1
|
Lee S, Park NI, Park Y, Park KC, Kim ES, Son YK, Choi BS, Kim NS, Choi IY. O- and N-Methyltransferases in benzylisoquinoline alkaloid producing plants. Genes Genomics 2024; 46:367-378. [PMID: 38095842 DOI: 10.1007/s13258-023-01477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Secondary metabolites such as benzylisoquinoline alkaloids (BIA) have attracted considerable attention because of their pharmacological properties and potential therapeutic applications. Methyltransferases (MTs) can add methyl groups to alkaloid molecules, altering their physicochemical properties and bioactivity, stability, solubility, and recognition by other cellular components. Five types of O-methyltransferases and two types of N-methyltransferases are involved in BIA biosynthesis. OBJECTIVE Since MTs may be the source for the discovery and development of novel biomedical, agricultural, and industrial compounds, we performed extensive molecular and phylogenetic analyses of O- and N-methyltransferases in BIA-producing plants. METHODS MTs involved in BIA biosynthesis were isolated from transcriptomes of Berberis koreana and Caulophyllum robustum. We also mined the methyltransferases of Coptis japonica, Papaver somniferum, and Nelumbo nucifera from the National Center for Biotechnology Information protein database. Then, we analyzed the functional motifs and phylogenetic analysis. RESULT We mined 42 O-methyltransferases and 8 N-methyltransferases from the five BIA-producing plants. Functional motifs for S-adenosyl-L-methionine-dependent methyltransferases were retained in most methyltransferases, except for the three O-methyltransferases from N. nucifera. Phylogenetic analysis revealed that the methyltransferases were grouped into four clades, I, II, III and IV. The clustering patterns in the phylogenetic analysis suggested a monophyletic origin of methyltransferases and gene duplication within species. The coexistence of different O-methyltransferases in the deep branch subclade might support some cases of substrate promiscuity. CONCLUSIONS Methyltransferases may be a source for the discovery and development of novel biomedical, agricultural, and industrial compounds. Our results contribute to further understanding of their structure and reaction mechanisms, which will require future functional studies.
Collapse
Affiliation(s)
- Seungki Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Kyong-Cheul Park
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Eun Sil Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Youn Kyoung Son
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | | | - Nam-Soo Kim
- NBIT Co., Ltd, Chuncheon, 24341, Republic of Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Aleksandrova M, Rahmatova F, Russell DA, Bonfio C. Ring Opening of Glycerol Cyclic Phosphates Leads to a Diverse Array of Potentially Prebiotic Phospholipids. J Am Chem Soc 2023; 145:25614-25620. [PMID: 37971368 PMCID: PMC10690765 DOI: 10.1021/jacs.3c07319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Phospholipids are the primary constituents of cell membranes across all domains of life, but how and when phospholipids appeared on early Earth remains unknown. Pressingly, most prebiotic syntheses of complex phospholipids rely upon substrates not yet shown to have been available on early Earth. Here, we describe potentially prebiotic syntheses of a diverse array of complex phospholipids and their building blocks. First, we show that choline could have been produced on early Earth by stepwise N-methylation of ethanolamine. Second, taking a systems chemistry approach, we demonstrate that the intrinsically activated glycerol-2,3-cyclic phosphate undergoes ring opening with combinations of prebiotic amino alcohols to yield complex phospholipid headgroups. Importantly, this pathway selects for the formation of 2-amino alcohol-bearing phospholipid headgroups and enables the accumulation of their natural regioisomers. Finally, we show that the dry-state ring opening of cyclic lysophosphatidic acids leads to a range of self-assembling lysophospholipids. Our results provide new prebiotic routes to key intermediates on the way toward modern phospholipids and illuminate the potential origin and evolution of cell membranes.
Collapse
Affiliation(s)
- Maiia Aleksandrova
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Fidan Rahmatova
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - David A. Russell
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Claudia Bonfio
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
3
|
Prasad M, Hazra B, Mandal R, Das S, Tarafdar PK. ATP-Assisted Protocellular Membrane Formation with Ethanolamine-Based Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37421360 DOI: 10.1021/acs.langmuir.3c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Prebiotic membranes are one of the essential elements of the origin of life because they build compartments to keep genetic materials and metabolic machinery safe. Since modern cell membranes are made up of ethanolamine-based phospholipids, prebiotic membrane formation with ethanolamine-based amphiphiles and phosphates might act as a bridge between the prebiotic and contemporary eras. Here, we report the prebiotic synthesis of O-lauroyl ethanolamine (OLEA), O-lauroyl methyl ethanolamine (OLMEA), and O-lauroyl dimethylethanolamine (OLDMEA) under wet-dry cycles. Turbidimetric, NMR, DLS, fluorescence, microscopy, and glucose encapsulation studies highlighted that OLEA-ATP and OLMEA-ATP form protocellular membranes in a 3:1 ratio, where ATP acts as a template. OLDMEA with a dimethyl group did not form any membrane in the presence of ATP. ADP can also template OLEA to form vesicles in a 2:1 ratio, but the ADP-templated vesicles were smaller. This suggests the critical role of the phosphate backbone in controlling the curvature of supramolecular assembly. The mechanisms of hierarchical assembly and transient dissipative assembly are discussed based on templated-complex formation via electrostatic, hydrophobic, and H-bonding interactions. Our results suggest that N-methylethanolamine-based amphiphiles could be used to form prebiotic vesicles, but the superior H-bonding ability of the ethanolamine moiety likely provides an evolutionary advantage for stable protocell formation during the fluctuating environments of early earth.
Collapse
Affiliation(s)
- Mahesh Prasad
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Bibhas Hazra
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subrata Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
4
|
Fustin JM. Methyl Metabolism and the Clock: An Ancient Story With New Perspectives. J Biol Rhythms 2022; 37:235-248. [PMID: 35382619 PMCID: PMC9160962 DOI: 10.1177/07487304221083507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation, that is, the transfer or synthesis of a –CH3 group onto a target molecule, is a pervasive biochemical modification found in organisms from bacteria to humans. In mammals, a complex metabolic pathway powered by the essential nutrients vitamin B9 and B12, methionine and choline, synthesizes S-adenosylmethionine, the methyl donor in the methylation of nucleic acids, proteins, fatty acids, and small molecules by over 200 substrate-specific methyltransferases described so far in humans. Methylations not only play a key role in scenarios for the origin and evolution of life, but they remain essential for the development and physiology of organisms alive today, and methylation deficiencies contribute to the etiology of many pathologies. The methylation of histones and DNA is important for circadian rhythms in many organisms, and global inhibition of methyl metabolism similarly affects biological rhythms in prokaryotes and eukaryotes. These observations, together with various pieces of evidence scattered in the literature on circadian gene expression and metabolism, indicate a close mutual interdependence between biological rhythms and methyl metabolism that may originate from prebiotic chemistry. This perspective first proposes an abiogenetic scenario for rhythmic methylations and then outlines mammalian methyl metabolism, before reanalyzing previously published data to draw a tentative map of its profound connections with the circadian clock.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Centre for Biological Timing, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Abbasi WA, Ajaz SA, Arshad K, Liaqat S, Andleeb S, Bibi M, Abbas SA. SIP: A computational prediction of S-Adenosyl methionine (SAM) interacting proteins and their interaction sites through primary structures. Comput Biol Chem 2022; 98:107662. [DOI: 10.1016/j.compbiolchem.2022.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
|
6
|
Salaikumaran MR, Badiger VP, Burra VLSP. 16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis. Protein J 2022; 41:97-130. [PMID: 35112243 DOI: 10.1007/s10930-021-10029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (M.tb) whose natural history traces back to 70,000 years. TB remains a major global health burden. Methylation is a type of post-replication, post-transcriptional and post-translational epi-genetic modification involved in transcription, translation, replication, tissue specific expression, embryonic development, genomic imprinting, genome stability and chromatin structure, protein protein interactions and signal transduction indicating its indispensable role in survival of a pathogen like M.tb. The pathogens use this epigenetic mechanism to develop resistance against certain drug molecules and survive the lethality. Drug resistance has become a major challenge to tackle and also a major concern raised by WHO. Methyltransferases are enzymes that catalyze the methylation of various substrates. None of the current TB targets belong to methyltransferases which provides therapeutic opportunities to develop novel drugs through studying methyltransferases as potential novel targets against TB. Targeting 16S rRNA methyltransferases serves two purposes simultaneously: a) translation inhibition and b) simultaneous elimination of the ability to methylate its substrates hence stopping the emergence of drug resistance strains. There are ~ 40 different rRNA methyltransferases and 13 different 16S rRNA specific methyltransferases which are unexplored and provide a huge opportunity for treatment of TB.
Collapse
Affiliation(s)
- M R Salaikumaran
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - Veena P Badiger
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India.
| |
Collapse
|
7
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
8
|
Flemmich L, Heel S, Moreno S, Breuker K, Micura R. A natural riboswitch scaffold with self-methylation activity. Nat Commun 2021; 12:3877. [PMID: 34162884 PMCID: PMC8222354 DOI: 10.1038/s41467-021-24193-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
Methylation is a prevalent post-transcriptional modification encountered in coding and non-coding RNA. For RNA methylation, cells use methyltransferases and small organic substances as methyl-group donors, such as S-adenosylmethionine (SAM). SAM and other nucleotide-derived cofactors are viewed as evolutionary leftovers from an RNA world, in which riboswitches have regulated, and ribozymes have catalyzed essential metabolic reactions. Here, we disclose the thus far unrecognized direct link between a present-day riboswitch and its inherent reactivity for site-specific methylation. The key is O6-methyl pre-queuosine (m6preQ1), a potentially prebiotic nucleobase which is recognized by the native aptamer of a preQ1 class I riboswitch. Upon binding, the transfer of the ligand’s methyl group to a specific cytidine occurs, installing 3-methylcytidine (m3C) in the RNA pocket under release of pre-queuosine (preQ1). Our finding suggests that nucleic acid-mediated methylation is an ancient mechanism that has offered an early path for RNA epigenetics prior to the evolution of protein methyltransferases. Furthermore, our findings may pave the way for the development of riboswitch-descending methylation tools based on rational design as a powerful alternative to in vitro selection approaches. In humans, protein methyltransferase is responsible for RNA methylation using S-adenosylmethionine as a methyl group donor. Here the authors report a self-methylation activity of a bacterial riboswitch.
Collapse
Affiliation(s)
- Laurin Flemmich
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Sarah Heel
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Sarah Moreno
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Kathrin Breuker
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria
| | - Ronald Micura
- University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innrain 80-82, Innsbruck, 6020, Austria.
| |
Collapse
|
9
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
10
|
Scheitl CPM, Ghaem Maghami M, Lenz AK, Höbartner C. Site-specific RNA methylation by a methyltransferase ribozyme. Nature 2020; 587:663-667. [PMID: 33116304 PMCID: PMC7116789 DOI: 10.1038/s41586-020-2854-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Nearly all classes of coding and non-coding RNA undergo post-transcriptional modification, including RNA methylation. Methylated nucleotides are among the evolutionarily most-conserved features of transfer (t)RNA and ribosomal (r)RNA1,2. Many contemporary methyltransferases use the universal cofactor S-adenosylmethionine (SAM) as a methyl-group donor. SAM and other nucleotide-derived cofactors are considered to be evolutionary leftovers from an RNA world, in which ribozymes may have catalysed essential metabolic reactions beyond self-replication3. Chemically diverse ribozymes seem to have been lost in nature, but may be reconstructed in the laboratory by in vitro selection. Here we report a methyltransferase ribozyme that catalyses the site-specific installation of 1-methyladenosine in a substrate RNA, using O6-methylguanine as a small-molecule cofactor. The ribozyme shows a broad RNA-sequence scope, as exemplified by site-specific adenosine methylation in various RNAs. This finding provides fundamental insights into the catalytic abilities of RNA, serves a synthetic tool to install 1-methyladenosine in RNA and may pave the way to in vitro evolution of other methyltransferase and demethylase ribozymes.
Collapse
Affiliation(s)
- Carolin P M Scheitl
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ann-Kathrin Lenz
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Claudia Höbartner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
11
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
12
|
Fustin JM, Ye S, Rakers C, Kaneko K, Fukumoto K, Yamano M, Versteven M, Grünewald E, Cargill SJ, Tamai TK, Xu Y, Jabbur ML, Kojima R, Lamberti ML, Yoshioka-Kobayashi K, Whitmore D, Tammam S, Howell PL, Kageyama R, Matsuo T, Stanewsky R, Golombek DA, Johnson CH, Kakeya H, van Ooijen G, Okamura H. Methylation deficiency disrupts biological rhythms from bacteria to humans. Commun Biol 2020; 3:211. [PMID: 32376902 PMCID: PMC7203018 DOI: 10.1038/s42003-020-0942-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies. Fustin et al. reveal the evolutionarily conserved link between methyl metabolism and biological clocks. This study suggests the possibility of translating fundamental understanding of methylation deficiencies to clinical applications.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan. .,The University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester, M13 9PL, UK.
| | - Shiqi Ye
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Christin Rakers
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kensuke Kaneko
- Graduate School of Pharmaceutical Sciences, Department of System Chemotherapy and Molecular Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Fukumoto
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Mayu Yamano
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Marijke Versteven
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - T Katherine Tamai
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yao Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Melisa L Lamberti
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | | | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, UK
| | - Stephanie Tammam
- Molecular Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Molecular Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Diego A Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | | | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Department of System Chemotherapy and Molecular Sciences, Kyoto University, Kyoto, Japan
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Brain Science, Kyoto University, Kyoto, Japan. .,Kyoto University, Graduate School of Medicine, Department of Neuroscience, Division of Physiology and Neurobiology, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Agrawal P, Mishra G, Raghava GPS. SAMbinder: A Web Server for Predicting S-Adenosyl-L-Methionine Binding Residues of a Protein From Its Amino Acid Sequence. Front Pharmacol 2020; 10:1690. [PMID: 32082172 PMCID: PMC7002541 DOI: 10.3389/fphar.2019.01690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/24/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION S-adenosyl-L-methionine (SAM) is an essential cofactor present in the biological system and plays a key role in many diseases. There is a need to develop a method for predicting SAM binding sites in a protein for designing drugs against SAM associated disease. To the best of our knowledge, there is no method that can predict the binding site of SAM in a given protein sequence. RESULT This manuscript describes a method SAMbinder, developed for predicting SAM interacting residue in a protein from its primary sequence. All models were trained, tested, and evaluated on 145 SAM binding protein chains where no two chains have more than 40% sequence similarity. Firstly, models were developed using different machine learning techniques on a balanced data set containing 2,188 SAM interacting and an equal number of non-interacting residues. Our random forest based model developed using binary profile feature got maximum Matthews Correlation Coefficient (MCC) 0.42 with area under receiver operating characteristics (AUROC) 0.79 on the validation data set. The performance of our models improved significantly from MCC 0.42 to 0.61, when evolutionary information in the form of the position-specific scoring matrix (PSSM) profile is used as a feature. We also developed models on a realistic data set containing 2,188 SAM interacting and 40,029 non-interacting residues and got maximum MCC 0.61 with AUROC of 0.89. In order to evaluate the performance of our models, we used internal as well as external cross-validation technique. AVAILABILITY AND IMPLEMENTATION https://webs.iiitd.edu.in/raghava/sambinder/.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gaurav Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Department of Electrical Engineering, Shiv Nadar University, Greater Noida, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
14
|
Schneider C, Becker S, Okamura H, Crisp A, Amatov T, Stadlmeier M, Carell T. Noncanonical RNA Nucleosides as Molecular Fossils of an Early Earth-Generation by Prebiotic Methylations and Carbamoylations. Angew Chem Int Ed Engl 2018. [PMID: 29533524 DOI: 10.1002/anie.201801919] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The RNA-world hypothesis assumes that life on Earth started with small RNA molecules that catalyzed their own formation. Vital to this hypothesis is the need for prebiotic routes towards RNA. Contemporary RNA, however, is not only constructed from the four canonical nucleobases (A, C, G, and U), it also contains many chemically modified (noncanonical) bases. A still open question is whether these noncanonical bases were formed in parallel to the canonical bases (chemical origin) or later, when life demanded higher functional diversity (biological origin). Here we show that isocyanates in combination with sodium nitrite establish methylating and carbamoylating reactivity compatible with early Earth conditions. These reactions lead to the formation of methylated and amino acid modified nucleosides that are still extant. Our data provide a plausible scenario for the chemical origin of certain noncanonical bases, which suggests that they are fossils of an early Earth.
Collapse
Affiliation(s)
- Christina Schneider
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Sidney Becker
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Hidenori Okamura
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Antony Crisp
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Tynchtyk Amatov
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Michael Stadlmeier
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department, of Chemistry, LMU München, Butenandtstrasse 5-13, 81377, München, Germany
| |
Collapse
|
15
|
Schneider C, Becker S, Okamura H, Crisp A, Amatov T, Stadlmeier M, Carell T. Nicht-kanonische RNA-Nukleoside als molekulare Fossilien einer frühen Erde - Generierung durch präbiotische Methylierungen und Carbamoylierungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina Schneider
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Sidney Becker
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Hidenori Okamura
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Antony Crisp
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Tynchtyk Amatov
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Michael Stadlmeier
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| | - Thomas Carell
- Center for Integrated Protein Science (CiPS ) am, Department Chemie; LMU München; Butenandtstraße 5-13 81377 München Deutschland
| |
Collapse
|
16
|
Armenta-Medina D, Segovia L, Perez-Rueda E. Comparative genomics of nucleotide metabolism: a tour to the past of the three cellular domains of life. BMC Genomics 2014; 15:800. [PMID: 25230797 PMCID: PMC4177761 DOI: 10.1186/1471-2164-15-800] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/15/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nucleotide metabolism is central to all biological systems, due to their essential role in genetic information and energy transfer, which in turn suggests its possible presence in the last common ancestor (LCA) of Bacteria, Archaea and Eukarya. In this context, elucidation of the contribution of the origin and diversification of de novo and salvage pathways of nucleotide metabolism will allow us to understand the links between the enzymatic steps associated with the LCA and the emergence of the first metabolic pathways. RESULTS In this work, the taxonomical distribution of the enzymes associated with nucleotide metabolism was evaluated in 1,606 complete genomes. 151 sequence profiles associated with 120 enzymatic reactions were used. The evaluation was based on profile comparisons, using RPS-Blast. Organisms were clustered based on their taxonomical classifications, in order to obtain a normalized measure of the taxonomical distribution of enzymes according to the average of presence/absence of enzymes per genus, which in turn was used for the second step, to calculate the average presence/absence of enzymes per Clade. CONCLUSION From these analyses, it was suggested that divergence at the enzymatic level correlates with environmental changes and related modifications of the cell wall and membranes that took place during cell evolution. Specifically, the divergence of the 5-(carboxyamino) imidazole ribonucleotide mutase to phosphoribosylaminoimidazole carboxylase could be related to the emergence of multicellularity in eukaryotic cells. In addition, segments of salvage and de novo pathways were probably complementary in the LCA to the synthesis of purines and pyrimidines. We also suggest that a large portion of the pathway to inosine 5'-monophosphate (IMP) in purines could have been involved in thiamine synthesis or its derivatives in early stages of cellular evolution, correlating with the fact that these molecules may have played an active role in the protein-RNA world. The analysis presented here provides general observations concerning the adaptation of the enzymatic steps in the early stages of the emergence of life and the LCA.
Collapse
Affiliation(s)
- Dagoberto Armenta-Medina
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM Av, Universidad 2001, Cuernavaca, Morelos CP 62210, México.
| | | | | |
Collapse
|
17
|
Residues in human arsenic (+3 oxidation state) methyltransferase forming potential hydrogen bond network around S-adenosylmethionine. PLoS One 2013; 8:e76709. [PMID: 24124590 PMCID: PMC3790734 DOI: 10.1371/journal.pone.0076709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Residues Tyr59, Gly78, Ser79, Met103, Gln107, Ile136 and Glu137 in human arsenic (+3 oxidation state) methyltransferase (hAS3MT) were deduced to form a potential hydrogen bond network around S-adenosylmethionine (SAM) from the sequence alignment between Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) and hAS3MT. Herein, seven mutants Y59A, G78A, S79A, M103A, Q107A, I136A and E137A were obtained. Their catalytic activities and conformations were characterized and models were built. Y59A and G78A were completely inactive. Only 7.0%, 10.6% and 13.8% inorganic arsenic (iAs) was transformed to monomethylated arsenicals (MMA) when M103A, Q107A and I136A were used as the enzyme. The Vmax (the maximal velocity of the reaction) values of M103A, Q107A, I136A and E137A were decreased to 8%, 22%, 15% and 50% of that of WT-hAS3MT, respectively. The KM(SAM) (the Michaelis constant for SAM) values of mutants M103A, I136A and E137A were 15.7, 8.9 and 5.1 fold higher than that of WT-hAS3MT, respectively, indicating that their affinities for SAM were weakened. The altered microenvironment of SAM and the reduced capacity of binding arsenic deduced from KM(As) (the Michaelis constant for iAs) value probably synergetically reduced the catalytic activity of Q107A. The catalytic activity of S79A was higher than that of WT despite of the higher KM(SAM), suggesting that Ser79 did not impact the catalytic activity of hAS3MT. In short, residues Tyr59 and Gly78 significantly influenced the catalytic activity of hAS3MT as well as Met103, Ile136 and Glu137 because they were closely associated with SAM-binding, while residue Gln107 did not affect SAM-binding regardless of affecting the catalytic activity of hAS3MT. Modeling and our experimental results suggest that the adenine ring of SAM is sandwiched between Ile136 and Met103, the amide group of SAM is hydrogen bonded to Gly78 in hAS3MT and SAM is bonded to Tyr59 with van der Waals, cation-π and hydrogen bonding contacts.
Collapse
|
18
|
Parker ET, Cleaves HJ, Callahan MP, Dworkin JP, Glavin DP, Lazcano A, Bada JL. Prebiotic synthesis of methionine and other sulfur-containing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment. ORIGINS LIFE EVOL B 2011; 41:201-12. [PMID: 21063908 PMCID: PMC3094541 DOI: 10.1007/s11084-010-9228-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/19/2010] [Indexed: 11/25/2022]
Abstract
Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH(4)), hydrogen sulfide (H(2)S), ammonia (NH(3)), and carbon dioxide (CO(2)). Racemic methionine was formed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H(2)S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.
Collapse
Affiliation(s)
- Eric T. Parker
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 USA
- Present Address: School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - H. James Cleaves
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015 USA
| | - Michael P. Callahan
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD 20771 USA
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD 20771 USA
| | - Daniel P. Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD 20771 USA
| | - Antonio Lazcano
- Facultad de Ciencias, UNAM, Apdo. Postal 70-407 Cd. Universitaria, 04510 Mexico D. F., Mexico
| | - Jeffrey L. Bada
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 USA
- Scripps Institution of Oceanography, University of California at San Diego, 8615 Kennel Way, La Jolla, CA 92093-0212 USA
| |
Collapse
|
19
|
Wujec M, Siwek A, Dzierzawska J, Rostkowski M, Kaminski R, Paneth P. Influence of the Solvent Description on the Predicted Mechanism of SN2 Reactions. J Phys Chem B 2008; 112:12414-9. [DOI: 10.1021/jp8035956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Staszica 6, 20-081 Lublin, Poland, and Institute of Applied Radiation Chemistry, Technical University, Zeromskiego 116, 90-924, Lodz, Poland
| | - Agata Siwek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Staszica 6, 20-081 Lublin, Poland, and Institute of Applied Radiation Chemistry, Technical University, Zeromskiego 116, 90-924, Lodz, Poland
| | - Joanna Dzierzawska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Staszica 6, 20-081 Lublin, Poland, and Institute of Applied Radiation Chemistry, Technical University, Zeromskiego 116, 90-924, Lodz, Poland
| | - Michal Rostkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Staszica 6, 20-081 Lublin, Poland, and Institute of Applied Radiation Chemistry, Technical University, Zeromskiego 116, 90-924, Lodz, Poland
| | - Rafal Kaminski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Staszica 6, 20-081 Lublin, Poland, and Institute of Applied Radiation Chemistry, Technical University, Zeromskiego 116, 90-924, Lodz, Poland
| | - Piotr Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Staszica 6, 20-081 Lublin, Poland, and Institute of Applied Radiation Chemistry, Technical University, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
20
|
Dzierzawska J, Jarota A, Karolak M, Piotrowski L, Placek I, Swiderek K, Szatkowski L, Paneth P. Carbon and secondary deuterium kinetic isotope effects on SN2 methyl transfer reactions. J PHYS ORG CHEM 2007. [DOI: 10.1002/poc.1267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Kozbial PZ, Mushegian AR. Natural history of S-adenosylmethionine-binding proteins. BMC STRUCTURAL BIOLOGY 2005; 5:19. [PMID: 16225687 PMCID: PMC1282579 DOI: 10.1186/1472-6807-5-19] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. RESULTS Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. CONCLUSION We have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.
Collapse
Affiliation(s)
- Piotr Z Kozbial
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Arcady R Mushegian
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|