Health Sciences, College of Medicine and Hospital, National Cheng Kung University, Tainan; §Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei; ∥Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung; ¶Department of Psychiatry, Tainan Hospital, Department of Health, Executive Yuan, Tainan; #Addiction Research Center, National Cheng Kung University, Tainan, Taiwan; and **Laboratory of Toxicology and Pharmacology, NIH/NIEHS, Research Triangle Park, NC
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hofmanová J, Straková N, Vaculová AH, Tylichová Z, Šafaříková B, Skender B, Kozubík A. Interaction of dietary fatty acids with tumour necrosis factor family cytokines during colon inflammation and cancer. Mediators Inflamm 2014; 2014:848632. [PMID: 24876678 PMCID: PMC4021685 DOI: 10.1155/2014/848632] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/29/2014] [Indexed: 12/14/2022] Open
Abstract
Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF- α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NF κ B activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined.
Collapse
Affiliation(s)
- Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Experimental Biology, Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Barbora Šafaříková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Experimental Biology, Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Belma Skender
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Experimental Biology, Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
40
|
Yi L, Zongyuan Y, Cheng G, Lingyun Z, Guilian Y, Wei G. Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci 2014; 105:520-7. [PMID: 24612139 PMCID: PMC4317845 DOI: 10.1111/cas.12395] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/10/2014] [Accepted: 03/05/2014] [Indexed: 12/11/2022] Open
Abstract
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. We investigated whether quercetin, a flavonoid, can sensitize human ovarian cancer cells to TRAIL. Results indicate that quercetin sensitized cancer cells to TRAIL. The quercetin induced expression of death receptor DR5 but did not affect expression of DR4 in cancer cells. The induction of DR5 was mediated through activation of JNK and through upregulation of a transcription factor CCAAT enhancer-binding protein homologous protein (CHOP); as silencing of these signaling molecules abrogated the effect of quercetin. Upregulation of DR5 was mediated through the generation of reactive oxygen species (ROS), as ROS scavengers reduced the effect of quercetin on JNK activation, CHOP upregulation, DR induction, TRAIL sensitization, downregulated the expression of cell survival proteins and upregulated the proapoptotic proteins. Furthermore, quercetin enhances TRAIL mediated inhibition of tumor growth of human SKOV-3 xenograft was associated with induction of apoptosis, activation of caspase-3, CHOP and DR5. Overall, our data suggest that quercetin enhances apoptotic death of ovarian cancer cells to TRAIL through upregulation of CHOP-induced DR5 expression following ROS mediated endoplasmic reticulum-stress.
Collapse
Affiliation(s)
- Liu Yi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
41
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
42
|
Sasi SP, Bae S, Song J, Perepletchikov A, Schneider D, Carrozza J, Yan X, Kishore R, Enderling H, Goukassian DA. Therapeutic non-toxic doses of TNF induce significant regression in TNFR2-p75 knockdown Lewis lung carcinoma tumor implants. PLoS One 2014; 9:e92373. [PMID: 24664144 PMCID: PMC3963887 DOI: 10.1371/journal.pone.0092373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF) binds to two receptors: TNFR1/p55-cytotoxic and TNFR2/p75-pro-survival. We have shown that tumor growth in p75 knockout (KO) mice was decreased more than 2-fold in Lewis lung carcinoma (LLCs). We hypothesized that selective blocking of TNFR2/p75 LLCs may sensitize them to TNF-induced apoptosis and affect the tumor growth. We implanted intact and p75 knockdown (KD)-LLCs (>90%, using shRNA) into wild type (WT) mice flanks. On day 8 post-inoculation, recombinant murine (rm) TNF-α (12.5 ng/gr of body weight) or saline was injected twice daily for 6 days. Tumor volumes (tV) were measured daily and tumor weights (tW) on day 15, when study was terminated due to large tumors in LLC+TNF group. Tubular bones, spleens and peripheral blood (PB) were examined to determine possible TNF toxicity. There was no significant difference in tV or tW between LLC minus (-) TNF and p75KD/LLC-TNF tumors. Compared to 3 control groups, p75KD/LLC+TNF showed >2-5-fold decreases in tV (p<0.001) and tW (p<0.0001). There was no difference in tV or tW end of study vs. before injections in p75KD/LLC+TNF group. In 3 other groups tV and tW were increased 2.7-4.5-fold (p<0.01, p<0.0002 and p<0.0001). Pathological examination revealed that 1/3 of p75KD/LLC+rmTNF tumors were 100% necrotic, the remaining revealed 40-60% necrosis. No toxicity was detected in bone marrow, spleen and peripheral blood. We concluded that blocking TNFR2/p75 in LLCs combined with intra-tumoral rmTNF injections inhibit LLC tumor growth. This could represent a novel and effective therapy against lung neoplasms and a new paradigm in cancer therapeutics.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/pathology
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic
- Dose-Response Relationship, Drug
- Gene Knockdown Techniques
- Male
- Mice
- Models, Biological
- Necrosis/chemically induced
- RNA, Small Interfering/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
- Tumor Necrosis Factor-alpha/therapeutic use
Collapse
Affiliation(s)
- Sharath P. Sasi
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Sanggyu Bae
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Departments of Medicine and Pathology, Steward St. Elizabeth' Medical Center, Boston, Massachusetts, United States of America
| | - Jin Song
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Aleksandr Perepletchikov
- Departments of Medicine and Pathology, Steward St. Elizabeth' Medical Center, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Douglas Schneider
- Departments of Medicine and Pathology, Steward St. Elizabeth' Medical Center, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph Carrozza
- Departments of Medicine and Pathology, Steward St. Elizabeth' Medical Center, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Xinhua Yan
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Raj Kishore
- Feinberg Cardiovascular Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Heiko Enderling
- Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - David A. Goukassian
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Bourgine PE, Pippenger BE, Todorov A, Tchang L, Martin I. Tissue decellularization by activation of programmed cell death. Biomaterials 2013; 34:6099-108. [DOI: 10.1016/j.biomaterials.2013.04.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/27/2013] [Indexed: 01/10/2023]
|
44
|
Sessler T, Healy S, Samali A, Szegezdi E. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 2013; 140:186-99. [PMID: 23845861 DOI: 10.1016/j.pharmthera.2013.06.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Death receptors are members of the tumour necrosis factor (TNF) receptor superfamily characterised by an ~80 amino acid long alpha-helical fold, termed the death domain (DD). Death receptors diversified during early vertebrate evolution indicating that the DD fold has plasticity and specificity that can be easily adjusted to attain additional functions. Eight members of the death receptor family have been identified in humans, which can be divided into four structurally homologous groups or clades, namely: the p75(NTR) clade (consisting of ectodysplasin A receptor, death receptor 6 (DR6) and p75 neurotrophin (NTR) receptor); the tumour necrosis factor receptor 1 clade (TNFR1 and DR3), the CD95 clade (CD95/FAS) and the TNF-related apoptosis-inducing ligand receptor (TRAILR) clade (TRAILR1 and TRAILR2). Receptors in the same clade participate in similar processes indicating that structural diversification enabled functional specialisation. On the surface of nearly all human cells multiple death receptors are expressed, enabling the cell to respond to a plethora of external signals. Activation of different death receptors converges on the activation of three main signal transduction pathways: nuclear factor-κB-mediated differentiation or inflammation, mitogen-associated protein kinase-mediated stress response and caspase-mediated apoptosis. While the ability to induce cell death is true for nearly all DRs, the FAS and TRAILR clades have specialised in inducing cell death. Here we summarise recent discoveries about the molecular regulation and structural requirements of apoptosis induction by death receptors and discuss how this information can be used to better explain the biological functions, similarities and distinguishing features of death receptors.
Collapse
Affiliation(s)
- Tamas Sessler
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
45
|
Camejo FDA, Almeida LE, Doetzer AD, Caporal KST, Ambros V, Azevedo M, Alanis LRA, Olandoski M, Noronha L, Trevilatto PC. FasL expression in articular discs of human temporomandibular joint and association with osteoarthrosis. J Oral Pathol Med 2013; 43:69-75. [PMID: 23750602 DOI: 10.1111/jop.12089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Apoptosis is a programme of cell death which does not induce an inflammatory response. Recent previous research has suggested a correlation between temporomandibular internal derangement and apoptosis. Fas ligand (FasL) is an apoptosis-inducing factor, known to trigger apoptosis through distinct signal pathways. This study aims to examine, by immunohistochemistry, the expression of FasL in temporomandibular joint (TMJ) articular discs of patients with anterior disc displacement with reduction (ADDwR) and without reduction (ADDwoR) in patients with and without osteoarthrosis (OA). METHODS Forty-two (n = 42) TMJ articular discs were divided into two cut-offs: (i) 8 control, 17 ADDwR, 17 ADDwoR, and (ii) without OA (n = 25) and with OA (n = 17). The area of immunostaining was compared statistically between groups (P < 0.05). RESULTS Statistically significant differences were found in the expression of FasL in TMJ discs between the three groups (P = 0.001). ADDwR presented significant higher FasL expression when compared with ADDwoR (P < 0.001). Significant higher FasL expression was observed in the group without OA (P = 0.001). All patients without OA presented ADDwR, while all the patients with OA presented ADDwoR. CONCLUSION A higher area of in situ immunostaining of FasL was found in temporomandibular discs with reduction, which is the less severe condition. Moreover, a reduced expression of FasL in the discs of patients with osteoarthrosis was found, suggesting that some aspects of apoptosis might underlie the progression of TMJ disorders.
Collapse
|
46
|
Iyer A, Prabowo A, Anink J, Spliet WGM, van Rijen PC, Aronica E. Cell injury and premature neurodegeneration in focal malformations of cortical development. Brain Pathol 2013; 24:1-17. [PMID: 23586324 DOI: 10.1111/bpa.12060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/26/2013] [Indexed: 12/17/2022] Open
Abstract
Several lines of evidence suggest that cell injury may occur in malformations of cortical development associated with epilepsy. Moreover, recent studies support the link between neurodevelopmental and neurodegenerative mechanisms. We evaluated a series of focal cortical dysplasia (FCD, n=26; type I and II) and tuberous sclerosis complex (TSC, n=6) cases. Sections were processed for terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end labeling (TUNEL) labeling and immunohistochemistry using markers for the evaluation of apoptosis signaling pathways and neurodegeneration-related proteins/pathways. In both FCD II and TSC specimens, we observed significant increases in both TUNEL-positive and caspase-3-positive cells compared with controls and FCD I. Expression of β-amyloid precursor protein was observed in neuronal soma and processes in FCD II and TSC. In these specimens, we also observed an abnormal expression of death receptor-6. Immunoreactivity for phosphorylated tau was only found in older patients with FCD II and TSC. In these cases, prominent nuclear/cytoplasmic p62 immunoreactivity was detected in both dysmorphic neurons and balloon/giant cells. Our data provide evidence of complex, but similar, mechanisms of cell injury in focal malformations of cortical development associated with mammalian target of rapamycin pathway hyperactivation, with prominent induction of apoptosis-signaling pathways and premature activation of mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Anand Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Iyer A, van Scheppingen J, Anink J, Milenkovic I, Kovács GG, Aronica E. Developmental patterns of DR6 in normal human hippocampus and in Down syndrome. J Neurodev Disord 2013; 5:10. [PMID: 23618225 PMCID: PMC3666921 DOI: 10.1186/1866-1955-5-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 04/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Death receptor 6 (DR6) is highly expressed in the human brain: it has been shown to induce axon pruning and neuron death via distinct caspases and to mediate axonal degeneration through binding to N-terminal β amyloid precursor protein (N-APP). METHODS We investigated the expression of DR6 during prenatal and postnatal development in human hippocampus and temporal cortex by immunocytochemistry and Western blot analysis (118 normal human brain specimens; 9 to 41 gestational weeks; 1 day to 7 months postnatally; 3 to 91 years). To investigate the role of N-APP/DR6/caspase 6 pathway in the development of hippocampal Alzheimer's disease (AD)-associated pathology, we examined DR6 immunoreactivity (IR) in the developing hippocampus from patients with Down syndrome (DS; 48 brain specimens; 14 to 41 gestational weeks; 7 days to 8 months postnatally; 15 to 64 years) and in adults with DS and AD. RESULTS DR6 was highly expressed in human adult hippocampus and temporal cortex: we observed consistent similar temporal and spatial expression in both control and DS brain. Western blot analysis of total homogenates of temporal cortex and hippocampus showed developmental regulation of DR6. In the hippocampus, DR6 IR was first apparent in the stratum lacunosum-moleculare at 16 weeks of gestation, followed by stratum oriens, radiatum, pyramidale (CA1 to CA4) and molecular layer of the dentate gyrus between 21 and 23 gestational weeks, reaching a pattern similar to adult hippocampus around birth. Increased DR6 expression in dystrophic neurites was detected focally in a 15-year-old DS patient. Abnormal DR6 expression pattern, with increased expression within dystrophic neurites in and around amyloid plaques was observed in adult DS patients with widespread AD-associated neurodegeneration and was similar to the pattern observed in AD hippocampus. Double-labeling experiments demonstrated the colocalization, in dystrophic neurites, of DR6 with APP. We also observed colocalization with hyper-phosphorylated Tau and with caspase 6 (increased in hippocampus with AD pathology) in plaque-associated dystrophic neurites and within the white matter. CONCLUSIONS These findings demonstrate a developmental regulation of DR6 in human hippocampus and suggest an abnormal activation of the N-APP/DR6/caspase 6 pathway, which can contribute to initiation or progression of hippocampal AD-associated pathology.
Collapse
Affiliation(s)
- Anand Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Jasper Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovács
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, The Netherlands.,SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
LEE PHILIPR, COHEN JONATHANE, TENDI ELISABETTAA, FARRER ROBERT, DE VRIES GEORGEH, BECKER KEVING, FIELDS RDOUGLAS. Transcriptional profiling in an MPNST-derived cell line and normal human Schwann cells. ACTA ACUST UNITED AC 2012; 1:135-47. [PMID: 16429615 PMCID: PMC1325299 DOI: 10.1017/s1740925x04000274] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
cDNA microarrays were utilized to identify abnormally expressed genes in a malignant peripheral nerve sheath tumor (MPNST)-derived cell line, T265, by comparing the mRNA abundance profiles with that of normal human Schwann cells (nhSCs). The findings characterize the molecular phenotype of this important cell-line model of MPNSTs, and elucidate the contribution of Schwann cells in MPNSTs. In total, 4608 cDNA sequences were screened and hybridizations replicated on custom cDNA microarrays. In order to verify the microarray data, a large selection of differentially expressed mRNA transcripts were subjected to semi-quantitative reverse transcription PCR (LightCycler). Western blotting was performed to investigate a selection of genes and signal transduction pathways, as a further validation of the microarray data. The data generated from multiple microarray screens, semi-quantitative RT-PCR and Western blotting are in broad agreement. This study represents a comprehensive gene-expression analysis of an MPNST-derived cell line and the first comprehensive global mRNA profile of nhSCs in culture. This study has identified ~900 genes that are expressed abnormally in the T265 cell line and detected many genes not previously reported to be expressed in nhSCs. The results provide crucial information on the T265 cells that is essential for investigation using this cell line in experimental studies in neurofibromatosis type I (NF1), and important information on normal human Schwann cells that is applicable to a wide range of studies on Schwann cells in cell culture.
Collapse
Affiliation(s)
- PHILIP R. LEE
- Section on Nervous System Development and Plasticity, NICHD, National Institutes of Health, Bethesda, MD
| | - JONATHAN E. COHEN
- Section on Nervous System Development and Plasticity, NICHD, National Institutes of Health, Bethesda, MD
| | - ELISABETTA A. TENDI
- Section on Nervous System Development and Plasticity, NICHD, National Institutes of Health, Bethesda, MD
| | - ROBERT FARRER
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University of Chicago Stritch School of Medicine, Chicago, IL
| | - GEORGE H. DE VRIES
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University of Chicago Stritch School of Medicine, Chicago, IL
| | - KEVIN G. BECKER
- Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, MD
| | - R. DOUGLAS FIELDS
- Section on Nervous System Development and Plasticity, NICHD, National Institutes of Health, Bethesda, MD
- Correspondence should be addressed to: R. Douglas Fields, Section on Nervous System Development and Plasticity, Bldg. 35, Rm. 2A211, MSC 3713 NICHD, National Institutes of Health, Bethesda, MD 20892, USA, phone: +1 301 480 3209, fax: +1 301 496 9630,
| |
Collapse
|
49
|
Goc A, Kochuparambil ST, Al-Husein B, Al-Azayzih A, Mohammad S, Somanath PR. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer 2012; 12:409. [PMID: 22974127 PMCID: PMC3522038 DOI: 10.1186/1471-2407-12-409] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 09/11/2012] [Indexed: 12/19/2022] Open
Abstract
Background Recent studies suggest the potential benefits of statins as anti-cancer agents. Mechanisms by which statins induce apoptosis in cancer cells are not clear. We previously showed that simvastatin inhibit prostate cancer cell functions and tumor growth. Molecular mechanisms by which simvastatin induce apoptosis in prostate cancer cells is not completely understood. Methods Effect of simvastatin on PC3 cell apoptosis was compared with docetaxel using apoptosis, TUNEL and trypan blue viability assays. Protein expression of major candidates of the intrinsic pathway downstream of simvastatin-mediated Akt inactivation was analyzed. Gene arrays and western analysis of PC3 cells and tumor lysates were performed to identify the candidate genes mediating extrinsic apoptosis pathway by simvastatin. Results Data indicated that simvastatin inhibited intrinsic cell survival pathway in PC3 cells by enhancing phosphorylation of Bad, reducing the protein expression of Bcl-2, Bcl-xL and cleaved caspases 9/3. Over-expression of PC3 cells with Bcl-2 or DN-caspase 9 did not rescue the simvastatin-induced apoptosis. Simvastatin treatment resulted in increased mRNA and protein expression of molecules such as TNF, Fas-L, Traf1 and cleaved caspase 8, major mediators of intrinsic apoptosis pathway and reduced protein levels of pro-survival genes Lhx4 and Nme5. Conclusions Our study provides the first report that simvastatin simultaneously modulates intrinsic and extrinsic pathways in the regulation of prostate cancer cell apoptosis in vitro and in vivo, and render reasonable optimism that statins could become an attractive anti-cancer agent.
Collapse
Affiliation(s)
- Anna Goc
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Palamaro L, Giardino G, Santamaria F, Ramenghi U, Dianzani U, Pignata C. Altered regulatory mechanisms governing cell survival in children affected with clustering of autoimmune disorders. Ital J Pediatr 2012; 38:42. [PMID: 22971828 PMCID: PMC3469397 DOI: 10.1186/1824-7288-38-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/12/2022] Open
Abstract
Clustering of Autoimmune Diseases (CAD) is now emerging as a novel clinical entity within monogenic immune defects with a high familial occurrence. Aim of this study is to evaluate the regulatory mechanisms governing cell survival, paying a particular attention to Fas-induced apoptosis, in a cohort of 23 children affected with CAD. In 14 patients, Fas stimulation failed to induce cell apoptosis and in 1 case it was associated with Fas gene mutation. Our study highlights the importance to evaluate cell apoptosis in the group of children with CAD, which, with this regard, represents a distinct clinical entity.
Collapse
Affiliation(s)
- Loredana Palamaro
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| | - Giuliana Giardino
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| | - Francesca Santamaria
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| | - Ugo Ramenghi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Medical Science, “A. Avogadro” University, Eastern Piedmont, Novara, Italy
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Medical Science, “A. Avogadro” University, Eastern Piedmont, Novara, Italy
| | - Claudio Pignata
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| |
Collapse
|