1
|
Raiteri BJ, Lauret L, Hahn D. Residual force depression is not related to positive muscle fascicle work during submaximal voluntary dorsiflexion contractions in humans. J Physiol 2024; 602:1085-1103. [PMID: 38380985 DOI: 10.1113/jp285703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Residual force depression (rFD) following active muscle shortening is assumed to correlate most strongly with muscle work, but this has not been tested during voluntary contractions in humans. Using dynamometry, we compared steady-state ankle joint torques (N = 16) following tibialis anterior (TA) muscle-tendon unit (MTU) lengthening and shortening to the time-matched torque during submaximal voluntary fixed-end dorsiflexion reference contractions (REF) at a matched MTU length and EMG amplitude. Ultrasound revealed significantly reduced (P < 0.001) TA fascicle shortening amplitudes during MTU lengthening without a preload over small and medium amplitudes, respectively, relative to REF. MTU lengthening with a preload over a large amplitude significantly (P < 0.001) increased fascicle shortening relative to REF, as well as stretch amplitudes relative to MTU lengthening without a preload (P = 0.001). Significant (P = 0.028) steady-state fascicle force enhancement relative to REF was observed following MTU lengthening, and was similar among MTU lengthening-hold conditions (3-5%). MTU shortening with and without a preload over small and large amplitudes significantly (P < 0.001) increased positive fascicle and MTU work relative to REF, but significant (P = 0.006) rFD was observed following MTU shortening with a preload (7-10%) only. rFD was linearly related to positive MTU work [rrm (47) = 0.48, P < 0.001], but not positive fascicle work [rrm (47) = 0.16, P = 0.277]. Our findings indicate that MTU lengthening without substantial fascicle stretch enhances steady-state force output, which might arise from less shortening-induced rFD. Our findings also indicate similar rFD following different amounts of positive fascicle/MTU work, which cautions against using work to predict rFD during submaximal voluntary contractions. KEY POINTS: Accurately predicting muscle force is challenging because active muscle shortening depresses force output. The residual force depression (rFD) that exists following active muscle shortening is commonly assumed to correlate strongly and positively with muscle work. We found that tibialis anterior muscle fascicle work and muscle-tendon unit work did not accurately predict rFD during submaximal voluntary dorsiflexion contractions. Fascicle shortening during fixed-end reference contractions also potentially induced rFD of 3-5%, which was similar to the rFD following muscle-tendon unit shortening without a preload. A higher number of active muscle fibres during shortening probably increased rFD, which suggests that motor unit recruitment during shortening might predict rFD.
Collapse
Affiliation(s)
- Brent James Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum North Rhine-Westphalia, Germany
| | - Leon Lauret
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum North Rhine-Westphalia, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum North Rhine-Westphalia, Germany
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Ahn AN, Konow N, Tijs C, Biewener AA. Different Segments within Vertebrate Muscles Can Operate on Different Regions of Their Force-Length Relationships. Integr Comp Biol 2019; 58:219-231. [PMID: 29889253 DOI: 10.1093/icb/icy040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To relate in vivo behavior of fascicle segments within a muscle to their in vitro force-length relationships, we examined the strain behavior of paired segments within each of three vertebrate muscles. After determining in vivo muscle activity patterns and length changes of in-series segments within the semimembranosus muscle (SM) in the American Toad (Bufo americanus) during hopping and within the sternohyoid (SH) muscle in the rat (Rattus rattus) during swallowing, and of spatially separated fascicles within the medial gastrocnemius (MG) muscle in the rat during trotting, we measured their corresponding in vitro (toad) or in situ (rat) force-length relationships (FLRs). For all three muscles, in vivo strain heterogeneity lasted for about 36-57% of the behavior cycle, during which one segment or fascicle shortened while the other segment or fascicle simultaneously lengthened. In the toad SM, the proximal segment shortened from the descending limb across the plateau of its FLR from 1.12 to 0.91 of its optimal length (Lo), while the distal segment lengthened (by 0.04 ± 0.04 Lo) before shortening down the ascending limb from 0.94 to 0.83 Lo. In the rat SH muscle, the proximal segment tended to shorten on its ascending limb from 0.90 to 0.85 Lo while the distal segment tended to lengthen across Lo (0.96-1.12 Lo). In the rat MG muscle, in vivo strains of proximal fascicles ranged from 0.72 to 1.02 Lo, while the distal fascicles ranged from 0.88 to 1.11 Lo. Even though the timing of muscle activation patterns were similar between segments, the heterogeneous strain patterns of fascicle segments measured in vivo coincided with different operating ranges across their FLRs simultaneously, implying differences in force-velocity behavior as well. The three vertebrate skeletal muscles represent a diversity of fiber architectures and functions and suggest that patterns of in vivo contractile strain and the operating range over the FLR in one muscle region does not necessarily represent other regions within the same muscle.
Collapse
Affiliation(s)
- A N Ahn
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.,Department of Biology, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - N Konow
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA.,Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - C Tijs
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA
| | - A A Biewener
- Concord Field Station, MCZ, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA
| |
Collapse
|
3
|
Heidlauf T, Klotz T, Rode C, Siebert T, Röhrle O. A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLoS Comput Biol 2017; 13:e1005773. [PMID: 28968385 PMCID: PMC5638554 DOI: 10.1371/journal.pcbi.1005773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/12/2017] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Contractions on the descending limb of the total (active + passive) muscle force-length relationship (i. e. when muscle stiffness is negative) are expected to lead to vast half-sarcomere-length inhomogeneities. This is however not observed in experiments-vast half-sarcomere-length inhomogeneities can be absent in myofibrils contracting in this range, and initial inhomogeneities can even decrease. Here we show that the absence of half-sarcomere-length inhomogeneities can be predicted when considering interactions of the semi-active protein titin with the actin filaments. Including a model of actin-titin interactions within a multi-scale continuum-mechanical model, we demonstrate that stability, accurate forces and nearly homogeneous half-sarcomere lengths can be obtained on the descending limb of the static total force-length relation. This could be a key to durable functioning of the muscle because large local stretches, that might harm, for example, the transverse-tubule system, are avoided.
Collapse
Affiliation(s)
- Thomas Heidlauf
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Thomas Klotz
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Christian Rode
- Institute of Motion Science, Friedrich-Schiller-University, Jena, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Wendowski O, Redshaw Z, Mutungi G. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres. J Cachexia Sarcopenia Muscle 2017; 8:48-56. [PMID: 27239418 PMCID: PMC4863930 DOI: 10.1002/jcsm.12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 01/05/2016] [Accepted: 04/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. METHODS In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100-900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. RESULTS At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. CONCLUSION From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.
Collapse
Affiliation(s)
- Oskar Wendowski
- Department of Medicine, Norwich Medical School University of East Anglia Norwich NR4 7TJ UK
| | - Zoe Redshaw
- Faculty of Health and Life Sciences De Montfort University Leicester UK
| | - Gabriel Mutungi
- Department of Medicine, Norwich Medical School University of East Anglia Norwich NR4 7TJ UK
| |
Collapse
|
5
|
Heidlauf T, Röhrle O. A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Front Physiol 2014; 5:498. [PMID: 25566094 PMCID: PMC4274884 DOI: 10.3389/fphys.2014.00498] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/02/2014] [Indexed: 11/29/2022] Open
Abstract
The presented chemo-electro-mechanical skeletal muscle model relies on a continuum-mechanical formulation describing the muscle's deformation and force generation on the macroscopic muscle level. Unlike other three-dimensional models, the description of the activation-induced behavior of the mechanical model is entirely based on chemo-electro-mechanical principles on the microscopic sarcomere level. Yet, the multiscale model reproduces key characteristics of skeletal muscles such as experimental force-length and force-velocity data on the macroscopic whole muscle level. The paper presents the methodological approaches required to obtain such a multiscale model, and demonstrates the feasibility of using such a model to analyze differences in the mechanical behavior of parallel-fibered muscles, in which the muscle fibers either span the entire length of the fascicles or terminate intrafascicularly. The presented results reveal that muscles, in which the fibers span the entire length of the fascicles, show lower peak forces, more dispersed twitches and fusion of twitches at lower stimulation frequencies. In detail, the model predicted twitch rise times of 38.2 and 17.2 ms for a 12 cm long muscle, in which the fibers span the entire length of the fascicles and with twelve fiber compartments in series, respectively. Further, the twelve-compartment model predicted peak twitch forces that were 19% higher than in the single-compartment model. The analysis of sarcomere lengths during fixed-end single twitch contractions at optimal length predicts rather small sarcomere length changes. The observed lengths range from 75 to 111% of the optimal sarcomere length, which corresponds to a region with maximum filament overlap. This result suggests that stability issues resulting from activation-induced stretches of non-activated sarcomeres are unlikely in muscles with passive forces appearing at short muscle length.
Collapse
Affiliation(s)
- Thomas Heidlauf
- Continuum Biomechanics and Mechanobiology Research Group, Institute of Applied Mechanics (CE), University of StuttgartStuttgart, Germany
- Stuttgart Research Center for Simulation Technology (SimTech), University of StuttgartStuttgart, Germany
| | - Oliver Röhrle
- Continuum Biomechanics and Mechanobiology Research Group, Institute of Applied Mechanics (CE), University of StuttgartStuttgart, Germany
- Stuttgart Research Center for Simulation Technology (SimTech), University of StuttgartStuttgart, Germany
| |
Collapse
|
6
|
Contraction induced muscle injury: towards personalized training and recovery programs. Ann Biomed Eng 2014; 43:388-403. [PMID: 25352440 DOI: 10.1007/s10439-014-1173-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
Abstract
Skeletal muscles can be injured by their own contractions. Such contraction-induced injury, often accompanied by delayed onset of muscle soreness, is a leading cause of the loss of mobility in the rapidly increasing population of elderly people. Unlike other types of muscle injuries which hurt almost exclusively those who are subjected to intensive exercise such as professional athletes and soldiers in training, contraction induced injury is a phenomenon which may be experienced by people of all ages while performing a variety of daily-life activities. Subjects that experience contraction induced injury report on soreness that usually increases in intensity in the first 24 h after the activity, peaks from 24 to 72 h, and then subsides and disappears in a few days. Despite their clinical importance and wide influence, there are almost no studies, clinical, experimental or computational, that quantitatively relate between the extent of contraction induced injury and activity factors, such as number of repetitions, their frequency and magnitude. The lack of such quantitative information is even more emphasized by the fact that contraction induced injury can be used, if moderate and controlled, to improve muscle performance in the long term. Thus, if properly understood and carefully implemented, contraction induced injury can be used for the purpose of personalized training and recovery programs. In this paper, we review experimental, clinical, and theoretical works, attempting towards drawing a more quantitative description of contraction induced injury and related phenomena.
Collapse
|
7
|
Ravichandiran K, Ravichandiran M, Oliver ML, Singh KS, McKee NH, Agur AM. Fibre bundle element method of determining physiological cross-sectional area from three-dimensional computer muscle models created from digitised fibre bundle data. Comput Methods Biomech Biomed Engin 2010; 13:741-8. [DOI: 10.1080/10255840903580025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Givli S. Towards multi-scale modeling of muscle fibers with sarcomere non-uniformities. J Theor Biol 2010; 264:882-92. [DOI: 10.1016/j.jtbi.2010.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 10/19/2022]
|
9
|
Ranatunga KW, Roots H, Offer GW. Temperature jump induced force generation in rabbit muscle fibres gets faster with shortening and shows a biphasic dependence on velocity. J Physiol 2010; 588:479-93. [PMID: 19948657 PMCID: PMC2825612 DOI: 10.1113/jphysiol.2009.179200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 11/17/2009] [Indexed: 11/08/2022] Open
Abstract
We examined the tension responses to ramp shortening and rapid temperature jump (<0.2 ms, 3-4 degrees C T-jump) in maximally Ca(2+)-activated rabbit psoas muscle fibres at 8-9 degrees C (the fibre length (L(0)) was approximately 1.5 mm and sarcomere length 2.5 microm). The aim was to investigate the strain sensitivity of crossbridge force generation in muscle. The T-jump induced tension rise was examined during steady shortening over a wide range of velocities (V) approaching the V(max) (V range approximately 0.01 to approximately 1.5 L(0) s(1)). In the isometric state, a T-jump induced a biphasic tension rise consisting of a fast (approximately 50 s(1), phase 2b) and a slow (approximately 10 s(1), phase 3) component, but if treated as monophasic the rate was approximately 20 s(1). During steady shortening the T-jump tension rise was monophasic; the rate of tension rise increased linearly with shortening velocity, and near V(max) it was approximately 200 s(1), approximately 10x faster than in the isometric state. Relative to the tension reached after the T-jump, the amplitude increased with shortening velocity, and near V(max) it was 4x larger than in the isometric state. Thus, the temperature sensitivity of muscle force is markedly increased with velocity during steady shortening, as found in steady state experiments. The rate of tension decline during ramp shortening also increased markedly with increase of velocity. The absolute amplitude of T-jump tension rise was larger than that in the isometric state at the low velocities (<0.5 L(0) s(1)) but decreased to below that of the isometric state at the higher velocities. Such a biphasic velocity dependence of the absolute amplitude of T-jump tension rise implies interplay between, at least, two processes that have opposing effects on the tension output as the shortening velocity is increased, probably enhancement of crossbridge force generation and faster (post-stroke) crossbridge detachment by negative strain. Overall, our results show that T-jump force generation is strain sensitive and becomes considerably faster when exposed to negative strain. Thus the crossbridge force generation step in muscle is both temperature sensitive (endothermic) and strain sensitive.
Collapse
Affiliation(s)
- K W Ranatunga
- Muscle Contraction Group, Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
10
|
Hamdi MM, Mutungi G. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres. J Physiol 2009; 588:511-25. [PMID: 20008468 DOI: 10.1113/jphysiol.2009.182162] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.
Collapse
Affiliation(s)
- M M Hamdi
- Biomedical and Clinical Sciences Research Institute, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
11
|
Guo R, Li SB, Zhao LN, Zhao YS, Lu W, Yuan P, Deng P, Liao F. A new linearly-combined bi-exponential model for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius under electric stimulation in vitro. J Zhejiang Univ Sci B 2007; 8:867-74. [PMID: 18257119 PMCID: PMC2100157 DOI: 10.1631/jzus.2007.b0867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 10/22/2007] [Indexed: 11/11/2022]
Abstract
There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca(2+)-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from the fast-relaxing phase was investigated for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius in vitro, in comparison to the single exponential model and the classical bi-exponential model. During repetitive stimulations at a 2-s interval by square pulses of a 2-ms duration at 12 V direct currency (DC), the isometric tension of Bufo gastrocnemius was recorded at 100 Hz. The relaxation curve with tensions falling from 90% of the peak to the 15th datum before next stimulation was analyzed by three exponential models using a program in MATLAB 6.5. Both the goodness of fit and the distribution of the residuals for the best fitting supported the comparable validity of this new bi-exponential model for kinetic analysis of the relaxation process of the control muscles. After CPA treatment, however, this new bi-exponential model showed an obvious statistical superiority for kinetic analysis of the muscle relaxation process, and it gave the estimated rest tension consistent to that by experimentation, whereas both the classical bi-exponential model and the single exponential model gave biased rest tensions. Moreover, after the treatment of muscles by CPA, both the single exponential model and the classical bi-exponential model yielded lowered relaxation rates, nevertheless, this new bi-exponential model had relaxation rates of negligible changes except much higher rest tensions. These results suggest that this novel linearly-combined bi-exponential model is desirable for kinetic analysis of the relaxation process of muscles with altered Ca(2+)-pumping activity.
Collapse
|
12
|
Roots H, Offer GW, Ranatunga KW. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions. J Muscle Res Cell Motil 2007; 28:123-39. [PMID: 17610136 DOI: 10.1007/s10974-007-9110-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 05/29/2007] [Indexed: 11/28/2022]
Abstract
We examined the tension responses to ramp shortening and lengthening over a range of velocities (0.1-5 L(0)/s) and at 20 degrees C and 30 degrees C in tetanized intact fibre bundles from a rat fast (flexor hallucis brevis) muscle; fibre length (L(0)) was 2.2 mm and sarcomere length approximately 2.5 microm. The tension change during ramp releases as well as ramp stretches showed an early transition (often appearing as an inflection) at 1-4 ms; the tension change at this transition and the length change at which it occurred increased with velocity. A second transition, indicated by a more gradual reduction in slope, occurred when the length had changed by 14-28 nm per half-sarcomere; the tension at this transition increased with lengthening velocity towards a plateau and it decreased with shortening velocity towards zero tension. The velocity dependence of the time to the transitions and the length change at the transitions showed some asymmetries between shortening and lengthening. Based on analyses of the velocity dependence of the tension and modelling, we propose that the first transition reflects the tension change associated with the crossbridge power stroke in shortening, or with the reversal of the power stroke in lengthening. Modelling shows that the reduction in slope at the second transition occurs when most of the crossbridges (myosin heads) that were attached at the start of the ramp become detached. After the second transition, the tension reaches a steady level in the model whereas the tension continues to increase during lengthening and continues to decrease during shortening in the experiments; this continuous tension change is seen at a wide range of initial sarcomere lengths and when active force is reduced by the myosin inhibitor, BTS. The continuous tension decline during shortening is not abolished by caffeine, but the rate of decline is reduced when the active force is depressed by BTS. We propose that stiffening of non-crossbridge visco-elastic elements upon activation contributes to the continuous tension rise during lengthening and the release of such tension and Ca-insensitive deactivation contribute to the tension decline during shortening in muscle fibres.
Collapse
Affiliation(s)
- H Roots
- Muscle Contraction Group, Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
13
|
Telley IA, Denoth J. Sarcomere dynamics during muscular contraction and their implications to muscle function. J Muscle Res Cell Motil 2007; 28:89-104. [PMID: 17530424 DOI: 10.1007/s10974-007-9107-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 04/20/2007] [Indexed: 11/28/2022]
Abstract
This article attempts to identify the key aspects of sarcomere inhomogeneity and the dynamics of sarcomere length changes in muscle contraction experiments and focuses on understanding the mechanics of myofibrils or muscle fibres when viewed as independent units of biological motors (the half-sarcomeres) connected in series. Muscle force generation has been interpreted traditionally on the basis of the kinetics of crossbridge cycling, i.e. binding of myosin heads to actin and consecutive force generating conformational change of the head, under controlled conditions and assuming uniformity of sarcomere or half-sarcomere behaviour. However, several studies have shown that re-distribution of internal strain within myofibrils and muscle fibres may be a key player, particularly, during stretch or relaxation so that force kinetics parameters are strongly affected by sarcomere dynamics. Here, we aim to shed light on how force generation, crossbridge kinetics, and the complex sarcomere movements are to be linked and which mechanical concepts are necessary to develop a comprehensive contraction model of a myofibril.
Collapse
Affiliation(s)
- Ivo A Telley
- ETH Zurich, Institute for Biomechanics, HCI E 357.1, 8093 Zurich, Switzerland
| | | |
Collapse
|
14
|
Zhang W, Chung CS, Kovács SJ. Derivation and Left Ventricular Pressure Phase Plane Based Validation of a Time Dependent Isometric Crossbridge Attachment Model. ACTA ACUST UNITED AC 2006; 6:132-44. [PMID: 17111228 DOI: 10.1007/s10558-006-9020-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Huxley's crossbridge attachment model predicts tension (contractile force) development in isometric (fixed length) cells using constant attachment and detachment rates. Alternative models incorporating time-varying calcium concentrations are complex (coupled linear differential equations) and use time-dependent inputs (calcium, elastance, etc.) to model multiple states. We hypothesize that by incorporating the known significant rise and fall in intracellular calcium, via either an asymmetric damped function or a symmetric Gaussian function, into a time-varying, rather than constant, attachment rate function, the Huxley model prediction for tension (i.e., chamber pressure) in isovolumic (isometric) non-ejecting beats will improve. To test the hypothesis that the time-dependent model-predicted (TDM) pressure fits the in vivo isometric (isovolumic) LV pressure phase-plane (PPP) contour better than the constant attachment rate predicted pressure, we used the TDM to fit non-ejecting, premature ventricular contraction (PVC) PPP contours in 6 subjects. Conventional model fit was poor (relative error 74.0%+/-12.5%), while the asymmetric damped TDM rate function provided slight improvement relative to the conventional time-independent model (relative error 55.4%+/-9.8%). The symmetric Gaussian rate function TDM provided the best PPP fit to all non-ejecting beats tested (relative error 19.8%+/-4.8%). We conclude that approximating the lumped attachment rate via a time-varying, rather than constant, rate function generates a physiologically viable model of crossbridge behavior. The PPP provides the optimal arena for alternate mathematical formulation assessment of LVP contour prediction by time-dependent attachment rate functions and facilitates modeling of cardiac contraction and relaxation.
Collapse
Affiliation(s)
- Wei Zhang
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Washington University School of Medicine, 660 South Euclid Ave, Box 8086, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
15
|
Telley IA, Denoth J, Stüssi E, Pfitzer G, Stehle R. Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers. Biophys J 2005; 90:514-30. [PMID: 16239326 PMCID: PMC1367057 DOI: 10.1529/biophysj.105.070334] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the dynamics of individual half-sarcomeres in striated muscle contraction, myofibrils prepared from rabbit psoas muscle and left ventricles of guinea pig were immunostained with two conjugated antibody complexes consisting of a primary antibody against either alpha-actinin or myomesin and a secondary fluorescently labeled Fab-fragment. We simultaneously measured force kinetics and determined the positions of the Z-line and M-band signals by fluorescence video microscopy and sophisticated computer vision (tracking) algorithms. Upon calcium activation, sarcomeres and half-sarcomeres shortened nonuniformly. Shortening occurred first rapidly and exponentially during the force rise and then slowly during the force plateau. In psoas myofibrils, time-resolved displacements of the A-band in sarcomeres were observed, i.e., the two halves of individual sarcomeres behaved nonuniformly. Nonuniformity in length changes between the two halves of sarcomeres was comparable to that between two adjacent half-sarcomeres of neighboring sarcomeres. Sequential lengthening of half-sarcomeres was observed in cardiac myofibrils during the rapid phase of force relaxation. The independent dynamics of the halves in a sarcomere reveals the half-sarcomere as the functional unit rather than the structural unit, the sarcomere. The technique will facilitate the study of filament sliding within individual half-sarcomeres and the mechanics of intersegmental chemomechanical coupling in multisegmental striated muscles.
Collapse
Affiliation(s)
- Ivo A Telley
- Laboratory for Biomechanics, ETH Zurich Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Coupland ME, Pinniger GJ, Ranatunga KW. Tension responses to rapid (laser) temperature-jumps during twitch contractions in intact rat muscle fibres. J Muscle Res Cell Motil 2005; 26:113-22. [PMID: 16001130 DOI: 10.1007/s10974-005-4568-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 02/16/2005] [Indexed: 11/25/2022]
Abstract
We examined the tension responses induced by rapid temperature-jumps (T-jumps) applied at different times during twitch and tetanic contractions in small intact fibre bundles (5-10 fibres) isolated from a fast foot muscle (flexor hallucis brevis) of the rat. A rapid T-jump of 2-4 degrees C was induced by a 0.2 ms infrared (lambda = 1.32 microm) laser pulse applied to the fibre bundle immersed in a 50 microl trough of physiological saline, the temperature of which was clamped at different steady temperatures ranging from 10 to 30 degrees C. In a tetanic contraction, the tension increased to the same steady level when a standard T-jump was applied at different intervals after the onset of stimulation; thus, with maximal activation, an enhanced force generation by T-jump leads to a new steady state. In a twitch contraction, a T-jump induced a large, potentiation of tension when it was applied during the rising phase. Whereas the twitch relaxation subsequent to a T-jump was faster in all cases, the amplitude of the twitch tension potentiation decreased as the T-jump was delayed with respect to the stimulus, and there was no increase of tension when a T-jump was placed on the relaxation phase of the twitch. The increase of tension induced by a T-jump applied on the rising phase resulted in peak tension that was greater than the tension in control twitches at the steady post-T-jump temperature; therefore tension was higher than that expected on the basis of steady state temperature dependence of twitch tension. Whether these effects on a twitch contraction arise from differential fibre-heating by a T-jump that leads to shortening and development of sarcomere length disorder etc remain unclear. However, the findings may be interpreted as indicating that twitch tension increment by a T-jump occurs when excitation (the action potential) leading to calcium release and thin filament activation occur at the low temperature, whereas the crossbridge force-generation processes (and Ca2+-uptake) proceed at the higher temperature.
Collapse
Affiliation(s)
- M E Coupland
- Department of Physiology, School of Medical Sciences, University of Bristol, BS8 1TD, Bristol, UK
| | | | | |
Collapse
|
17
|
Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng HR, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho CM, Stoddart JF. Linear Artificial Molecular Muscles. J Am Chem Soc 2005; 127:9745-59. [PMID: 15998079 DOI: 10.1021/ja051088p] [Citation(s) in RCA: 498] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two switchable, palindromically constituted bistable [3]rotaxanes have been designed and synthesized with a pair of mechanically mobile rings encircling a single dumbbell. These designs are reminiscent of a "molecular muscle" for the purposes of amplifying and harnessing molecular mechanical motions. The location of the two cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings can be controlled to be on either tetrathiafulvalene (TTF) or naphthalene (NP) stations, either chemically ((1)H NMR spectroscopy) or electrochemically (cyclic voltammetry), such that switching of inter-ring distances from 4.2 to 1.4 nm mimics the contraction and extension of skeletal muscle, albeit on a shorter length scale. Fast scan-rate cyclic voltammetry at low temperatures reveals stepwise oxidations and movements of one-half of the [3]rotaxane and then of the other, a process that appears to be concerted at room temperature. The active form of the bistable [3]rotaxane bears disulfide tethers attached covalently to both of the CBPQT(4+) ring components for the purpose of its self-assembly onto a gold surface. An array of flexible microcantilever beams, each coated on one side with a monolayer of 6 billion of the active bistable [3]rotaxane molecules, undergoes controllable and reversible bending up and down when it is exposed to the synchronous addition of aqueous chemical oxidants and reductants. The beam bending is correlated with flexing of the surface-bound molecular muscles, whereas a monolayer of the dumbbell alone is inactive under the same conditions. This observation supports the hypothesis that the cumulative nanoscale movements within surface-bound "molecular muscles" can be harnessed to perform larger-scale mechanical work.
Collapse
Affiliation(s)
- Yi Liu
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Soman A, Hedrick TL, Biewener AA. Regional patterns of pectoralis fascicle strain in the pigeon Columba livia during level flight. ACTA ACUST UNITED AC 2005; 208:771-86. [PMID: 15695768 DOI: 10.1242/jeb.01432] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regional fascicle strains were recorded in vivo from the pectoralis of carneau pigeons using sonomicrometry during level slow flight, together with regional electromyography (EMG) and deltopectoral crest (DPC) strain measurements of whole muscle force. Fascicle strain measurements were obtained at four sites within the pectoralis: the anterior (Ant), middle (Mid) and posterior (Post) sternobrachium (SB), and the smaller thoracobrachium (TB). Strains were also recorded along the intramuscular aponeurosis of the pectoralis to assess its 'in-series' compliance with respect to strains of Post SB and TB fascicles. In-series segment strains were also obtained along Ant SB and Mid SB fascicles, which insert directly on the DPC without attaching to the intramuscular aponeurosis. In-series segment strains differed from 2% to 17.2%, averaging differences of 6.1% at the Ant SB site and 1.4% at the Mid SB site. Temporal patterns of in-series fascicle segment strain were similar at both sites. Regional fascicle strains also exhibited similar temporal patterns of lengthening and shortening and were most uniform in magnitude at the Ant SB, Mid SB and TB sites (total strain: 33.7%, 35.9% and 33.2% respectively), but were smaller at the Post SB site (24.4%). Strains measured along the aponeurosis tracked the patterns of contractile fascicle strain but were significantly lower in magnitude (19.1%). Fascicle lengthening strains (+25.4%) greatly exceeded net shortening strains (-6.5%) at all sites. Much of the variation in regional fascicle strain patterns resulted from variation of in vivo recording sites among individual animals, despite attempts to define consistent regions for obtaining in vivo recordings. No significant variation in EMG activation onset was found, but deactivation of the Ant SB occurred before the other muscle sites. Even so, the range of variation was small, with all muscle regions being activated midway through lengthening (upstroke) and turned off midway through shortening (downstroke). While subtle differences in the timing and rate of fascicle strain may relate to differing functional roles of the pectoralis, regional patterns of fascicle strain and activation suggest a generally uniform role for the muscle as a whole throughout the wingbeat cycle. Shorter fascicles located in more posterior regions of the muscle underwent generally similar strains as longer fascicles located in more anterior SB regions. The resulting differences in fiber length were accommodated by strain in the intramuscular aponeurosis and rotation of the pectoralis insertion with respect to the origin. As a result, longer Ant and Mid SB fascicles were estimated to contribute substantially more work per unit mass than shorter Post SB and TB fascicles. When the mass fractions of these regions are accounted for, our regional fascicle strain measurements show that the anterior regions of the pectoralis likely contribute 76%, and the posterior regions 24%, of the muscle's total work output. When adjusted for mass fraction and regional fascicle strain, pectoralis work averaged 24.7+/-5.1 J kg(-1) (206.6+/-43.5 W kg(-1)) during level slow (approximately 4-5 m s(-1)) flight.
Collapse
Affiliation(s)
- Arya Soman
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Old Causeway Road, Bedford, MA 01730, USA
| | | | | |
Collapse
|
19
|
Faulkner JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol (1985) 2003; 95:455-9. [PMID: 12851415 DOI: 10.1152/japplphysiol.00280.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Communication among scientists must be clear and concise to avoid ambiguity and misinterpretations. The selection of words must be based on accepted definitions. The fields of biomechanics, muscle physiology, and exercise science have had a particularly difficult time with terminology, arising from the complexity of muscle contractions and by the use of inappropriate terminology by scientists. The dictionary definition of the verb "contract," specifically for the case of muscle, is "to undergo an increase in tension, or force, and become shorter." Under all circumstances, an activated muscle generates force, but an activated muscle generating force does not invariably shorten! During the 1920s and 1930s, investigators recognized that the interaction between the force generated by the muscle and the load on the muscle results in either shortening, no length change (isometric), or lengthening of the muscle. The recognition that muscles perform three different types of "contractions" required that contraction be redefined as "to undergo activation and generate force." Modifiers of contraction are then needed to clarify the lack of movement or the directionality of movement. Despite the contradiction, for 75 years the lack of movement has been termed an "isometric contraction." The directionality of the movement is then best described by the adjectives "shortening" and "lengthening." The definitions of "concentric" as "having the same center" and of "eccentric" as "not having the same center" are consistent with hypertrophy, or remodeling of the heart muscle, but are inappropriate to describe the contractions of skeletal muscles.
Collapse
Affiliation(s)
- John A Faulkner
- Deprtment of Physiology and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2007, USA.
| |
Collapse
|
20
|
Drost MR, Maenhout M, Willems PJB, Oomens CWJ, Baaijens FPT, Hesselink MKC. Spatial and temporal heterogeneity of superficial muscle strain during in situ fixed-end contractions. J Biomech 2003; 36:1055-63. [PMID: 12757815 DOI: 10.1016/s0021-9290(02)00461-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerical models of contracting muscle offer a powerful tool to study local mechanical load. For validation of these models, the spatial and temporal distribution of strain was quantified in fixed-end contracting rat tibialis anterior muscle in situ at optimal muscle length (L(o)) and at 120 degrees plantar flexion as well as at 125 and 33Hz stimulation frequency. We studied the hypothesis that after termination of stimulation in situ muscle segments near the motor endplates elongate while segments away from the endplates shorten. We show that both spatial and temporal inhomogeneities in muscle deformation occurred during contraction. Muscle plateau shortening strain equalled 4.1%. Maximal plateau shortening of a muscle segment was much larger (9.6%) and occurred distally (at 0.26 of the scaled length of the muscle). Manipulating torque levels by decreasing the stimulation frequency at the same muscle length induced a decrease in torque ( approximately 20%) with a smaller effect on the level and no effect on the pattern of muscle deformation. During relaxation, distal segments actively shortened at the expense of proximal muscle segments, which elongated. The segments undergoing lengthening were nearer to motor endplates than segments undergoing shortening. In conclusion, the present study provides experimental data on magnitude of contraction-induced deformation needed for validation of numerical models. Local muscle deformation is heterogeneous both temporally and spatially and may be related to proximity to the motor endplates.
Collapse
Affiliation(s)
- M R Drost
- Department of Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Ahn AN, Monti RJ, Biewener AA. In vivo and in vitro heterogeneity of segment length changes in the semimembranosus muscle of the toad. J Physiol 2003; 549:877-88. [PMID: 12717006 PMCID: PMC2342988 DOI: 10.1113/jphysiol.2002.038018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Many studies examine sarcomere dynamics in single fibres or length-tension dynamics in whole muscles in vivo or in vitro, but few studies link the various levels of organisation. To relate data addressing in vitro muscle segment behaviour with in vivo whole muscle behaviour during locomotion, we measured in vivo strain patterns of muscle segments using three sonomicrometry crystals implanted along a fascicle of the semimembranosus muscle in the American toad (Bufo americanus; n = 6) during hopping. The centre crystal emitted an ultrasonic signal, while the outer crystals received the signal allowing the instantaneous measurement of lengths from two adjacent muscle segments. On the first day, we recorded from the central and distal segments. On the second day of recordings, the most distal crystal was moved to a proximal position to record from a proximal segment and the same central segment. When the toads hopped a distance of two body lengths, the proximal and central segments strained -15.1 +/- 6.1 and -14.0 +/- 4.9 % (i.e. shortening), respectively. Strain of the distal segment, however, was significantly lower and more variable in pattern, often lengthening before shortening during a hop. From rest length, the distal segment initially lengthened by 2.6 +/- 2.0 % before shortening by 6.5 +/- 3.2 % at the same hop distance. Under in vitro conditions, the central segment always shortened more than the distal segment, except when passively cycled, during which the segments strained similarly. When the whole muscle was cycled sinusoidally and stimulated phasically in vitro, the two adjacent segments strained in opposite directions over much (up to 34 %) of the cycle. These differences in strain amplitude and direction imply that two adjacent segments can not only produce and/or absorb varying amounts of mechanical energy, but can also operate on different regions of their force-length and force-velocity relationships when activated by the same neural signal. Understanding regional differences in contractile dynamics within muscles is therefore important to linking our understanding of sarcomere behaviour with whole muscle behaviour during locomotion.
Collapse
Affiliation(s)
- A N Ahn
- Concord Field Station, Museum of Comparative Zoology, Harvard University, Old Causeway Road, Bedford, MA 01730, USA.
| | | | | |
Collapse
|
22
|
Coupland ME, Ranatunga KW. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres. J Physiol 2003; 548:439-49. [PMID: 12611915 PMCID: PMC2342845 DOI: 10.1113/jphysiol.2002.037143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the tension (force) responses induced by rapid temperature jumps (T-jumps) in electrically stimulated, intact fibre bundles (5-10 fibres, fibre length approximately 2 mm) isolated from a foot muscle (flexor hallucis brevis) of the rat; the muscle contains approximately 90 % type 2 fast fibres. In steady state experiments, the temperature dependence of the twitch tension was basically similar to that previously described from other fast muscles; the tetanic tension increased 3- to 4-fold in raising the temperature from approximately 2 to 35 degrees C and the relation between the tetanic tension and the reciprocal absolute temperature was sigmoidal with half-maximal tension at 9.5 degrees C. A rapid T-jump of 3-5 degrees C was induced during a contraction by applying an infrared laser pulse (lambda = 1.32 micro, 0.2 ms) to the 50 microl trough containing the fibre bundle immersed in physiological saline. At approximately 10 degrees C, a T-jump induced a large transient tension rise when applied during the rising phase of a twitch contraction, the amplitude of which decreased when the T-jump was delayed with respect to the stimulus; a T-jump probably perturbs an early step in excitation-contraction coupling. No transient increase was seen when a T-jump was applied during twitch relaxation. When applied during the plateau of a tetanic contraction a T-jump induced a tension rise to a higher steady tension level; the tension rise after a T-jump was 2-3 times faster than the corresponding phase of the initial tension rise in a tetanus. The approach to a new steady tension level after a T-jump was biphasic with a fast (phase 2b, approximately 35 s-1 at 10 degrees C) and a slow component (phase 3, < 10 s-1). The rates of both components increased (Q10 approximately 3) but their amplitudes decreased with increase of the steady temperature. These results from tetanized intact fibres are consistent with the thesis previously proposed from studies on Ca2+-activated skinned fibres, that the elementary force generation step in muscle is enhanced by increased temperature; the findings indicate that an endothermic molecular step underlies muscle force generation.
Collapse
Affiliation(s)
- M E Coupland
- Department of Physiology, School of Medical Sciences, University of Bristol, UK
| | | |
Collapse
|
23
|
Denoth J, Stüssi E, Csucs G, Danuser G. Single muscle fiber contraction is dictated by inter-sarcomere dynamics. J Theor Biol 2002; 216:101-22. [PMID: 12076131 DOI: 10.1006/jtbi.2001.2519] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper presents first results from a study where we developed a generic framework for analysing inter-sarcomere dynamics. Our objective is to find an accurate description of a muscle as a linear motor composed of parallel and series coupled subunits. The quality of theoretical models can be tested through their ability to predict experimental observations. With the current method we have found rigorous mathematical explanations for mechanisms such as sarcomere popping, extra tension and homogenization. These phenomena have been observed for many years in single fibers experiments, yet have never been completely understood in terms of a mechanical model. Now they can be explained on a theoretical basis. Interestingly, rather simplistic descriptions of each of the various molecular components in the sarcomere (actin-myosin cross-bridges, titin and contributions from passive elastic components) are sufficient to predict these behaviors. The complexity of a real muscle fiber is addressed through rigorous coupling of the single component models in a system of differential equations. We examine the properties of the differential equations, based on a down-stripped model, which permits the derivation of analytical solutions. They suggest that the contraction characteristics of inter-connected sarcomeres are essentially dictated by the initial distribution of the sarcomeres on the force-length curve and their starting velocities. The complete model is applied to show the complexity of inter-sarcomere dynamics of activated fibers in stretch-release experiments with either external force or length control. Seemingly contradictory and unexpected observations from single fiber experiments, which have hitherto been discussed with the argument of uncontrollable biological variability, turn out to be a consistent set of possible fiber responses. They result from a convolution of multiple relatively simple rules each of them defining a certain characteristics of the single sarcomere.
Collapse
Affiliation(s)
- Jachen Denoth
- Laboratory for Biomechanics, Department of Materials, Swiss Federal Institute of Technology (ETH), Wagistrasse 4, CH-8952 Schlieren, Switzerland.
| | | | | | | |
Collapse
|