1
|
Song J, Tang L, Cui Y, Fan H, Zhen X, Wang J. Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Curr Issues Mol Biol 2024; 46:10299-10311. [PMID: 39329965 PMCID: PMC11430500 DOI: 10.3390/cimb46090613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Heading date is a critical physiological process in rice that is influenced by both genetic and environmental factors. The photoperiodic pathway is a primary regulatory mechanism for rice heading, with key florigen genes Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T1) playing central roles. Upstream regulatory pathways, including Hd1 and Ehd1, also significantly impact this process. This review aims to provide a comprehensive examination of the localization, cloning, and functional roles of photoperiodic pathway-related genes in rice, and to explore the interactions among these genes as well as their pleiotropic effects on heading date. We systematically review recent advancements in the identification and functional analysis of genes involved in the photoperiodic pathway. We also discuss the molecular mechanisms underlying rice heading date variation and highlight the intricate interactions between key regulatory genes. Significant progress has been made in understanding the molecular mechanisms of heading date regulation through the cloning and functional analysis of photoperiod-regulating genes. However, the regulation of heading date remains complex, and many underlying mechanisms are not yet fully elucidated. This review consolidates current knowledge on the photoperiodic regulation of heading date in rice, emphasizing novel findings and gaps in the research. It highlights the need for further exploration of the interactions among flowering-related genes and their response to environmental signals. Despite advances, the full regulatory network of heading date remains unclear. Further research is needed to elucidate the intricate gene interactions, transcriptional and post-transcriptional regulatory mechanisms, and the role of epigenetic factors such as histone methylation in flowering time regulation. This review provides a detailed overview of the current understanding of photoperiodic pathway genes in rice, setting the stage for future research to address existing gaps and improve our knowledge of rice flowering regulation.
Collapse
Affiliation(s)
- Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueqiang Zhen
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Dong K, Wu F, Cheng S, Li S, Zhang F, Xing X, Jin X, Luo S, Feng M, Miao R, Chang Y, Zhang S, You X, Wang P, Zhang X, Lei C, Ren Y, Zhu S, Guo X, Wu C, Yang DL, Lin Q, Cheng Z, Wan J. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice. MOLECULAR PLANT 2024; 17:900-919. [PMID: 38704640 DOI: 10.1016/j.molp.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.
Collapse
Affiliation(s)
- Kun Dong
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Siqi Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxin Xing
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jin
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanqi Chang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiran Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong-Lei Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Fang H, Chen H, Wang J, Li N, Zhang L, Wei C. G1 Interacts with OsMADS1 to Regulate the Development of the Sterile Lemma in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:505. [PMID: 38498476 PMCID: PMC10892649 DOI: 10.3390/plants13040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
Flower development, as the basis for plant seed development, is principally conserved in angiosperms. At present, a number of genes regulating flower organ differentiation have been identified, and an ABCDE model has also been proposed. In contrast, the mechanism that regulates the development of the sterile lemma remains unclear. In this study, we identified and characterized a rice floral organ mutant, M15, in which the sterile lemma transformed into a lemma-like organ. Positional cloning combined with a complementary experiment demonstrated that the mutant phenotype was restored by LONG STERILE LEMMA1/(G1). G1 was expressed constitutively in various tissues, with the highest expression levels detected in the sterile lemma and young panicle. G1 is a nucleus-localized protein and functions as a homomer. Biochemical assays showed that G1 physically interacted with OsMADS1 both in vitro and in vivo. Interestingly, the expression of G1 in M15 decreased, while the expression level of OsMADS1 increased compared with the wild type. We demonstrate that G1 plays a key role in sterile lemma development through cooperating with OsMADS1. The above results have implications for further research on the molecular mechanisms underlying flower development and may have potential applications in crop improvement strategies.
Collapse
Affiliation(s)
- Huimin Fang
- Guangling College, Yangzhou University, Yangzhou 225000, China; (H.F.); (J.W.)
| | - Hualan Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jianing Wang
- Guangling College, Yangzhou University, Yangzhou 225000, China; (H.F.); (J.W.)
| | - Ning Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Liu E, Zhu S, Du M, Lyu H, Zeng S, Liu Q, Wu G, Jiang J, Dang X, Dong Z, Hong D. LAX1, functioning with MADS-box genes, determines normal palea development in rice. Gene 2023; 883:147635. [PMID: 37442304 DOI: 10.1016/j.gene.2023.147635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Normal floral organ development in rice is necessary for grain formation. Many MADS-box family genes that belong to ABCDE model have been widely implicated in rice flower development. The LAX1 allele encodes a plant-specific basic helix-loop-helix (bHLH) transcription factor, which is the main regulator of axillary meristem formation in rice. However, the molecular mechanisms of LAX1 allele together with MADS-box family genes underlying palea development have not been reported. We found a short palea mutant plant in a population of indica rice variety 9311 treated with cobalt 60. We report the map-based cloning and characterization of lax1-7, identified as a new mutant allele of the LAX1 locus, and the role of its wild-type allele LAX1 in rice palea development. Through complementary experiments, combined with genetic and molecular biological analyses, the function of the LAX1 allele was determined. We showed that LAX1 allele is expressed specifically in young spikelets and encodes a nucleus-localized protein. In vitro and in vivo experiments revealed that the LAX1 protein physically interacts with OsMADS1, OsMADS6 and OsMADS7. The LAX1 allele is pleiotropic for the maintenance of rice palea identity via cooperation with MADS-box genes and other traits, including axillary meristem initiation, days to heading, plant height, panicle length and spikelet fertility.
Collapse
Affiliation(s)
- Erbao Liu
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shangshang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyu Du
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Huineng Lyu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyuan Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guocan Wu
- Ningde Institute of Agricultural Sciences, Ningde 355017, China
| | - Jianhua Jiang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Xiaojing Dang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Zhiyao Dong
- College of Life Sciences, Jilin Normal University, Jilin 136000, China
| | - Delin Hong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Chai S, Li K, Deng X, Wang L, Jiang Y, Liao J, Yang R, Zhang L. Genome-Wide Analysis of the MADS-box Gene Family and Expression Analysis during Anther Development in Salvia miltiorrhiza. Int J Mol Sci 2023; 24:10937. [PMID: 37446115 DOI: 10.3390/ijms241310937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
MADS-box genes constitute a large family of transcription factors that play important roles in plant growth and development. However, our understanding of MADS-box genes involved in anther development and male sterility in Salvia miltiorrhiza is still limited. In this study, 63 MADS-box genes were identified from the genome of the male sterility ecotype Sichuan S. miltiorrhiza (S. miltiorrhiza_SC) unevenly distributed among eight chromosomes. Phylogenetic analysis classified them into two types and 17 subfamilies. They contained 1 to 12 exons and 10 conserved motifs. Evolution analysis showed that segmental duplication was the main force for the expansion of the SmMADS gene family, and duplication gene pairs were under purifying selection. Cis-acting elements analysis demonstrated that the promoter of SmMADS genes contain numerous elements associated with plant growth and development, plant hormones, and stress response. RNA-seq showed that the expression levels of B-class and C-class SmMADS genes were highly expressed during anther development, with SmMADS11 likely playing an important role in regulating anther development and male fertility in S. miltiorrhiza_SC. Overall, this study provides a comprehensive analysis of the MADS-box gene family in S. miltiorrhiza, shedding light on their potential role in anther development and male sterility.
Collapse
Affiliation(s)
- Songyue Chai
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Kexin Li
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Long Wang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
6
|
Shalmani A, Ullah U, Tai L, Zhang R, Jing XQ, Muhammd I, Bhanbhro N, Liu WT, Li WQ, Chen KM. OsBBX19-OsBTB97/OsBBX11 module regulates spikelet development and yield production in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111779. [PMID: 37355232 DOI: 10.1016/j.plantsci.2023.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Spikelet and floral-related organs are important agronomic traits for rice grain yield. BTB (broad-complex, tram track, and bric-abrac) proteins control various developmental functions in plants; however, the molecular mechanism of BTB proteins underlying grain development and yield production is still unknown. Here, we evaluated the molecular mechanism of a previously unrecognized functional gene, namely OsBTB97 that regulates the floral and spikelet-related organs which greatly affect the final grain yield. We found that the knockdown of the OsBTB97 gene had significant impacts on the development of spikelet-related organs and grain size, resulting in a decrease in yield, by altering the transcript levels of various spikelet- and grain-related genes. Furthermore, we found that the knockout mutants of two BBX genes, OsBBX11 and OsBBX19, which interact with the OsBTB97 protein at translation and transcriptional level, respectively, displayed lower OsBTB97 expression, suggesting the genetic relationship between the BTB protein and the BBX transcription factors in rice. Taken together, our study dissects the function of the novel OsBTB97 by interacting with two BBX proteins and an OsBBX19-OsBTB97/OsBBX11 module might function in the spikelet development and seed production in rice. The outcome of the present study provides promising knowledge about BTB proteins in the improvement of crop production in plants.
Collapse
Affiliation(s)
- Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Uzair Ullah
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ran Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Izhar Muhammd
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Li W, Wang D, Hong X, Shi J, Hong J, Su S, Loaiciga CR, Li J, Liang W, Shi J, Zhang D. Identification and validation of new MADS-box homologous genes in 3010 rice pan-genome. PLANT CELL REPORTS 2023; 42:975-988. [PMID: 37016094 DOI: 10.1007/s00299-023-03006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Identification and validation of ten new MADS-box homologous genes in 3010 rice pan-genome for rice breeding. The functional genome is significant for rice breeding. MADS-box genes encode transcription factors that are indispensable for rice growth and development. The reported 15,362 novel genes in the rice pan-genome (RPAN) of Asian cultivated rice accessions provided a useful gene reservoir for the identification of more MADS-box candidates to overcome the limitation for the usage of only 75 MADS-box genes identified in Nipponbare for rice breeding. Here, we report the identification and validation of ten MADS-box homologous genes in RPAN. Origin and identity analysis indicated that they are originated from different wild rice accessions and structure of motif analysis revealed high variations in their amino acid sequences. Phylogenetic results with 277 MADS-box genes in 41 species showed that all these ten MADS-box homologous genes belong to type I (SRF-like, M-type). Gene expression analysis confirmed the existence of these ten MADS-box genes in IRIS_313-10,394, all of them were expressed in flower tissues, and six of them were highly expressed during seed development. Altogether, we identified and validated experimentally, for the first time, ten novel MADS-box genes in RPAN, which provides new genetic sources for rice improvement.
Collapse
Affiliation(s)
- Weihua Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Cristopher Reyes Loaiciga
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, Adelaide, 5064, Australia
| |
Collapse
|
8
|
Ullah U, Mao W, Abbas W, Alharthi B, Bhanbhro N, Xiong M, Gul N, Shalmani A. OsMBTB32, a MATH-BTB domain-containing protein that interacts with OsCUL1s to regulate salt tolerance in rice. Funct Integr Genomics 2023; 23:139. [PMID: 37115335 DOI: 10.1007/s10142-023-01061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
MATH-BTB proteins are involved in a variety of cellular processes that regulate cell homeostasis and developmental processes. Previous studies reported the involvement of BTB proteins in the development of various organs in plants; however, the function of BTB proteins in salt stress is less studied. Here, we found a novel MATH-BTB domain-containing OsMBTB32 protein that was highly expressed in leaf, root, and shoot. The up-regulation of the OsMBTB32 transcript in 2-week-old seedlings under salt stress suggests the significant role of the OsMBTB32 gene in salinity. The OsMBTB32 transgenic seedlings (OE and RNAi) exhibited significant differences in various phenotypes, including plumule, radical, primary root, and shoot length, compared to WT seedlings. We further found that OsCUL1 proteins, particularly OsCUL1-1 and OsCUL1-3, interact with OsMBTB32 and may suppress the function of OsMBTB32 during salt stress. Moreover, OsWRKY42, a homolog of ZmWRKY114 which negatively regulates salt stress in rice, directly binds to the W-box of OsCUL1-1 and OsCUL1-3 promoters to promote the interaction of OsCUL1-1 and OsCUL1-3 with OsMBTB32 protein in rice. The overexpression of OsMBTB32 and OsCUL1-3 further confirmed the function of OsMBTB32 and OsCUL1s in salt tolerance in Arabidopsis. Overall, the findings of the present study provide promising knowledge regarding the MATH-BTB domain-containing proteins and their role in enhancing the growth and development of rice under salt stress.MATH-BTB proteins are involved in a variety of cellular processes that regulate cell homeostasis and developmental processes. Previous studies reported the involvement of BTB proteins in the development of various organs in plants; however, the function of BTB proteins in salt stress is less studied. Here, we found a novel MATH-BTB domain-containing OsMBTB32 protein that was highly expressed in leaf, root, and shoot. The up-regulation of the OsMBTB32 transcript in 2-week-old seedlings under salt stress suggests the significant role of the OsMBTB32 gene in salinity. The OsMBTB32 transgenic seedlings (OE and RNAi) exhibited significant differences in various phenotypes, including plumule, radical, primary root, and shoot length, compared to WT seedlings. We further found that OsCUL1 proteins, particularly OsCUL1-1 and OsCUL1-3, interact with OsMBTB32 and may suppress the function of OsMBTB32 during salt stress. Moreover, OsWRKY42, a homolog of ZmWRKY114 which negatively regulates salt stress in rice, directly binds to the W-box of OsCUL1-1 and OsCUL1-3 promoters to promote the interaction of OsCUL1-1 and OsCUL1-3 with OsMBTB32 protein in rice. The overexpression of OsMBTB32 and OsCUL1-3 further confirmed the function of OsMBTB32 and OsCUL1s in salt tolerance in Arabidopsis. Overall, the findings of the present study provide promising knowledge regarding the MATH-BTB domain-containing proteins and their role in enhancing the growth and development of rice under salt stress.
Collapse
Affiliation(s)
- Uzair Ullah
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenli Mao
- Shaanxi Changqing National Nature Reserve, Hanzhong, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, Taif, Saudi Arabia
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Nazish Gul
- Department of Genetics, Hazara University, Mansehra, KPK, Pakistan
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
10
|
Prakash S, Rai R, Zamzam M, Ahmad O, Peesapati R, Vijayraghavan U. OsbZIP47 Is an Integrator for Meristem Regulators During Rice Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:865928. [PMID: 35498659 PMCID: PMC9044032 DOI: 10.3389/fpls.2022.865928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Stem cell homeostasis by the WUSCHEL-CLAVATA (WUS-CLV) feedback loop is generally conserved across species; however, its links with other meristem regulators can be species-specific, rice being an example. We characterized the role of rice OsbZIP47 in vegetative and reproductive development. The knockdown (KD) transgenics showed meristem size abnormality and defects in developmental progression. The size of the shoot apical meristem (SAM) in 25-day OsbZIP47KD plants was increased as compared to the wild-type (WT). Inflorescence of KD plants showed reduced rachis length, number of primary branches, and spikelets. Florets had defects in the second and third whorl organs and increased organ number. OsbZIP47KD SAM and panicles had abnormal expression for CLAVATA peptide-like signaling genes, such as FON2-LIKE CLE PROTEIN1 (FCP1), FLORAL ORGAN NUMBER 2 (FON2), and hormone pathway genes, such as cytokinin (CK) ISOPENTEYLTRANSFERASE1 (OsIPT1), ISOPENTEYLTRANSFERASE 8 (OsIPT8), auxin biosynthesis OsYUCCA6, OsYUCCA7 and gibberellic acid (GA) biosynthesis genes, such as GRAIN NUMBER PER PANICLE1 (GNP1/OsGA20OX1) and SHORTENED BASAL INTERNODE (SBI/OsGA2ox4). The effects on ABBERANT PANICLE ORGANIZATION1 (APO1), OsMADS16, and DROOPING LEAF (DL) relate to the second and third whorl floret phenotypes in OsbZIP47KD. Protein interaction assays showed OsbZIP47 partnerships with RICE HOMEOBOX1 (OSH1), RICE FLORICULA/LEAFY (RFL), and OsMADS1 transcription factors. The meta-analysis of KD panicle transcriptomes in OsbZIP47KD, OsMADS1KD, and RFLKD transgenics, combined with global OSH1 binding sites divulge potential targets coregulated by OsbZIP47, OsMADS1, OSH1, and RFL. Further, we demonstrate that OsbZIP47 redox status affects its DNA binding affinity to a cis element in FCP1, a target locus. Taken together, we provide insights on OsbZIP47 roles in SAM development, inflorescence branching, and floret development.
Collapse
|
11
|
Su Q, Zhang F, Xiao Y, Zhang P, Xing H, Chen F. An efficient screening system to identify protein-protein or protein-DNA interaction partners of rice transcription factors. J Genet Genomics 2022; 49:979-981. [PMID: 35218975 DOI: 10.1016/j.jgg.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Qingmei Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; OE biotech Co., Ltd. Shanghai, China
| | | | | | | | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Mandal VK, Jangam AP, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis reveals additional genes/processes and associated traits viz. height, tillering, heading date, stomatal density and yield in japonica rice. PLANTA 2022; 255:42. [PMID: 35038039 DOI: 10.1007/s00425-021-03816-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 05/22/2023]
Abstract
Our transcriptomic analysis expanded the repertoire of nitrate-responsive genes/processes in rice and revealed their phenotypic association with root/shoot, stomata, tiller, panicle/flowering and yield, with agronomic implications for nitrogen use efficiency. Nitrogen use efficiency (NUE) is a multigenic quantitative trait, involving many N-responsive genes/processes that are yet to be fully characterized. Microarray analysis of early nitrate response in excised leaves of japonica rice revealed 6688 differentially expressed genes (DEGs), including 2640 hitherto unreported across multiple functional categories. They include transporters, enzymes involved in primary/secondary metabolism, transcription factors (TFs), EF-hand containing calcium binding proteins, hormone metabolism/signaling and methytransferases. Some DEGs belonged to hitherto unreported processes viz. alcohol, lipid and trehalose metabolism, mitochondrial membrane organization, protein targeting and stomatal opening. 1158 DEGs were associated with growth physiology and grain yield or phenotypic traits for NUE. We identified seven DEGs for shoot apical meristem, 66 for leaf/culm/root, 31 for tiller, 70 for heading date/inflorescence/spikelet/panicle, 144 for seed and 78 for yield. RT-qPCR validated nitrate regulation of 31 DEGs belonging to various important functional categories/traits. Physiological validation of N-dose responsive changes in plant development revealed that relative to 1.5 mM, 15 mM nitrate significantly increased stomatal density, stomatal conductance and transpiration rate. Further, root/shoot growth, number of tillers and grain yield declined and panicle emergence/heading date delayed, despite increased photosynthetic rate. We report the binding sites of diverse classes of TFs such as WRKY, MYB, HMG etc., in the 1 kb up-stream regions of 6676 nitrate-responsive DEGs indicating their role in regulating nitrate response/NUE. Together, these findings expand the repertoire of genes and processes involved in genomewide nitrate response in rice and reveal their physiological, phenotypic and agronomic implications for NUE.
Collapse
Affiliation(s)
- Vikas Kumar Mandal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Annie Prasanna Jangam
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Navjyoti Chakraborty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India.
| |
Collapse
|
13
|
Comprehensive Analysis of Five Phyllostachys edulis SQUA-like Genes and Their Potential Functions in Flower Development. Int J Mol Sci 2021; 22:ijms221910868. [PMID: 34639205 PMCID: PMC8509223 DOI: 10.3390/ijms221910868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Bamboo is one of the most important non-timber forest resources worldwide. It has considerable economic value and unique flowering characteristics. The long juvenile phase in bamboo and unpredictable flowering time limit breeding and genetic improvement and seriously affect the productivity and application of bamboo forests. Members of SQUA-like subfamily genes play an essential role in controlling flowering time and floral organ identity. A comprehensive study was conducted to explain the functions of five SQUA-like subfamily genes in Phyllostachys edulis. Expression analysis revealed that all PeSQUAs have higher transcript levels in the reproductive period than in the juvenile phase. However, PeSQUAs showed divergent expression patterns during inflorescence development. The protein–protein interaction (PPI) patterns among PeSQUAs and other MADS-box members were analyzed by yeast two-hybrid (Y2H) experiments. Consistent with amino acid sequence similarity and phylogenetic analysis, the PPI patterns clustered into two groups. PeMADS2, 13, and 41 interacted with multiple PeMADS proteins, whereas PeMADS3 and 28 hardly interacted with other proteins. Based on our results, PeSQUA might possess different functions by forming protein complexes with other MADS-box proteins at different flowering stages. Furthermore, we chose PeMADS2 for functional analysis. Ectopic expression of PeMADS2 in Arabidopsis and rice caused early flowering, and abnormal phenotype was observed in transgenic Arabidopsis lines. RNA-seq analysis indicated that PeMADS2 integrated multiple pathways regulating floral transition to trigger early flowering time in rice. This function might be due to the interaction between PeMADS2 and homologous in rice. Therefore, we concluded that the five SQUA-like genes showed functional conservation and divergence based on sequence differences and were involved in floral transitions by forming protein complexes in P. edulis. The MADS-box protein complex model obtained in the current study will provide crucial insights into the molecular mechanisms of bamboo’s unique flowering characteristics.
Collapse
|
14
|
Adal AM, Binson E, Remedios L, Mahmoud SS. Expression of lavender AGAMOUS-like and SEPALLATA3-like genes promote early flowering and alter leaf morphology in Arabidopsis thaliana. PLANTA 2021; 254:54. [PMID: 34410495 DOI: 10.1007/s00425-021-03703-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The expression of full-length cDNAs encoding lavender AGAMOUS-like (LaAG-like) and SEPALLATA3-like (LaSEP3-like) transcription factors induces early flowering and impacts the leaf morphology at a strong expression level in Arabidopsis. Lavandula angustifolia is widely cultivated as an ornamental plant due to its attractive flower structure, and as a source of valuable essential oils for use in cosmetics, alternative medicines, and culinary products. We recently employed RNA-Seq and transcript profiling to describe a number of transcription factors (TFs) that potentially control flower development in this plant. In this study, we investigated the roles of two TFs, LaAGAMOUS-like (LaAG-like) and LaSEPALLATA3-like (LaSEP3-like), that exhibited substantial homology to Arabidopsis thaliana floral development genes, AGAMOUS and SEPALLATA3, respectively, in flowering initiation in Arabidopsis. We stably and constitutively expressed LaAG-like and LaSEP3-like cDNAs in separate Arabidopsis plants. All transgenic plants flowered earlier than the wild-type controls. However, plants that modestly overexpressed the gene were phenotypically normal, while those that strongly expressed the transgene developed curly leaves. We also assessed the expression of five endogenous flowering time regulating genes, from which high expression of Flowering Locus T (AtFT) mRNA in both LaAG-like (type-I and -II) and LaSEP3-like (type-I), and Leafy (AtLFY) mRNAs in LaSEP3-like (type-I) transgenic plants were detected, compared to wild-type controls. Our results suggest that with controlled expression, lavender AG-like and SEP3-like genes are potentially useful for the regulation of flowering time in commercial lavender species, and could be used for plant improvement studies through molecular genetics and targeted breeding programs.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Elinor Binson
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Lisa Remedios
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
15
|
You X, Zhu S, Zhang W, Zhang J, Wang C, Jing R, Chen W, Wu H, Cai Y, Feng Z, Hu J, Yan H, Kong F, Zhang H, Zheng M, Ren Y, Lin Q, Cheng Z, Zhang X, Lei C, Jiang L, Wang H, Wan J. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. THE NEW PHYTOLOGIST 2019; 224:712-724. [PMID: 31264225 DOI: 10.1111/nph.16037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Spikelet is the primary reproductive structure and a critical determinant of grain yield in rice. The molecular mechanisms regulating rice spikelet development still remain largely unclear. Here, we report that mutations in OsPEX5, which encodes a peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme involved in jasmonic acid (JA) biosynthesis and is required for its import into peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an abnormal spikelet phenotype. Application of exogenous JA can partially rescue the abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to activate their expression, and subsequently regulate spikelet development. Our results suggest that OsPEX5 plays a critical role in regulating spikelet development through mediating peroxisomal import of OsOPR7, therefore providing new insights into regulation of JA biosynthesis in plants and expanding our understanding of the biological role of JA in regulating rice reproduction.
Collapse
Affiliation(s)
- Xiaoman You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Wenwei Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Hongming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Hu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| |
Collapse
|
16
|
Aouadi M, Guenni K, Abdallah D, Louati M, Chatti K, Baraket G, Salhi Hannachi A. Conserved DNA-derived polymorphism, new markers for genetic diversity analysis of Tunisian Pistacia vera L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1211-1223. [PMID: 31564783 PMCID: PMC6745585 DOI: 10.1007/s12298-019-00690-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/20/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Pistachio trees (Pistacia vera L.) have been cultivated in Tunisia for decades and the plantation was extended mostly in the center of the country contributing to the economic growth of marginalized areas. Herein we used conserved DNA derived polymorphism (CDDP) technique, which target specifically conserved sequences of plant functional genes, to assess the genetic diversity and construct genetic relationships among 65 Tunisian pistachio trees. A set of nine primers were used and 157 CDDP markers were revealed with an average of 17.44 showing a high degree of polymorphism (99.37%). The average of polymorphism information content of CDDP markers was of 0.86, which indicates the efficiency of CDDP primers in the estimation of genetic diversity between pistachios. UPGMA dendrogram and the principal component analysis showed four clusters of analyzed pistachios trees. Our results showed that the genetic structure depends on: (1) the gene exchanges between groups, (2) the geographical origin and (3) the sex of the tree. The same result was revealed by the Bayesian analysis implemented in STRUCTURE at K = 4, in which the pistachio genotypes of El Guettar, Kasserine and Sfax were assigned with more than 80% of probability. Our results prove polymorphism and efficiency of CDDP markers in the characterization and genetic diversity analysis of P. vera L. genotypes to define conservation strategy.
Collapse
Affiliation(s)
- Meriem Aouadi
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie (LR99ES12), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Karim Guenni
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie (LR99ES12), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Donia Abdallah
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie (LR99ES12), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Marwa Louati
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie (LR99ES12), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Khaled Chatti
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, 5000 Monastir, Tunisia
| | - Ghada Baraket
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie (LR99ES12), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| | - Amel Salhi Hannachi
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie (LR99ES12), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 Tunis, Tunisia
| |
Collapse
|
17
|
Zhang S, Lu S, Yi S, Han H, Zhou Q, Cai F, Bao M, Liu G. Identification and characterization of FRUITFULL-like genes from Platanus acerifolia, a basal eudicot tree. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:206-218. [PMID: 30823999 DOI: 10.1016/j.plantsci.2018.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 11/26/2018] [Indexed: 05/26/2023]
Abstract
The function of euAP1 and euFUL in AP1/FUL lineage have been well characterized in core eudicots, and they play common and distinct roles in plant development. However, the evolution and function of FUL-like genes is poorly understood in basal eudicots. In this study, we identified three FUL-like genes PlacFL1/2/3 from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that PlacFL1/2/3 are AP1/FUL orthologs and encoded proteins containing FUL motif and paleoAP1 motif. Quantitative real-time PCR (qRT-PCR) analysis showed that PlacFL1/2/3 were expressed in both vegetative and reproductive tissues, but with distinct spatiotemporal patterns. In contrast to PlacFL1 and PlacFL3, PlacFL2 exhibited higher expression levels and broader expression regions, and that the expression of PlacFL2 gene showed a decreasing and increasing tendency in subpetiolar buds during dormancy induction and breaking, respectively. Overexpression of PlacFLs in Arabidopsis and PlacFL3 in tobacco resulted in early flowering, as well as early termination of inflorescence meristems for transgenic Arabidopsis plants. The expression changes of flowering time and flower meristem identity genes in transgenic Arabidopsis lines with different PlacFLs suggested that PlacFL2 and PlacFL3 may regulate different downstream genes to perform divergent functions. Yeast two-hybrid analysis indicated that PlacFLs interacted strongly with PlacSEP proteins, and PlacFL3 instead of PlacFL1 and PlacFL2 could also form a homodimer and interact with D-class proteins. Our results suggest that PlacFLs may play conserved functions in regulating flowering and flower development, and PlacFL2 might also be involved in dormancy regulation. The research helps us to understand the functional evolution of FUL-like genes in basal eudicots, especially in perennial woody species.
Collapse
Affiliation(s)
- Sisi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Wuhan Institute of Landscape Architecture, Peace Avenue No. 1240, Wuhan, 430081, China
| | - Shunjiao Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Shuangshuang Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Hongji Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Guofeng Liu
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China.
| |
Collapse
|
18
|
Gao H, Wang Z, Li S, Hou M, Zhou Y, Zhao Y, Li G, Zhao H, Ma H. Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigen StSP6A. BMC Genomics 2018; 19:726. [PMID: 30285611 PMCID: PMC6171223 DOI: 10.1186/s12864-018-5113-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background MADS-box genes encode transcription factors that are known to be involved in several aspects of plant growth and development, especially in floral organ specification. To date, the comprehensive analysis of potato MADS-box gene family is still lacking after the completion of potato genome sequencing. A genome-wide characterization, classification, and expression analysis of MADS-box transcription factor gene family was performed in this study. Results A total of 153 MADS-box genes were identified and categorized into MIKC subfamily (MIKCC and MIKC*) and M-type subfamily (Mα, Mβ, and Mγ) based on their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. The potato M-type subfamily had 114 members, which is almost three times of the MIKC members (39), indicating that M-type MADS-box genes have a higher duplication rate and/or a lower loss rate during potato genome evolution. Potato MADS-box genes were present on all 12 potato chromosomes with substantial clustering that mainly contributed by the M-type members. Chromosomal localization of potato MADS-box genes revealed that MADS-box genes, mostly MIKC, were located on the duplicated segments of the potato genome whereas tandem duplications mainly contributed to the M-type gene expansion. The potato MIKC subfamily could be further classified into 11 subgroups and the TT16-like, AGL17-like, and FLC-like subgroups found in Arabidopsis were absent in potato. Moreover, the expressions of potato MADS-box genes in various tissues were analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the MIKCC genes were mainly expressed in flower organs and several of them were highly expressed in stolon and tubers. StMADS1 and StMADS13 were up-regulated in the StSP6A-overexpression plants and down-regulated in the StSP6A-RNAi plant, and their expression in leaves and/or young tubers were associated with high level expression of StSP6A. Conclusion Our study identifies the family members of potato MADS-box genes and investigate the evolution history and functional divergence of MADS-box gene family. Moreover, we analyze the MIKCC expression patterns and screen for genes involved in tuberization. Finally, the StMADS1 and StMADS13 are most likely to be downstream target of StSP6A and involved in tuber development. Electronic supplementary material The online version of this article (10.1186/s12864-018-5113-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huhu Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziming Wang
- School of Stomatology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Silu Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
20
|
Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Abdul Rehman RM, Li J, Zhang H, Li Z. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1667-1678. [PMID: 29479793 PMCID: PMC6097128 DOI: 10.1111/pbi.12903] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/31/2017] [Accepted: 02/03/2018] [Indexed: 05/18/2023]
Abstract
Grain size, one of the important components determining grain yield in rice, is controlled by the multiple quantitative trait loci (QTLs). Intensive artificial selection for grain size during domestication is evidenced in modern cultivars compared to their wild relatives. Here, we report the molecular cloning and characterization of OsLG3b, a QTL for grain length in tropical japonica rice that encodes MADS-box transcription factor 1 (OsMADS1). Six SNPs in the OsLG3b region led to alternative splicing, which were associated with grain length in an association analysis of candidate region. Quantitative PCR analysis indicated that OsLG3b expression was higher during the panicle and seed development stages. Analysis of haplotypes and introgression regions revealed that the long-grain allele of OsLG3b might have arisen after domestication of tropical japonica and spread to subspecies indica or temperate japonica by natural crossing and artificial selection. OsLG3b is therefore a target of human selection for adaptation to tropical regions during domestication and/or improvement of rice. Phylogenetic analysis and pedigree records showed that OsLG3b had been employed by breeders, but the gene still has much breeding potential for increasing grain length in indica. These findings will not only aid efforts to elucidate the molecular basis of grain development and domestication, but also facilitate the genetic improvement of rice yield.
Collapse
Affiliation(s)
- Jianping Yu
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinli Miao
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhanying Zhang
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Haiyan Xiong
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiaoyang Zhu
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yinghua Pan
- China/Guangxi Key Laboratory of Rice Genetics and BreedingRice Research InstituteGuangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Yuntao Liang
- China/Guangxi Key Laboratory of Rice Genetics and BreedingRice Research InstituteGuangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Rashid Muhammad Abdul Rehman
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zichao Li
- Key Laboratory of Crop Heterosis and UtilizationMinistry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
21
|
Hori K, Matsubara K, Yano M. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2241-2252. [PMID: 27695876 DOI: 10.1007/s00122-016-2773-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/12/2016] [Indexed: 05/20/2023]
Abstract
Integration of previous Mendelian genetic analyses and recent molecular genomics approaches, such as linkage mapping and QTL cloning, dramatically strengthened our current understanding of genetic control of rice flowering time. Flowering time is one of the most important agronomic traits for seed production in rice (Oryza sativa L.). It is controlled mainly by genes associated with photoperiod sensitivity, particularly in short-day plants such as rice. Since the early twentieth century, rice breeders and researchers have been interested in elucidating the genetic basis of flowering time because its modification is important for regional adaptation and yield optimization. Although flowering time is a complex trait controlled by many quantitative trait loci (QTLs), classical genetic studies have shown that many associated genes are inherited in accordance with Mendelian laws. Decoding the rice genome sequence opened a new era in understanding the genetic control of flowering time on the basis of genome-wide mapping and gene cloning. Heading date 1 (Hd1) was the first flowering time QTL to be isolated using natural variation in rice. Recent accumulation of information on rice genome has facilitated the cloning of other QTLs, including those with minor effects on flowering time. This information has allowed us to rediscover some of the flowering genes that were identified by classical Mendelian genetics. The genes characterized so far, including Hd1, have been assigned to specific photoperiod pathways. In this review, we provide an overview of the studies that led to an in-depth understanding of the genetic control of flowering time in rice, and of the current state of improving and fine-tuning this trait for rice breeding.
Collapse
|
22
|
Li Q, Wang Y, Wang F, Guo Y, Duan X, Sun J, An H. Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon. PHYSIOLOGIA PLANTARUM 2016; 157:507-518. [PMID: 26856680 DOI: 10.1111/ppl.12427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two-hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub- or neo-functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Ye Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Fuxiang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Yuyu Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Xueqing Duan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Jinhao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Hailong An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| |
Collapse
|
23
|
Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, Zhao X, Zhang D, Yuan Z. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. MOLECULAR PLANT 2015; 8:1366-84. [PMID: 25917758 DOI: 10.1016/j.molp.2015.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/05/2015] [Accepted: 04/16/2015] [Indexed: 05/23/2023]
Abstract
During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators.
Collapse
Affiliation(s)
- Yun Hu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Changsong Yin
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xuelian Yang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Baozhe Ping
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Anxue Li
- Shanghai Ocean University, Shanghai 201306, China
| | - Ru Jia
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Zhijing Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Zheng Yuan
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China.
| |
Collapse
|
24
|
Nayar S, Kapoor M, Kapoor S. Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5339-50. [PMID: 25096923 PMCID: PMC4157715 DOI: 10.1093/jxb/eru296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OsMADS29 is a seed-specific MADS-box transcription factor that affects embryo development and grain filling by maintaining hormone homeostasis and degradation of cells in the nucellus and nucellar projection. Although it has a bipartite nuclear localization signal (NLS) sequence, the transiently expressed OsMADS29 monomer does not localize specifically in the nucleus. Dimerization of the monomers alters the intracellular localization fate of the resulting OsMADS29 homodimer, which then translocates into the nucleus. By generating domain-specific deletions/mutations, we show that two conserved amino acids (lysine(23) and arginine(24)) in the NLS are important for nuclear localization of the OsMADS29 homodimer. Furthermore, the analyses involving interaction of OsMADS29 with 30 seed-expressed rice MADS proteins revealed 19 more MADS-box proteins, including five E-class proteins, which interacted with OsMADS29. Eleven of these complexes were observed to be localized in the nucleus. Deletion analysis revealed that the KC region (K-box and C-terminal domain) plays a pivotal role in homodimerization. These data suggest that the biological function of OsMADS29 may not only be regulated at the level of transcription and translation as reported earlier, but also at the post-translational level by way of the interaction between OsMADS29 monomers, and between OsMADS29 and other MADS-box proteins.
Collapse
Affiliation(s)
- Saraswati Nayar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
25
|
Wang JD, Lo SF, Li YS, Chen PJ, Lin SY, Ho TY, Lin JH, Chen LJ. Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice. BOTANICAL STUDIES 2013; 54:12. [PMID: 28510861 PMCID: PMC5432754 DOI: 10.1186/1999-3110-54-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/20/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND The rice gene, OsMADS45, which belongs to the MADS-box E class gene, participates in the regulation of floral development. Previous studies have revealed that ectopic expression of OsMADS45 induces early flowering and influences reduced plant height under short-day (SD) conditions. However, the regulation mechanism of OsMADS45 overexpression remains unknown. We introduce an OsMADS45 overexpression construct Ubi:OsMADS45 into TNG67 plants (an Hd1 (Heading date 1) and Ehd1 (Early heading date 1) defective rice cultivar grown in Taiwan), and we analyzed the expression patterns of various floral regulators to understand the regulation pathways affected by OsMADS45 expression. RESULTS The transgenic rice exhibit a heading date approximately 40 days earlier than that observed in TNG67 plants, and transgenic rice display small plant size and low grain yield. OsMADS45 overexpression did not alter the oscillating rhythm of the examined floral regulatory genes but advanced (by approximately 20 days) the up-regulate of two florigens, Hd3a (Heading Date 3a) and RFT1 (RICE FLOWERING LOCUS T1) and suppressed the expression of Hd1 at the juvenile stage. The expression levels of OsMADS14 and OsMADS18, which are two well-known reproductive phase transition markers, were also increased at early developmental stages and are believed to be the major regulators responsible for early flowering in OsMADS45-overexpressing transgenic rice. OsMADS45 overexpression did not influence other floral regulator genes upstream of Hd1 and Ehd1, such as OsGI (OsGIGANTEA), Ehd2/Osld1/RID1 and OsMADS50. CONCLUSION These results indicate that in transgenic rice, OsMADS45 overexpressing ectopically activates the upstream genes Hd3a and RFT1 at early development stage and up-regulates the expression of OsMADS14 and OsMADS18, which induces early flowering.
Collapse
Affiliation(s)
- Jiun-Da Wang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Suan Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Po-Ju Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Yun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Plant and Microbiology, Academia Sinica, Taipei 115, Taiwan
| | - Teh-Yuan Ho
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jenq-Horng Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
26
|
Yockteng R, Almeida AMR, Morioka K, Alvarez-Buylla ER, Specht CD. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. Mol Biol Evol 2013; 30:2401-22. [PMID: 23938867 DOI: 10.1093/molbev/mst137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The diversity of floral forms in the plant order Zingiberales has evolved through alterations in floral organ morphology. One striking alteration is the shift from fertile, filamentous stamens to sterile, laminar (petaloid) organs in the stamen whorls, attributed to specific pollination syndromes. Here, we examine the role of the SEPALLATA (SEP) genes, known to be important in regulatory networks underlying floral development and organ identity, in the evolution of development of the diverse floral organs phenotypes in the Zingiberales. Phylogenetic analyses show that the SEP-like genes have undergone several duplication events giving rise to multiple copies. Selection tests on the SEP-like genes indicate that the two copies of SEP3 have mostly evolved under balancing selection, probably due to strong functional restrictions as a result of their critical role in floral organ specification. In contrast, the two LOFSEP copies have undergone differential positive selection, indicating neofunctionalization. Reverse transcriptase-polymerase chain reaction, gene expression from RNA-seq data, and in situ hybridization analyses show that the recovered genes have differential expression patterns across the various whorls and organ types found in the Zingiberales. Our data also suggest that AGL6, sister to the SEP-like genes, may play an important role in stamen morphology in the Zingiberales. Thus, the SEP-like genes are likely to be involved in some of the unique morphogenetic patterns of floral organ development found among this diverse order of tropical monocots. This work contributes to a growing body of knowledge focused on understanding the role of gene duplications and the evolution of entire gene networks in the evolution of flower development.
Collapse
Affiliation(s)
- Roxana Yockteng
- Department of Plant and Microbial Biology, Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley
| | | | | | | | | |
Collapse
|
27
|
Murai K. Homeotic Genes and the ABCDE Model for Floral Organ Formation in Wheat. PLANTS 2013; 2:379-95. [PMID: 27137382 PMCID: PMC4844379 DOI: 10.3390/plants2030379] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/02/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Floral organ formation has been the subject of intensive study for over 20 years, particularly in the model dicot species Arabidopsis thaliana. These studies have led to the establishment of a general model for the development of floral organs in higher plants, the so-called ABCDE model, in which floral whorl-specific combinations of class A, B, C, D, or E genes specify floral organ identity. In Arabidopsis, class A, B, C, D, E genes encode MADS-box transcription factors except for the class A gene APETALA2. Mutation of these genes induces floral organ homeosis. In this review, I focus on the roles of these homeotic genes in bread wheat (Triticum aestivum), particularly with respect to the ABCDE model. Pistillody, the homeotic transformation of stamens into pistil-like structures, occurs in cytoplasmic substitution (alloplasmic) wheat lines that have the cytoplasm of the related wild species Aegilops crassa. This phenomenon is a valuable tool for analysis of the wheat ABCDE model. Using an alloplasmic line, the wheat ortholog of DROOPING LEAF (TaDL), a member of the YABBY gene family, has been shown to regulate pistil specification. Here, I describe the current understanding of the ABCDE model for floral organ formation in wheat.
Collapse
Affiliation(s)
- Koji Murai
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.
| |
Collapse
|
28
|
The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 2013; 4:1566. [PMID: 23463009 PMCID: PMC3615354 DOI: 10.1038/ncomms2542] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/24/2013] [Indexed: 01/11/2023] Open
Abstract
Rice tillering is a multigenic trait that influences grain yield, but its regulation molecular module is poorly understood. Here we report that OsMADS57 interacts with OsTB1 (TEOSINTE BRANCHED1) and targets D14 (Dwarf14) to control the outgrowth of axillary buds in rice. An activation-tagged mutant osmads57-1 and OsMADS57-overexpression lines showed increased tillers, whereas OsMADS57 antisense lines had fewer tillers. OsMIR444a-overexpressing lines exhibited suppressed OsMADS57 expression and tillering. Furthermore, osmads57-1 was insensitive to strigolactone treatment to inhibit axillary bud outgrowth, and OsMADS57’s function in tillering was dependent on D14. D14 expression was downregulated in osmads57-1, but upregulated in antisense and OsMIR444a-overexpressing lines. OsMADS57 bound to the CArG motif [C(A/T)TTAAAAAG] in the promoter and directly suppressed D14 expression. Interaction of OsMADS57 with OsTB1 reduced OsMADS57 inhibition of D14 transcription. Therefore, OsMIR444a-regulated OsMADS57, together with OsTB1, target D14 to control tillering. This regulation mechanism could have important application in rice molecular breeding programs focused on high grain yield. Tillering is a multigenic complex trait that influences grain yield in cereal; however, the molecular network for its regulation remains unclear. Guo et al. show that OsMADS57, a transcription factor controlled by miR444a, interacts with OsTEOSINTE BRANCHED1 and targets DWARF14 to control tillering in rice.
Collapse
|
29
|
Abstract
Genes of the AGAMOUS subfamily have been shown to play crucial roles in reproductive organ identity determination, fruit, and seed development. They have been deeply studied in eudicot species and especially in Arabidopsis. Recently, the AGAMOUS subfamily of rice has been studied for their role in flower development and an enormous amount of data has been generated. In this review, we provide an overview of these data and discuss the conservation of gene functions between rice and Arabidopsis.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
30
|
Diversification of three APETALA1/FRUITFULL-like genes in wheat. Mol Genet Genomics 2012; 287:283-94. [PMID: 22314801 DOI: 10.1007/s00438-012-0679-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/30/2012] [Indexed: 12/22/2022]
Abstract
The genomes of grass family species have three paralogs of APETALA1/FRUITFULL (AP1/FUL)-like genes (FUL1, FUL2 and FUL3) that are derived from the FUL lineage. In this study, we focus on the different roles of the wheat AP1/FUL-like genes, WFUL1 (identical to VRN1), WFUL2 and WFUL3, during the transition from vegetative to reproductive growth. Sequence analysis indicated that there was a high level of variability in the amino acid sequence of the C-domain among three WFUL genes. Expression analyses using the spring wheat cultivar Chinese Spring indicated that WFUL1/VRN1 was expressed in leaves as well as spike primordia of non-vernalized plants at the vegetative stage just before phase transition, while WFUL2 and WFUL3 were not expressed in leaves. This result indicates that WFUL1/VRN1 performs a distinct role in leaves before phase transition. In young spikes, WFUL1/VRN1 and WFUL3 were expressed in all developing Xoral organs, whereas WFUL2 expression was restricted in the Xoral organs to the lemma and palea. Furthermore, yeast two-hybrid and three-hybrid analyses revealed that WFUL2, but not WFUL1/VRN1 or WFUL3, interacted with class B and class E proteins. These results suggest that WFUL2 of wheat has class A functions in specifying the identities of Xoral meristems and outer Xoral organs (lemma and palea) through collaboration with class B and class E genes.
Collapse
|
31
|
Christensen AR, Malcomber ST. Duplication and diversification of the LEAFY HULL STERILE1 and Oryza sativa MADS5 SEPALLATA lineages in graminoid Poales. EvoDevo 2012; 3:4. [PMID: 22340849 PMCID: PMC3305426 DOI: 10.1186/2041-9139-3-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Gene duplication and the subsequent divergence in function of the resulting paralogs via subfunctionalization and/or neofunctionalization is hypothesized to have played a major role in the evolution of plant form. The LEAFY HULL STERILE1 (LHS1) SEPALLATA (SEP) genes have been linked with the origin and diversification of the grass spikelet, but it is uncertain 1) when the duplication event that produced the LHS1 clade and its paralogous lineage Oryza sativa MADS5 (OSM5) occurred, and 2) how changes in gene structure and/or expression might have contributed to subfunctionalization and/or neofunctionalization in the two lineages. Methods Phylogenetic relationships among 84 SEP genes were estimated using Bayesian methods. RNA expression patterns were inferred using in situ hybridization. The patterns of protein sequence and RNA expression evolution were reconstructed using maximum parsimony (MP) and maximum likelihood (ML) methods, respectively. Results Phylogenetic analyses mapped the LHS1/OSM5 duplication event to the base of the grass family. MP character reconstructions estimated a change from cytosine to thymine in the first codon position of the first amino acid after the Zea mays MADS3 (ZMM3) domain converted a glutamine to a stop codon in the OSM5 ancestor following the LHS1/OSM5 duplication event. RNA expression analyses of OSM5 co-orthologs in Avena sativa, Chasmanthium latifolium, Hordeum vulgare, Pennisetum glaucum, and Sorghum bicolor followed by ML reconstructions of these data and previously published analyses estimated a complex pattern of gain and loss of LHS1 and OSM5 expression in different floral organs and different flowers within the spikelet or inflorescence. Conclusions Previous authors have reported that rice OSM5 and LHS1 proteins have different interaction partners indicating that the truncation of OSM5 following the LHS1/OSM5 duplication event has resulted in both partitioned and potentially novel gene functions. The complex pattern of OSM5 and LHS1 expression evolution is not consistent with a simple subfunctionalization model following the gene duplication event, but there is evidence of recent partitioning of OSM5 and LHS1 expression within different floral organs of A. sativa, C. latifolium, P. glaucum and S. bicolor, and between the upper and lower florets of the two-flowered maize spikelet.
Collapse
Affiliation(s)
- Ashley R Christensen
- Department of Biological Sciences, California State University - Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA.
| | | |
Collapse
|
32
|
Molecular aspects of flower development in grasses. ACTA ACUST UNITED AC 2011; 24:247-82. [PMID: 21877128 DOI: 10.1007/s00497-011-0175-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The grass family (Poaceae) of the monocotyledons includes about 10,000 species and represents one of the most important taxa among angiosperms. Their flower morphology is remarkably different from those of other monocotyledons and higher eudicots. The peculiar floral structure of grasses is the floret, which contains carpels and stamens, like eudicots, but lacks petals and sepals. The reproductive organs are surrounded by two lodicules, which correspond to eudicot petals, and by a palea and lemma, whose correspondence to eudicot organs remains controversial. The molecular and genetic analysis of floral morphogenesis and organ specification, primarily performed in eudicot model species, led to the ABCDE model of flower development. Several genes required for floral development in grasses correspond to class A, B, C, D, and E genes of eudicots, but others appear to have unique and diversified functions. In this paper, we outline the present knowledge on the evolution and diversification of grass genes encoding MIKC-type MADS-box transcription factors, based on information derived from studies in rice, maize, and wheat. Moreover, we review recent advances in studying the genes involved in the control of flower development and the extent of structural and functional conservation of these genes between grasses and eudicots.
Collapse
|
33
|
van Dijk ADJ, van Ham RCHJ. Conserved and variable correlated mutations in the plant MADS protein network. BMC Genomics 2010; 11:607. [PMID: 20979667 PMCID: PMC3017862 DOI: 10.1186/1471-2164-11-607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant MADS domain proteins are involved in a variety of developmental processes for which their ability to form various interactions is a key requisite. However, not much is known about the structure of these proteins or their complexes, whereas such knowledge would be valuable for a better understanding of their function. Here, we analyze those proteins and the complexes they form using a correlated mutation approach in combination with available structural, bioinformatics and experimental data. RESULTS Correlated mutations are affected by several types of noise, which is difficult to disentangle from the real signal. In our analysis of the MADS domain proteins, we apply for the first time a correlated mutation analysis to a family of interacting proteins. This provides a unique way to investigate the amount of signal that is present in correlated mutations because it allows direct comparison of mutations in various family members and assessing their conservation. We show that correlated mutations in general are conserved within the various family members, and if not, the variability at the respective positions is less in the proteins in which the correlated mutation does not occur. Also, intermolecular correlated mutation signals for interacting pairs of proteins display clear overlap with other bioinformatics data, which is not the case for non-interacting protein pairs, an observation which validates the intermolecular correlated mutations. Having validated the correlated mutation results, we apply them to infer the structural organization of the MADS domain proteins. CONCLUSION Our analysis enables understanding of the structural organization of the MADS domain proteins, including support for predicted helices based on correlated mutation patterns, and evidence for a specific interaction site in those proteins.
Collapse
Affiliation(s)
- Aalt DJ van Dijk
- Applied Bioinformatics, PRI, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Roeland CHJ van Ham
- Applied Bioinformatics, PRI, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
34
|
Gaffe J, Lemercier C, Alcaraz JP, Kuntz M. Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain. Gene 2010; 471:19-26. [PMID: 20946942 DOI: 10.1016/j.gene.2010.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/16/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
MADS-box transcription factors play crucial roles in organ and cell differentiation in organisms ranging from yeast to humans. Most of the work on plant MADS-box proteins focused on their roles in floral development whereas less information is available on their function in fruit maturation. We cloned three distinct tomato cDNAs using a RT-PCR approach, encoding LeMADS1, LeMADS5 and LeMADS6 factors and whose mRNAs mostly accumulate in tomato flowers and fruits. Phylogeny analysis indicates that LeMADS1, 5 and 6 belong to the MEF2-like family. When transiently expressed in tobacco leaves or in human cells, LeMADS1, 5 and 6 are targeted to the cell nucleus. As the endogenous target genes of these putative transcription factors are unknown, the transcriptional activity of these proteins was characterized in a heterologous system and we showed that, when fused to a Gal4-DNA-binding domain, they repress the transcription of heterologous reporter genes. Since histone deacetylases control MEF2 transcriptional activity and since a putative histone deacetylase binding site was present in LeMADS1, 5 and 6, we tested the potential interaction between these factors and HDAC5 deacetylase. Surprisingly, in this heterologous system, LeMADS1, 5 and 6 interacted with HDAC5 N-terminal region. Our data suggest that, like mammalian MEF2A, plant MADS-box transcriptional activity might be regulated by enzymes controlling chromatin acetylation.
Collapse
Affiliation(s)
- Joël Gaffe
- Laboratoire Plaste et Différenciation Cellulaire, France.
| | | | | | | |
Collapse
|
35
|
Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. PLANT PHYSIOLOGY 2010; 153:728-40. [PMID: 20395452 PMCID: PMC2879775 DOI: 10.1104/pp.110.156711] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/12/2010] [Indexed: 05/18/2023]
Abstract
Grass plants develop distinct inflorescences and spikelets that determine grain yields. However, the mechanisms underlying the specification of inflorescences and spikelets in grasses remain largely unknown. Here, we report the biological role of one SEPALLATA (SEP)-like gene, OsMADS34, in controlling the development of inflorescences and spikelets in rice (Oryza sativa). OsMADS34 encodes a MADS box protein containing a short carboxyl terminus without transcriptional activation activity in yeast cells. We demonstrate the ubiquitous expression of OsMADS34 in roots, leaves, and primordia of inflorescence and spikelet organs. Compared with the wild type, osmads34 mutants developed altered inflorescence morphology, with an increased number of primary branches and a decreased number of secondary branches. In addition, osmads34 mutants displayed a decreased spikelet number and altered spikelet morphology, with lemma/leaf-like elongated sterile lemmas. Moreover, analysis of the double mutant osmads34 osmads1 suggests that OsMADS34 specifies the identities of floral organs, including the lemma/palea, lodicules, stamens, and carpel, in combination with another rice SEP-like gene, OsMADS1. Collectively, our study suggests that the origin and diversification of OsMADS34 and OsMADS1 contribute to the origin of distinct grass inflorescences and spikelets.
Collapse
|
36
|
Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:767-81. [PMID: 20003164 DOI: 10.1111/j.1365-313x.2009.04101.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mutant analyses in different eudicotyledonous flowering plants demonstrated that SEPALLATA-like MADS-box genes are required for the specification of sepals, petals, stamens and carpels, and for floral determinacy, thus defining class E floral organ identity genes. SEP-like genes encode MADS-domain transcription factors and constitute an angiosperm-specific gene clade whose members show remarkably different degrees of redundancy and sub-functionalization within eudicots. To better understand the evolutionary dynamics of SEP-like genes throughout the angiosperms we have knocked down SEP-like genes of rice (Oryza sativa), a distant relative of eudicots within the flowering plants. Plants affected in both OsMADS7 and OsMADS8 show severe phenotypes including late flowering, homeotic changes of lodicules, stamens and carpels into palea/lemma-like organs, and a loss of floral determinacy. Simultaneous knockdown of the four rice SEP-like genes OsMADS1, OsMADS5, OsMADS7 and OsMADS8, leads to homeotic transformation of all floral organs except the lemma into leaf-like organs. This mimics the phenotype observed with the sep1 sep2 sep3 sep4 quadruple mutant of Arabidopsis. Detailed analyses of the spatial and temporal mRNA expression and protein interaction patterns corresponding to the different rice SEP-like genes show strong similarities, but also gene-specific differences. These findings reveal conservation of SEP-like genes in specifying floral determinacy and organ identities since the separation of eudicots and monocots about 150 million years ago. However, they indicate also monocot-specific neo- and sub-functionalization events and hence underscore the evolutionary dynamics of SEP-like genes. Moreover, our findings corroborate the view that the lodicules of grasses are homologous to eudicot petals.
Collapse
Affiliation(s)
- Rongfeng Cui
- Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hong L, Qian Q, Zhu K, Tang D, Huang Z, Gao L, Li M, Gu M, Cheng Z. ELE restrains empty glumes from developing into lemmas. J Genet Genomics 2010; 37:101-15. [DOI: 10.1016/s1673-8527(09)60029-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 11/25/2022]
|
38
|
Immink RG, Kaufmann K, Angenent GC. The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 2010; 21:87-93. [DOI: 10.1016/j.semcdb.2009.10.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/23/2009] [Indexed: 02/05/2023]
|
39
|
Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z. DEP and AFO regulate reproductive habit in rice. PLoS Genet 2010; 6:e1000818. [PMID: 20107517 PMCID: PMC2809758 DOI: 10.1371/journal.pgen.1000818] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/17/2009] [Indexed: 12/04/2022] Open
Abstract
Sexual reproduction is essential for the life cycle of most angiosperms. However, pseudovivipary is an important reproductive strategy in some grasses. In this mode of reproduction, asexual propagules are produced in place of sexual reproductive structures. However, the molecular mechanism of pseudovivipary still remains a mystery. In this work, we found three naturally occurring mutants in rice, namely, phoenix (pho), degenerative palea (dep), and abnormal floral organs (afo). Genetic analysis of them indicated that the stable pseudovivipary mutant pho was a double mutant containing both a Mendelian mutation in DEP and a non-Mendelian mutation in AFO. Further map-based cloning and microarray analysis revealed that dep mutant was caused by a genetic alteration in OsMADS15 while afo was caused by an epigenetic mutation in OsMADS1. Thus, OsMADS1 and OsMADS15 are both required to ensure sexual reproduction in rice and mutations of them lead to the switch of reproductive habit from sexual to asexual in rice. For the first time, our results reveal two regulators for sexual and asexual reproduction modes in flowering plants. In addition, our findings also make it possible to manipulate the reproductive strategy of plants, at least in rice. Sexual reproduction is essential for the life cycle of most flowering plants. However, pseudovivipary, in which floral organs are replaced by bulbils or plantlets, provides an asexual means for many grasses to reproduce in extreme environments. Although the molecular mechanism of pseudovivipary is still unknown, the high-frequency occurrence of pseudovivipary in extreme environments indicates that only a few key regulators are responsible for the switch of reproductive habit. Here, by analyzing three naturally occurring mutants in rice, we show that mutations in DEP and AFO lead to the transformation of rice flowers/spikelets into juvenile plantlets and subsequently the switch of reproductive strategy from sexual to asexual, suggesting that DEP and AFO might work cooperatively to regulate reproductive habit in rice. Thus, we reveal a critical mechanism of the switch of reproductive habit in plants. In addition, our results also make it possible to manipulate the reproductive habit of plants, at least in rice.
Collapse
Affiliation(s)
- Kejian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lilan Hong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenying Xu
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jian Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yongbiao Xue
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YX); (ZC)
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YX); (ZC)
| |
Collapse
|
40
|
Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. PLANT & CELL PHYSIOLOGY 2010; 51:47-57. [PMID: 19933267 PMCID: PMC2807174 DOI: 10.1093/pcp/pcp166] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/13/2009] [Indexed: 05/18/2023]
Abstract
In rice panicle development, new meristems are generated sequentially in an organized manner and acquire their identity in a time- and position-dependent manner. In the panicle of the panicle phytomer2-1 (pap2-1) mutant, the pattern of meristem initiation is disorganized and newly formed meristems show reduced competency to become spikelet meristems, resulting in the transformation of early arising spikelets into rachis branches. In addition, rudimentary glumes and sterile lemmas, the outermost organs of the spikelet, elongate into a leafy morphology. We propose that PAP2 is a positive regulator of spikelet meristem identity. Map-based cloning revealed that PAP2 encodes OsMADS34, a member of the SEPALLATA (SEP) subfamily of MADS-box proteins. PAP2/OsMADS34 belongs to the LOFSEP subgroup of MADS-box genes that show grass-specific diversification caused by gene duplication events. All five SEP subfamily genes in rice are expressed exclusively during panicle development, while their spatial and temporal expression patterns vary. PAP2 expression starts the earliest among the five SEP genes, and a low but significant level of PAP2 mRNA was detected in the inflorescence meristem, in branch meristems immediately after the transition, and in glume primordia, consistent with its role in the early development of spikelet formation. Our study provides new evidence supporting the hypothesis that the genes of the LOFSEP subgroup control developmental processes that are unique to grass species.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657 Japan
| | - Masahiko Maekawa
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Akio Miyao
- Plant Functional Genomics Laboratory (PFGL), Molecular Genetics Department, National Institute of Agrobiological Science (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Hirohiko Hirochika
- Plant Functional Genomics Laboratory (PFGL), Molecular Genetics Department, National Institute of Agrobiological Science (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Junko Kyozuka
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657 Japan
- *Corresponding author: E-mail, ; Fax, +81-3-5841-5087
| |
Collapse
|
41
|
Jang S, Torti S, Coupland G. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:614-25. [PMID: 19656342 DOI: 10.1111/j.1365-313x.2009.03986.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Flowering is controlled by a network of pathways that converge to regulate a small number of floral integrator genes. We studied the interactions in Arabidopsis between three of these integrators, flowering locus T (FT), twin sister of FT (TSF) and suppressor of overexpression of constans 1 (SOC1), as well as their repression by the MADS box transcription factor short vegetative phase (SVP). FT is a mobile signal transmitted from the leaf to the meristem to initiate flowering. Using mRNA null alleles, we show that FT and the closely related TSF are not essential for flowering, but that the double mutant is photoperiod-insensitive. Inactivation of both genes also fully suppresses the early-flowering phenotype caused by over-expression of constans (CO), a transcriptional regulator in the photoperiod pathway. In addition, we demonstrate that TSF and FT have similar biochemical functions by showing that they interact in yeast with the same bZIP transcription factors. Expression of FT or TSF from promoters specific for phloem companion cells drives early flowering of the double mutant, so no expression of either gene is required in the meristem. Furthermore, TSF, like FT, is repressed by SVP, but the triple mutant svp-41 ft-10 tsf-1 expresses SOC1 in the meristem sooner and flowers earlier than ft-10 tsf-1. Thus we distinguish the functions of SVP in repressing FT and TSF in the leaf and SOC1 in the meristem. In addition, a time course of in situ hybridizations suggested that repression of SVP and activation of SOC1 proceed simultaneously in the meristem. These observations clarify the relationships between these early regulators of the floral transition, and further emphasize the relatedness of mechanisms acting in the leaf and meristem to control flowering time.
Collapse
Affiliation(s)
- Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | | | | |
Collapse
|
42
|
Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. PLANT, CELL & ENVIRONMENT 2009; 32:1412-27. [PMID: 19558411 DOI: 10.1111/j.1365-3040.2009.02008.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In much of the tropics and subtropics, rice (Oryza sativa L.) is grown under long days (LDs). Therefore, LD must play a major role in inducing flowering signal in rice. However, little is known on LD-dependent flowering signal in the species. We previously reported that OsMADS50, which is highly homologous to Arabidopsis SOC1, functions as a positive regulator for flowering. However, its detailed photoperiodic mechanism was not yet elucidated. Here, we report the functional analysis of OsMADS50 and its closely related gene OsMADS56. Knock-out of OsMADS50 caused a late-flowering phenotype only under LD conditions. Overexpression of OsMADS56 (56OX) also resulted in delayed flowering under LD. In the osmads50 mutants and 56OX transgenic plants, transcripts of Ehd1, Hd3a and RFT1 were reduced, although that of OsLFL1 increased. On the other hand, mRNA levels of OsGI, Hd1, OsId1, OsDof12, Ghd7, Hd6 and SE5 were unchanged. These observations imply that OsMADS50 and OsMADS56 function antagonistically through OsLFL1-Ehd1 in regulating LD-dependent flowering. Yeast two-hybrid and co-immunoprecipitation analyses indicated an interaction between those two proteins as well as their formation of homodimers. These results suggest that OsMADS50 and OsMADS56 may form a complex that regulates downstream target genes.
Collapse
Affiliation(s)
- Choong-Hwan Ryu
- Department of Life Science and Functional Genomic Center, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Shan H, Zahn L, Guindon S, Wall PK, Kong H, Ma H, DePamphilis CW, Leebens-Mack J. Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol Biol Evol 2009; 26:2229-44. [PMID: 19578156 DOI: 10.1093/molbev/msp129] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phylogenomic analyses show that gene and genome duplication events have led to the diversification of transcription factor gene families throughout the evolutionary history of land plants and that gene duplications have played an important role in shaping regulatory networks influencing key phenotypic characters including floral development and flowering time. A molecular evolutionary investigation of the mode and tempo of selection acting on the angiosperm MADS box AP1/SQUA, AP3/PI, AG/AGL11, and SEP gene subfamilies revealed site-specific patterns of shifting evolutionary constraint throughout angiosperm history. Specific positions in the four canonical MADS box gene regions, especially K domains and C-terminal regions of all four of these MADS box gene subfamilies exhibited clade-specific shifts in selective constraint following concerted duplication events. Moreover, the frequency of site-specific shifts in constraint was correlated with gene duplications and early angiosperm diversification. We hypothesize that coevolution among interacting MADS box proteins may be responsible for simultaneous increases in the ratio of nonsynonymous to synonymous substitutions (d(N)/d(S) = omega) early in angiosperm history and following concerted duplication events.
Collapse
Affiliation(s)
- Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Melzer R, Theissen G. Reconstitution of 'floral quartets' in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res 2009; 37:2723-36. [PMID: 19276203 PMCID: PMC2677882 DOI: 10.1093/nar/gkp129] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Homeotic MADS box genes encoding transcription factors specify the identity of floral organs by interacting in a combinatorial way. The ‘floral quartet model’, published several years ago, pulled together several lines of evidence suggesting that floral homeotic proteins bind as tetramers to two separated DNA sequence elements termed ‘CArG boxes’ by looping the intervening DNA. However, experimental support for ‘floral quartet’ formation remains scarce. Recently, we have shown that the class E floral homeotic protein SEPALLATA3 (SEP3) is sufficient to loop DNA in floral-quartet-like complexes in vitro. Here, we demonstrate that the class B floral homeotic proteins APETALA3 (AP3) and PISTILLATA (PI) do only weakly, at best, form floral-quartet-like structures on their own. However, they can be incorporated into such complexes together with SEP3. The subdomain K3 of SEP3 is of critical importance for the DNA-bound heterotetramers to be formed and is capable to mediate floral quartet formation even in the sequence context of AP3 and PI. Evidence is presented suggesting that complexes composed of SEP3, AP3 and PI form preferentially over other possible complexes. Based on these findings we propose a mechanism of how target gene specificity might be achieved at the level of floral quartet stability.
Collapse
Affiliation(s)
- Rainer Melzer
- Friedrich Schiller University Jena, Department of Genetics, Philosophenweg 12, D-07743 Jena, Germany
| | | |
Collapse
|
46
|
Hill K, Wang H, Perry SE. A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:172-85. [PMID: 17999645 DOI: 10.1111/j.1365-313x.2007.03336.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AGAMOUS-like 15 (AGL15) encodes a MADS-domain transcription factor that is preferentially expressed in the plant embryo. A number of direct downstream targets of AGL15 have been identified, and although some of these target genes are induced in response to AGL15, others are repressed. Additionally, direct target genes have been analyzed that exhibit strong association with AGL15 in vivo, yet in vitro AGL15 binds only weakly. These data suggest that AGL15 may form complexes with other proteins, thus modulating the specificity and function of AGL15 in planta. Here we report that AGL15 interacts with members of the SWI-independent 3/histone deacetylase (SIN3/HDAC) complex, and that AGL15 target genes are also responsive to an AGL15 interacting protein that is also a member of this complex, SIN3-associated polypeptide of 18 kDa (SAP18). AGL15 can repress transcription in vivo, and a region essential to this repressive function contains a motif that is conserved among putative orthologs of AGL15. This motif mediates the association of AGL15 with SAP18, thus providing a possible mechanism for the role of AGL15 in regulating gene expression via recruitment of an HDAC complex.
Collapse
Affiliation(s)
- Kristine Hill
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | | |
Collapse
|
47
|
Abstract
The repression of translation in environmentally stressed eukaryotic cells causes the sequestration of translation initiation factors and the 40S ribosomal subunit into discrete cytoplasmic foci called stress granules (SGs). Most components of the preinitiation complex, such as eIF3, eIF4A, eIF4E, eIF4G, and poly(A)-binding protein, congregate into SGs under stress conditions. However, the molecular basis of translation factor sequestration into SGs has not been clearly elucidated. Here, we report that proline-rich transcript in brain (PRTB) protein interacts with eIF4G and participates in SG formation. PRTB was recruited to SG under sodium arsenite and heat stress conditions. When overexpressed, PRTB inhibited global translation and formed SGs containing TIA-1, eIF4G, and eIF3. Knockdown of PRTB reduced the SG formation induced by sodium arsenite. These results suggest that PRTB not only is a component of SG formed by cellular stresses but also plays an important role in SG formation via an interaction with the scaffold protein eIF4G, which is associated with many translation factors and mRNAs.
Collapse
|
48
|
Preston JC, Kellogg EA. Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:69-81. [PMID: 17666026 DOI: 10.1111/j.1365-313x.2007.03209.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Duplicated APETALA1/FRUITFULL (AP1/FUL) genes show distinct but overlapping patterns of expression within rice (Oryza sativa) and within ryegrass (Lolium temulentum), suggesting discrete functional roles in the transition to flowering, specification of spikelet meristem identity, and specification of floral organ identity. In this study, we analyzed the expression of the AP1/FUL paralogues FUL1 and FUL2 across phylogenetically disparate grasses to test hypotheses of gene function. In combination with other studies, our data support similar roles for both genes in spikelet meristem identity, a general role for FUL1 in floral organ identity, and a more specific role for FUL2 in outer floral whorl identity. In contrast to Arabidopsis AP1/FUL genes, expression of FUL1 and FUL2 is consistent with an early role in the transition to flowering. In general, FUL1 has a wider expression pattern in all spikelet organs than FUL2, but both genes are expressed in all spikelet organs in some cereals. FUL1 and FUL2 appear to have multiple redundant functions in early inflorescence development. We hypothesize that sub-functionalization of FUL2 and interaction of FUL2 with LHS1 could specify lemma and palea identity in the grass floret.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Biology, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | | |
Collapse
|
49
|
Shan H, Zhang N, Liu C, Xu G, Zhang J, Chen Z, Kong H. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol Phylogenet Evol 2007; 44:26-41. [PMID: 17434760 DOI: 10.1016/j.ympev.2007.02.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 02/07/2007] [Accepted: 02/19/2007] [Indexed: 01/30/2023]
Abstract
Members of the AP1/SQUA subfamily of plant MADS-box genes play broad roles in the regulation of reproductive meristems, the specification of sepal and petal identities, and the development of leaves and fruits. It has been shown that AP1/SQUA-like genes are angiosperm-specific, and have experienced several major duplication events. However, the evolutionary history of this subfamily is still uncertain. Here, we report the isolation of 14 new AP1/SQUA-like genes from seven early-diverging eudicots and the identification of 11 previously uncharacterized ESTs and genomic sequences from public databases. Sequence comparisons of these and other published sequences reveal a conserved C-terminal region, the FUL motif, in addition to the known euAP1/paleoAP1 motif, in AP1/SQUA-like proteins. Phylogenetic analyses further suggest that there are three major lineages (euAP1, euFUL, and AGL79) in core eudicots, likely resulting from two close duplication events that predated the divergence of core eudicots. Among the three lineages, euFUL is structurally very similar to FUL-like genes from early-diverging eudicots and basal angiosperms, whereas euAP1 might have originally been generated through a 1-bp deletion in the exon 8 of an ancestral euFUL- or FUL-like gene. Because euFUL- and FUL-like genes usually have broad expression patterns, we speculate that AP1/SQUA-like genes initially had broad functions. Based on these observations, the evolutionary fates of duplicate genes and the contributions of the frameshift mutation and alternative splicing to functional diversity are discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Xiangshan, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Shitsukawa N, Tahira C, Kassai KI, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. THE PLANT CELL 2007; 19:1723-37. [PMID: 17586655 PMCID: PMC1955732 DOI: 10.1105/tpc.107.051813] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.
Collapse
Affiliation(s)
- Naoki Shitsukawa
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|