1
|
Garcia I, Cornely K, Peterson CN, Berkmen MB. Roles of the oncometabolite enantiomers of 2-hydroxyglutarate and their metabolism by diverse dehydrogenases. Essays Biochem 2024; 68:161-171. [PMID: 38919140 DOI: 10.1042/ebc20230077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
2-Hydroxyglutarate (2HG) is an oncometabolite that can contribute to tumor progression. Two enantiomer forms, L-2HG and D-2HG, arise from independent pathways starting from the precursor α-ketoglutarate (αKG). L-2HG production occurs through the promiscuous activities of malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) under acidic and/or hypoxic conditions. D-2HG frequently accumulates by gain-of-function mutations in the genes encoding two isoforms of isocitrate dehydrogenase (IDH1 and IDH2). Cognate metabolite repair enzymes, L- and D-2-hydroxyglutarate dehydrogenases, oxidize the enantiomers and cause abnormally high 2HG accumulation and disease when mutated. Elevated levels of either oncometabolite affect redox homeostasis, metabolism, and immune system functioning. Moreover, the oncometabolites inhibit several α-ketoglutarate-dependent dioxygenases resulting in epigenetic changes such as DNA and histone hypermethylation as well as deficiencies in DNA repair. L-2HG, and D-2HG in some cases, inhibit degradation of hypoxia-inducible factor (HIF1α), a transcription factor that alters gene expression to adapt to hypoxic conditions, favoring tumorigenesis. Patients with the rare disease 2-hydroxyglutaric aciduria (2HGA) have exceedingly high levels of 2HG, which is neurotoxic, causing developmental delays and brain abnormalities. D-2HG also has specific effects on collagen production and NADPH pools. Recently, D-2HG has been targeted in new chemotherapies aimed at disrupting the gain-of-function IDH1 and IDH2 mutants, resulting in successful clinical trials for several cancers.
Collapse
Affiliation(s)
- Ivelitza Garcia
- Department of Chemistry, Allegheny College, Meadville, PA, U.S.A
| | - Kathleen Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence, RI, U.S.A
| | | | - Melanie B Berkmen
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA, U.S.A
| |
Collapse
|
2
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Ribeiro RT, Carvalho AVS, Palavro R, Durán-Carabali LE, Zemniaçak ÂB, Amaral AU, Netto CA, Wajner M. L-2-Hydroxyglutaric Acid Administration to Neonatal Rats Elicits Marked Neurochemical Alterations and Long-Term Neurobehavioral Disabilities Mediated by Oxidative Stress. Neurotox Res 2023; 41:119-140. [PMID: 36580261 DOI: 10.1007/s12640-022-00625-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
L-2-Hydroxyglutaric aciduria (L-2-HGA) is an inherited neurometabolic disorder caused by deficient activity of L-2-hydroxyglutarate dehydrogenase. L-2-Hydroxyglutaric acid (L-2-HG) accumulation in the brain and biological fluids is the biochemical hallmark of this disease. Patients present exclusively neurological symptoms and brain abnormalities, particularly in the cerebral cortex, basal ganglia, and cerebellum. Since the pathogenesis of this disorder is still poorly established, we investigated the short-lived effects of an intracerebroventricular injection of L-2-HG to neonatal rats on redox homeostasis in the cerebellum, which is mostly affected in this disorder. We also determined immunohistochemical landmarks of neuronal viability (NeuN), astrogliosis (S100B and GFAP), microglia activation (Iba1), and myelination (MBP and CNPase) in the cerebral cortex and striatum following L-2-HG administration. Finally, the neuromotor development and cognitive abilities were examined. L-2-HG elicited oxidative stress in the cerebellum 6 h after its injection, which was verified by increased reactive oxygen species production, lipid oxidative damage, and altered antioxidant defenses (decreased concentrations of reduced glutathione and increased glutathione peroxidase and superoxide dismutase activities). L-2-HG also decreased the content of NeuN, MBP, and CNPase, and increased S100B, GFAP, and Iba1 in the cerebral cortex and striatum at postnatal days 15 and 75, implying long-standing neuronal loss, demyelination, astrocyte reactivity, and increased inflammatory response, respectively. Finally, L-2-HG administration caused a delay in neuromotor development and a deficit of cognition in adult animals. Importantly, the antioxidant melatonin prevented L-2-HG-induced deleterious neurochemical, immunohistochemical, and behavioral effects, indicating that oxidative stress may be central to the pathogenesis of brain damage in L-2-HGA.
Collapse
Affiliation(s)
- Rafael Teixeira Ribeiro
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Andrey Vinícios Soares Carvalho
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rafael Palavro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Luz Elena Durán-Carabali
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Ângela Beatris Zemniaçak
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada Do Alto Uruguai E das Missões, Av. Sete de Setembro, Erechim, RS, 162199709-910, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, Porto Alegre, RS, 235090035-007, Brazil.
| |
Collapse
|
4
|
Abstract
2-Hydroxyglutarate (2-HG) is structurally similar to α-ketoglutarate (α-KG), which is an intermediate product of the tricarboxylic acid (TCA) cycle; it can be generated by reducing the ketone group of α-KG to a hydroxyl group. The significant role that 2-HG plays has been certified in the pathophysiology of 2-hydroxyglutaric aciduria (2HGA), tumors harboring mutant isocitrate dehydrogenase 1/2 (IDH1/2mt), and in clear cell renal cell carcinoma (ccRCC). It is taken as an oncometabolite, raising much attention on its oncogenic mechanism. In recent years, 2-HG has been verified to accumulate in the context of hypoxia or acidic pH, and there are also researches confirming the vital role that 2-HG plays in the fate decision of immune cells. Therefore, 2-HG not only participates in tumorigenesis. This text will also summarize 2-HG’s identities besides being an oncometabolite and will discuss their enlightenment for future research and clinical treatment.
Collapse
Affiliation(s)
- Xin Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Cansever MS, Zubarioglu T, Oruc C, Kiykim E, Gezdirici A, Neselioglu S, Erel O, Yalcinkaya C, Aktuglu-Zeybek C. Oxidative stress among L-2-hydroxyglutaric aciduria disease patients: evaluation of dynamic thiol/disulfide homeostasis. Metab Brain Dis 2019; 34:283-288. [PMID: 30499066 DOI: 10.1007/s11011-018-0354-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022]
Abstract
L-2-hydroxyglutaric aciduria (L2HGA) is an autosomal recessive disorder that is caused by deficiency of 2-hydroxyglutarate dehydrogenase. Pathophysiology of brain damage is poorly understood. In recent years, it was proposed that oxidative stress was elevated and led to brain injury. Aim of this study is to evaluate thiol/disulphide homeostasis as an indicator of oxidative stress in L2HGA patients who have been receiving antioxidant treatment. Sixteen L2HGA patients and 16 healthy individuals were included in the study. All the L2HGA patients were regularly followed up and presented neurological dysfunction at different grades. Fourteen patients had been receiving antioxidant treatment. Serum native thiol (-SH), total thiol (-SH + -S-S-) and disulphide (-S-S) levels were measured. Disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated from these values. No significant difference was observed in -SH, -SH + -S-S-, -S-S levels between two groups. In addition to that, no increase of disulphide/native thiol and disulphide/total thiol ratios was detected. Thiol/disulphide homeostasis parameters were also compared between patients who had been receiving and not receiving antioxidant therapy; and between different types of antioxidant therapy and the results did not point to any significant difference. This is the first study that evaluates dynamic thiol/disulphide homeostasis as an indicator of oxidative stress in L2HGA and it has one of the largest sample sizes among previous studies. In our study we suggest that antioxidant therapy should be effective in preventing oxidative stress in L2HGA patients, which has been reported in previous studies and should be a part of standard therapy.
Collapse
Affiliation(s)
- Mehmet Serif Cansever
- Cerrahpasa Medical Faculty Central Laboratory, Istanbul University, Istanbul, Turkey
| | - Tanyel Zubarioglu
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University, Kocamustafapasa Fatih, 34098, Istanbul, Turkey.
| | - Cigdem Oruc
- Cerrahpasa Medical Faculty, Department of Pediatrics, Istanbul University, Istanbul, Turkey
| | - Ertugrul Kiykim
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University, Kocamustafapasa Fatih, 34098, Istanbul, Turkey
| | - Alper Gezdirici
- Kanuni Sultan Suleyman Education and Research Hospital, Department of Genetics, Health Sciences University, Istanbul, Turkey
| | - Salim Neselioglu
- Faculty of Medicine, Department of Clinical Biochemistry, Yildirim Beyazit University, Ankara, Turkey
| | - Ozcan Erel
- Faculty of Medicine, Department of Clinical Biochemistry, Yildirim Beyazit University, Ankara, Turkey
| | - Cengiz Yalcinkaya
- Cerrahpasa Medical Faculty, Department of Neurology, Division of Pediatric Neurology, Istanbul University, Istanbul, Turkey
| | - Cigdem Aktuglu-Zeybek
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University, Kocamustafapasa Fatih, 34098, Istanbul, Turkey
| |
Collapse
|
6
|
Ribeiro RT, Zanatta Â, Amaral AU, Leipnitz G, de Oliveira FH, Seminotti B, Wajner M. Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain. Neurotox Res 2018; 33:681-692. [DOI: 10.1007/s12640-018-9874-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023]
|
7
|
da Rosa MS, João Ribeiro CA, Seminotti B, Teixeira Ribeiro R, Amaral AU, Coelho DDM, de Oliveira FH, Leipnitz G, Wajner M. In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radic Biol Med 2015; 83:201-13. [PMID: 25701435 DOI: 10.1016/j.freeradbiomed.2015.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/26/2022]
Abstract
Patients affected by L-2-hydroxyglutaric aciduria (L-2-HGA) are biochemically characterized by elevated L-2-hydroxyglutaric acid (L-2-HG) concentrations in cerebrospinal fluid, plasma, and urine due to a blockage in the conversion of L-2-HG to α-ketoglutaric acid. Neurological symptoms associated with basal ganglia and cerebelar abnormalities whose pathophysiology is still unknown are typical of this neurometabolic disorder. In the present study we evaluated the early effects (30min after injection) of an acute in vivo intrastriatal and intracerebellar L-2-HG administration on redox homeostasis in rat striatum and cerebellum, respectively. Histological analyses of these brain structures were also carried out 7 days after L-2-HG treatment (long-term effects). L-2-HG significantly decreased the concentrations of reduced (GSH) and total glutathione (tGS), as well as of glutathione peroxidase (GPx) and reductase (GR) activities, but did not change the activities of superoxide dismutase and catalase in striatum. Furthermore, the concentrations of oxidized glutathione (GSSG) and malondialdehyde (MDA), as well as 2',7'-dichlorofluorescein (DCFH) oxidation and hydrogen peroxide (H2O2) production, were increased, whereas carbonyl formation and nitrate plus nitrite concentrations were not altered by L-2-HG injection. It was also found that the melatonin, ascorbic acid plus α-tocopherol, and creatine totally prevented most of these effects, whereas N-acetylcysteine, the noncompetitive glutamate NMDA antagonist MK-801, and the nitric oxide synthase inhibitor L-NAME were not able to normalize the redox alterations elicited by L-2-HG in striatum. L-2-HG intracerebellar injection similarly provoked a decrease of antioxidant defenses (GSH, tGS, GPx, and GR) and an increase of the concentrations of GSSG, MDA, and H2O2 in cerebellum. These results strongly indicate that the major accumulating metabolite in L-2-HGA induce oxidative stress by decreasing the antioxidant defenses and enhancing reactive oxygen species in striatum and cerebellum of adolescent rats. Regarding the histopathological findings, L-2-HG caused intense vacuolation, lymphocyte and macrophage infiltrates, eosinophilic granular bodies, and necrosis in striatum. Immunohistochemistry revealed that L-2-HG treatment provoked an increase of GFAP and a decrease of NeuN immunostaining, indicating reactive astroglyosis and reduction of neuronal population, respectively, in striatum. Similar macrophage infiltrates, associated with less intense vacuolation and lymphocytic infiltration, were observed in cerebellum. However, we did not observe necrosis, eosinophilic granular bodies, and alteration of GFAP and NeuN content in L-2-HG-teated cerebellum. From the biochemical and histological findings, it is presumed that L-2-HG provokes striatal and cerebellar damage in vivo possibly through oxidative stress induction. Therefore, we postulate that antioxidants may serve as adjuvant therapy allied to the current treatment based on a protein-restricted diet and riboflavin and L-carnitine supplementation in patients affected by L-2-HGA.
Collapse
Affiliation(s)
- Mateus Struecker da Rosa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - César Augusto João Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Kranendijk M, Struys EA, Salomons GS, Van der Knaap MS, Jakobs C. Progress in understanding 2-hydroxyglutaric acidurias. J Inherit Metab Dis 2012; 35:571-87. [PMID: 22391998 PMCID: PMC3388262 DOI: 10.1007/s10545-012-9462-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 12/16/2022]
Abstract
The organic acidurias D: -2-hydroxyglutaric aciduria (D-2-HGA), L-2-hydroxyglutaric aciduria (L-2-HGA), and combined D,L-2-hydroxyglutaric aciduria (D,L-2-HGA) cause neurological impairment at young age. Accumulation of D-2-hydroxyglutarate (D-2-HG) and/or L-2-hydroxyglutarate (L-2-HG) in body fluids are the biochemical hallmarks of these disorders. The current review describes the knowledge gathered on 2-hydroxyglutaric acidurias (2-HGA), since the description of the first patients in 1980. We report on the clinical, genetic, enzymatic and metabolic characterization of D-2-HGA type I, D-2-HGA type II, L-2-HGA and D,L-2-HGA, whereas for D-2-HGA type I and type II novel clinical information is presented which was derived from questionnaires.
Collapse
Affiliation(s)
- Martijn Kranendijk
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Eduard A. Struys
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Gajja S. Salomons
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Cornelis Jakobs
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Brauburger K, Burckhardt G, Burckhardt BC. The sodium-dependent di- and tricarboxylate transporter, NaCT, is not responsible for the uptake of D-, L-2-hydroxyglutarate and 3-hydroxyglutarate into neurons. J Inherit Metab Dis 2011; 34:477-82. [PMID: 21264516 PMCID: PMC3063566 DOI: 10.1007/s10545-010-9268-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 12/31/2022]
Abstract
Concentrations of glutarate (GA) and its derivatives such as 3-hydroxyglutarate (3OHGA), D- (D-2OHGA) and L-2-hydroxyglutarate (L-2OHGA) are increased in plasma, cerebrospinal fluid (CSF) and urine of patients suffering from different forms of organic acidurias. It has been proposed that these derivatives cause neuronal damage in these patients, leading to dystonic and dyskinetic movement disorders. We have recently shown that these compounds are eliminated by the kidneys via the human organic anion transporters, OAT1 and OAT4, and the sodium-dependent dicarboxylate transporter 3, NaDC3. In neurons, where most of the damage occurs, a sodium-dependent citrate transporter, NaCT, has been identified. Therefore, we investigated the impact of GA derivatives on hNaCT by two-electrode voltage clamp and tracer uptake studies. None of these compounds induced substrate-associated currents in hNaCT-expressing Xenopus laevis oocytes nor did GA derivatives inhibit the uptake of citrate, the prototypical substrate of hNaCT. In contrast, D- and L-2OHGA, but not 3OHGA, showed affinities to NaDC3, indicating that D- and L-2OHGA impair the uptake of dicarboxylates into astrocytes thereby possibly interfering with their feeding of tricarboxylic acid cycle intermediates to neurons.
Collapse
Affiliation(s)
- Katja Brauburger
- Zentrum Physiologie und Pathophysiologie, Abt. Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Gerhard Burckhardt
- Zentrum Physiologie und Pathophysiologie, Abt. Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Birgitta C. Burckhardt
- Zentrum Physiologie und Pathophysiologie, Abt. Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
10
|
Steenweg ME, Jakobs C, Errami A, van Dooren SJM, Adeva Bartolomé MT, Aerssens P, Augoustides-Savvapoulou P, Baric I, Baumann M, Bonafé L, Chabrol B, Clarke JTR, Clayton P, Coker M, Cooper S, Falik-Zaccai T, Gorman M, Hahn A, Hasanoglu A, King MD, de Klerk HBC, Korman SH, Lee C, Meldgaard Lund A, Mejaski-Bosnjak V, Pascual-Castroviejo I, Raadhyaksha A, Rootwelt T, Roubertie A, Ruiz-Falco ML, Scalais E, Schimmel U, Seijo-Martinez M, Suri M, Sykut-Cegielska J, Trefz FK, Uziel G, Valayannopoulos V, Vianey-Saban C, Vlaho S, Vodopiutz J, Wajner M, Walter J, Walter-Derbort C, Yapici Z, Zafeiriou DI, Spreeuwenberg MD, Celli J, den Dunnen JT, van der Knaap MS, Salomons GS. An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study. Hum Mutat 2010; 31:380-90. [PMID: 20052767 DOI: 10.1002/humu.21197] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
L-2-Hydroxyglutaric aciduria (L2HGA) is a rare, neurometabolic disorder with an autosomal recessive mode of inheritance. Affected individuals only have neurological manifestations, including psychomotor retardation, cerebellar ataxia, and more variably macrocephaly, or epilepsy. The diagnosis of L2HGA can be made based on magnetic resonance imaging (MRI), biochemical analysis, and mutational analysis of L2HGDH. About 200 patients with elevated concentrations of 2-hydroxyglutarate (2HG) in the urine were referred for chiral determination of 2HG and L2HGDH mutational analysis. All patients with increased L2HG (n=106; 83 families) were included. Clinical information on 61 patients was obtained via questionnaires. In 82 families the mutations were detected by direct sequence analysis and/or multiplex ligation dependent probe amplification (MLPA), including one case where MLPA was essential to detect the second allele. In another case RT-PCR followed by deep intronic sequencing was needed to detect the mutation. Thirty-five novel mutations as well as 35 reported mutations and 14 nondisease-related variants are reviewed and included in a novel Leiden Open source Variation Database (LOVD) for L2HGDH variants (http://www.LOVD.nl/L2HGDH). Every user can access the database and submit variants/patients. Furthermore, we report on the phenotype, including neurological manifestations and urinary levels of L2HG, and we evaluate the phenotype-genotype relationship.
Collapse
Affiliation(s)
- Marjan E Steenweg
- Department of Child Neurology and VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Van Schaftingen E, Rzem R, Veiga-da-Cunha M. L: -2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis 2009; 32:135-42. [PMID: 19020988 DOI: 10.1007/s10545-008-1042-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/28/2022]
Abstract
The neurometabolic disorder L: -2-hydroxyglutaric aciduria is caused by mutations in a gene present on chromosome 14q22.1 and encoding L: -2-hydroxyglutarate dehydrogenase. This FAD-linked mitochondrial enzyme catalyses the irreversible conversion of L: -2-hydroxyglutarate to alpha-ketoglutarate. The formation of L: -2-hydroxyglutarate results from a side-activity of mitochondrial L: -malate dehydrogenase, the enzyme that interconverts oxaloacetate and L: -malate, but which also catalyses, very slowly, the NADH-dependent conversion of alpha-ketoglutarate to L: -2-hydroxyglutarate. L: -2-Hydroxyglutarate has no known physiological function in eukaryotes and most prokaryotes. Its accumulation is toxic to the mammalian brain, causing a leukoencephalopathy and increasing the susceptibility to develop tumours. L: -2-Hydroxyglutaric aciduria appears to be the first disease of 'metabolite repair'.
Collapse
Affiliation(s)
- E Van Schaftingen
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
12
|
Riboflavin treatment in a case with l-2-hydroxyglutaric aciduria. Eur J Paediatr Neurol 2009; 13:57-60. [PMID: 18343698 DOI: 10.1016/j.ejpn.2008.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/13/2007] [Accepted: 01/02/2008] [Indexed: 11/22/2022]
Abstract
L-2-hydroxyglutaric aciduria (LHGuria) is a rare neurometabolic disorder, which has characteristic clinical and laboratory features. The recent findings imply that LHG dehydrogenase is responsible for the disease and is FAD-dependent. Therefore, it might be expected that riboflavin could enhance any residual activity. We present our observations from nearly 2-year-long riboflavin treatment in a 16-year-old boy with LHGuria. During riboflavin treatment of 100 mg/d, partial improvement in his cognitive and motor performances was observed. Urinary LHG excretion decreased from 5990 mmol/mol creatinine to 1490 mmol/mol creatinine. Moreover, when riboflavin treatment was interrupted, significant disturbances in both symptoms and urinary LHG excretion (6360 mmol/mol creatinine) occurred in the patient. After the resettlement of riboflavine treatment, the patient resumed to his previous clinical status in a week. The improvement went further minimally under the dose of 200mg/d, but no further improvement happened with 300 mg/d. The present case suggests that riboflavin could be considered as a potential therapeutic approach in LHGuria until the optimal treatment of LHGuria is established.
Collapse
|
13
|
Scurrell E, Davies E, Baines E, Cherubini GB, Platt S, Blakemore W, Williams A, Schöniger S. Neuropathological findings in a Staffordshire bull terrier with l-2-hydroxyglutaric aciduria. J Comp Pathol 2008; 138:160-4. [PMID: 18295785 DOI: 10.1016/j.jcpa.2007.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
l-2-Hydroxyglutaric aciduria (l-2-HGA) is a hereditary neurometabolic disorder reported in human beings and dogs. An 11-month-old Staffordshire bull terrier was suspected to have the disease, on the basis of clinical signs and magnetic resonance imaging findings. l-2-HGA was confirmed by urinary organic analysis and DNA testing and the dog was humanely destroyed. Post-mortem findings consisted only of microscopical lesions in the brain, characterized by marked spongiform changes and predominantly affecting the grey matter of the cerebral cortex, thalamus, cerebellum and brainstem. The spongiform changes were characterized by well-demarcated, clear vacuoles located at perineuronal and perivascular sites. Immunohistochemical and ultrastructural examination confirmed that the affected cells were astrocytes.
Collapse
Affiliation(s)
- E Scurrell
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Goffette SM, Duprez TP, Nassogne MCL, Vincent MFA, Jakobs C, Sindic CJ. L-2-Hydroxyglutaric aciduria: clinical, genetic, and brain MRI characteristics in two adult sisters. Eur J Neurol 2006; 13:499-504. [PMID: 16722976 DOI: 10.1111/j.1468-1331.2006.01282.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
L-2-Hydroxyglutaric (L-2-HG) aciduria is a rare inherited metabolic disease usually observed in children. Patients present a very slowly progressive deterioration with cerebellar ataxia, mild or severe mental retardation, and various other clinical signs including extrapyramidal and pyramidal symptoms, and seizures. The disease is characterized by increased levels of L-2-HG in body fluids such as urine and cerebrospinal fluid. We report on two sisters from consanguineous parents, in whom L-2-HG aciduria was diagnosed at an adult age. Although magnetic resonance imaging and spectroscopic findings were severely abnormal in both, they experienced a different clinical course. The older sister presented with severe mental retardation, recurrent epileptic seizures, and progressive deterioration in her ability to walk and to talk; she is now confined to a wheelchair with severe speech deficit. In contrast, the younger sister only had a few epileptic seizures in childhood and moderate mental retardation, is still able to walk, and performs manual work, and has a social life in a specialized institution for moderately mentally handicapped persons. For the two patients, a complete deletion of exon 9 was demonstrated in a gene located on chromosome 14q22.1, which most probably encodes for L-2-hydroxyglutarate dehydrogenase. The pathological findings observed in this metabolic disorder could therefore be related to a toxic effect of L-2-hydroxyglutarate on the central nervous system, although the presence of other toxic metabolites cannot be excluded.
Collapse
Affiliation(s)
- S M Goffette
- Service de Neurologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
15
|
Rzem R, Veiga-da-Cunha M, Noël G, Goffette S, Nassogne MC, Tabarki B, Schöller C, Marquardt T, Vikkula M, Van Schaftingen E. A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Proc Natl Acad Sci U S A 2004; 101:16849-54. [PMID: 15548604 PMCID: PMC534725 DOI: 10.1073/pnas.0404840101] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Indexed: 01/31/2023] Open
Abstract
The purpose of this study was to identify the biochemical and genetic defect in L-2-hydroxyglutaric aciduria, a neurometabolic disorder characterized by the presence of elevated concentrations of L-2-hydroxyglutaric acid in urine, plasma, and cerebrospinal fluid. Evidence is provided for the existence in rat tissues of a FAD-dependent enzyme catalyzing specifically the oxidation of L-2-hydroxyglutarate to alpha-ketoglutarate. This enzyme is mainly expressed in liver and kidney but also at lower levels in heart, brain, and other tissues. Subcellular fractionation indicates that the liver enzyme is present in mitochondria, where it is bound to membranes. Based on this information, a database search led to the identification of a gene encoding a human hypothetical protein homologous to bacterial FAD-dependent malate dehydrogenases and targeted to mitochondria. The gene encoding this protein, present on chromosome 14q22.1, was found to be in a region homozygous in patients with L-2-hydroxyglutaric aciduria from two consanguineous families. Three mutations that replaced a highly conserved residue (Lys-71-Glu and Glu-176-Asp) or removed exon 9 were identified in homozygous state in patients from three distinct families and were found to cosegregate with the disease. It is concluded that L-2-hydroxyglutarate is normally metabolized to alpha-ketoglutarate in mammalian tissues and that L-2-hydroxyglutaric aciduria is caused by mutations in the gene that most likely encodes L-2-hydroxyglutarate dehydrogenase. The pathological findings observed in this metabolic disorder must therefore be due to a toxic effect of L-2-hydroxyglutarate on the central nervous system.
Collapse
Affiliation(s)
- Rim Rzem
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology, Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wajner M, Latini A, Wyse ATS, Dutra-Filho CS. The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 2004; 27:427-48. [PMID: 15303000 DOI: 10.1023/b:boli.0000037353.13085.e2] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organic acidurias represent a group of inherited disorders resulting from deficient activity of specific enzymes of the catabolism of amino acids, carbohydrates or lipids, leading to tissue accumulation of one or more carboxylic (organic) acids. Patients affected by organic acidurias predominantly present neurological symptoms and structural brain abnormalities, of which the aetiopathogenesis is poorly understood. However, in recent years increasing evidence has emerged suggesting that oxidative stress is possibly involved in the pathology of some organic acidurias and other inborn errors of metabolism. This review addresses some of the recent developments obtained mainly from animal studies indicating oxidative damage as an important determinant of the neuropathophysiology of some organic acidurias. Recent data showing that various organic acids are capable of inducing free radical generation and decreasing brain antioxidant defences is presented. The discussion focuses on the relatively low antioxidant defences of the brain and the vulnerability of this tissue to reactive species. This offers new perspectives for potential therapeutic strategies for these disorders, which may include the early use of appropriate antioxidants as a novel adjuvant therapy, besides the usual treatment based on removing toxic compounds and using special diets and pharmacological agents, such as cofactors and L-carnitine.
Collapse
Affiliation(s)
- M Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|