1
|
Pushko P, Lukashevich IS, Johnson DM, Tretyakova I. Single-Dose Immunogenic DNA Vaccines Coding for Live-Attenuated Alpha- and Flaviviruses. Viruses 2024; 16:428. [PMID: 38543793 PMCID: PMC10974764 DOI: 10.3390/v16030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA;
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA;
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| |
Collapse
|
2
|
Loukinov D, Anderson AL, Mkrtichyan M, Ghochikyan A, Rivero-Hinojosa S, Tucker J, Lobanenkov V, Agadjanyan MG, Nelson EL. A Therapeutic Vaccine Targeting Rat BORIS (CTCFL) for the Treatment of Rat Breast Cancer Tumors. Int J Mol Sci 2023; 24:5976. [PMID: 36983050 PMCID: PMC10058450 DOI: 10.3390/ijms24065976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer testis antigens are ideal for tumor immunotherapy due to their testis-restricted expression. We previously showed that an immunotherapeutic vaccine targeting the germ cell-specific transcription factor BORIS (CTCFL) was highly effective in treating aggressive breast cancer in the 4T1 mouse model. Here, we further tested the therapeutic efficacy of BORIS in a rat 13762 breast cancer model. We generated a recombinant VEE-VRP (Venezuelan Equine Encephalitis-derived replicon particle) vector-expressing modified rat BORIS lacking a DNA-binding domain (VRP-mBORIS). Rats were inoculated with the 13762 cells, immunized with VRP-mBORIS 48 h later, and then, subsequently, boosted at 10-day intervals. The Kaplan-Meier method was used for survival analysis. Cured rats were re-challenged with the same 13762 cells. We demonstrated that BORIS was expressed in a small population of the 13762 cells, called cancer stem cells. Treatment of rats with VRP-BORIS suppressed tumor growth leading to its complete disappearance in up to 50% of the rats and significantly improved their survival. This improvement was associated with the induction of BORIS-specific cellular immune responses measured by T-helper cell proliferation and INFγ secretion. The re-challenging of cured rats with the same 13762 cells indicated that the immune response prevented tumor growth. Thus, a therapeutic vaccine against rat BORIS showed high efficacy in treating the rat 13762 carcinoma. These data suggest that targeting BORIS can lead to the elimination of mammary tumors and cure animals even though BORIS expression is detected only in cancer stem cells.
Collapse
Affiliation(s)
- Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amanda Laust Anderson
- Center for Immunology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| | | | | | | | - Jo Tucker
- Center for Immunology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| | - Victor Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | - Edward L. Nelson
- Center for Immunology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| |
Collapse
|
3
|
Application of mRNA Technology in Cancer Therapeutics. Vaccines (Basel) 2022; 10:vaccines10081262. [PMID: 36016150 PMCID: PMC9415393 DOI: 10.3390/vaccines10081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
mRNA-based therapeutics pose as promising treatment strategies for cancer immunotherapy. Improvements in materials and technology of delivery systems have helped to overcome major obstacles in generating a sufficient immune response required to fight a specific type of cancer. Several in vivo models and early clinical studies have suggested that various mRNA treatment platforms can induce cancer-specific cytolytic activity, leading to numerous clinical trials to determine the optimal method of combinations and sequencing with already established agents in cancer treatment. Nevertheless, further research is required to optimize RNA stabilization, delivery platforms, and improve clinical efficacy by interacting with the tumor microenvironment to induce a long-term antitumor response. This review provides a comprehensive summary of the available evidence on the recent advances and efforts to overcome existing challenges of mRNA-based treatment strategies, and how these efforts play key roles in offering perceptive insights into future considerations for clinical application.
Collapse
|
4
|
Su H, Imai K, Jia W, Li Z, DiCioccio RA, Serody JS, Poe JC, Chen BJ, Doan PL, Sarantopoulos S. Alphavirus Replicon Particle Vaccine Breaks B Cell Tolerance and Rapidly Induces IgG to Murine Hematolymphoid Tumor Associated Antigens. Front Immunol 2022; 13:865486. [PMID: 35686131 PMCID: PMC9171395 DOI: 10.3389/fimmu.2022.865486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
De novo immune responses to myeloid and other blood-borne tumors are notably limited and ineffective, making our ability to promote immune responses with vaccines a major challenge. While focus has been largely on cytotoxic cell-mediated tumor eradication, B-cells and the antibodies they produce also have roles in anti-tumor responses. Indeed, therapeutic antibody-mediated tumor cell killing is routinely employed in patients with hematolymphoid cancers, but whether endogenous antibody responses can be incited to blood-born tumors remains poorly studied. A major limitation of immunoglobulin therapies is that cell surface expression of tumor-associated antigen (TAA) targets is dynamic and varied, making promotion of polyclonal, endogenous B cell responses appealing. Since many TAAs are self-antigens, developing tumor vaccines that enable production of antibodies to non-polymorphic antigen targets remains a challenge. As B cell responses to RNA vaccines are known to occur, we employed the Viral Replicon Particles (VRP) which was constructed to encode mouse FLT3. The VRP-FLT3 vaccine provoked a rapid IgG B-cell response to this self-antigen in leukemia and lymphoma mouse models. In addition, IgGs to other TAAs were also produced. Our data suggest that vaccination with RNA viral particle vectors incites a loss of B-cell tolerance that enables production of anti-tumor antibodies. This proof of principle work provides impetus to employ such strategies that lead to a break in B-cell tolerance and enable production of broadly reactive anti-TAA antibodies as potential future therapeutic agents for patients with hematolymphoid cancers.
Collapse
Affiliation(s)
- Hsuan Su
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Kazuhiro Imai
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Wei Jia
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Zhiguo Li
- Biostatistics and Bioinformatics, Basic Science Department, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Rachel A DiCioccio
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan C Poe
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Benny J Chen
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Phuong L Doan
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States.,Department of Immunology, School of Medicine, Duke University , Durham, NC, United States
| |
Collapse
|
5
|
Pushko P, Lukashevich IS, Weaver SC, Tretyakova I. DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev Vaccines 2016; 15:1223-34. [PMID: 27055100 PMCID: PMC5033646 DOI: 10.1080/14760584.2016.1175943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Microbiology and Immunology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555, USA
| | - Irina Tretyakova
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| |
Collapse
|
6
|
Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer. Vaccine 2015; 33:5386-5395. [PMID: 26319744 DOI: 10.1016/j.vaccine.2015.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022]
Abstract
The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1(*)1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8 T cells (19.6 ± 7.4%) produced IFNγ in response to the immunodominant peptide PSA(65-73). In the blood of vaccinated mice, 18.4 ± 4.1% of CD8 T cells were PSA-specific as determined by the staining with H-2D(b)/PSA(65-73) dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8+ T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer.
Collapse
|
7
|
HER2/neu: an increasingly important therapeutic target. Part 1: basic biology & therapeutic armamentarium. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.14.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Avogadri F, Zappasodi R, Yang A, Budhu S, Malandro N, Hirschhorn-Cymerman D, Tiwari S, Maughan MF, Olmsted R, Wolchok JD, Merghoub T. Combination of alphavirus replicon particle-based vaccination with immunomodulatory antibodies: therapeutic activity in the B16 melanoma mouse model and immune correlates. Cancer Immunol Res 2014; 2:448-58. [PMID: 24795357 DOI: 10.1158/2326-6066.cir-13-0220] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induction of potent immune responses to self-antigens remains a major challenge in tumor immunology. We have shown that a vaccine based on alphavirus replicon particles (VRP) activates strong cellular and humoral immunity to tyrosinase-related protein-2 (TRP2) melanoma antigen, providing prophylactic and therapeutic effects in stringent mouse models. Here, we report that the immunogenicity and efficacy of this vaccine is increased in combination with either antagonist anti-CTL antigen-4 (CTLA-4) or agonist anti-glucocorticoid-induced TNF family-related gene (GITR) immunomodulatory monoclonal antibodies (mAb). In the challenging therapeutic setting, VRP-TRP2 plus anti-GITR or anti-CTLA-4 mAb induced complete tumor regression in 90% and 50% of mice, respectively. These mAbs had similar adjuvant effects in priming an adaptive immune response against the vaccine-encoded antigen, augmenting, respectively, approximately 4- and 2-fold the TRP2-specific CD8(+) T-cell response and circulating Abs, compared with the vaccine alone. Furthermore, while both mAbs increased the frequency of tumor-infiltrating CD8(+) T cells, anti-CTLA-4 mAb also increased the quantity of intratumor CD4(+)Foxp3(-) T cells expressing the negative costimulatory molecule programmed death-1 (PD-1). Concurrent GITR expression on these cells suggests that they might be controlled by anti-GITR mAbs, thus potentially explaining their differential accumulation under the two treatment conditions. These findings indicate that combining immunomodulatory mAbs with alphavirus-based anticancer vaccines can provide therapeutic antitumor immune responses in a stringent mouse model, suggesting potential utility in clinical trials. They also indicate that tumor-infiltrating CD4(+)Foxp3(-)PD-1(+) T cells may affect the outcome of immunomodulatory treatments.
Collapse
Affiliation(s)
- Francesca Avogadri
- Authors' Affiliations: AlphaVax, Inc., Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Slovin SF, Kehoe M, Durso R, Fernandez C, Olson W, Gao JP, Israel R, Scher HI, Morris S. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 2012; 31:943-9. [PMID: 23246260 DOI: 10.1016/j.vaccine.2012.11.096] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/23/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
PSMA-VRP is a propagation defective, viral replicon vector system encoding PSMA under phase I evaluation for patients with castration resistant metastatic prostate cancer (CRPC). The product is derived from an attenuated strain of the alphavirus, Venezuelan Equine Encephalitis (VEE) virus, and incorporates multiple redundant safety features. In this first in human trial, two cohorts of 3 patients with CRPC metastatic to bone were treated with up to five doses of either 0.9×10(7)IU or 0.36×10(8)IU of PSMA-VRP at weeks 1, 4, 7, 10 and 18, followed by an expansion cohort of 6 patients treated with 0.36×10(8)IU of PSMA-VRP at weeks 1, 4, 7, 10 and 18. No toxicities were observed. In the first dose cohort, no PSMA specific cellular immune responses were seen but weak PSMA-specific signals were observed by ELISA. The remaining 9 patients, which included the higher cohort and the extension cohort, had no PSMA specific cellular responses. PSMA-VRP was well-tolerated at both doses. While there did not appear to be clinical benefit nor robust immune signals at the two doses studied, neutralizing antibodies were produced by both cohorts suggesting that dosing was suboptimal.
Collapse
Affiliation(s)
- Susan F Slovin
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lukashevich IS. Advanced vaccine candidates for Lassa fever. Viruses 2012; 4:2514-57. [PMID: 23202493 PMCID: PMC3509661 DOI: 10.3390/v4112514] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Kentucky, USA.
| |
Collapse
|
11
|
The immunosuppressive tumor environment is the major impediment to successful therapeutic vaccination in Neu transgenic mice. J Immunother 2010; 33:482-91. [PMID: 20463599 DOI: 10.1097/cji.0b013e3181d756bb] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We earlier showed that therapeutic vaccination of FVB/N mice with alphaviral replicon particles expressing rat neuET-VRP induced regression of established neu-expressing tumors. In this study, we evaluated the efficacy of neuET-VRPs in a tolerant mouse model using mice with transgenic expression of neu. Using the same approach that induced regression of 70 mm(2) tumors in FVB/N mice, we were unable to inhibit tumor growth in tolerant neu-N mice, despite showing neu-specific B-cell and T-cell responses post vaccination. As neu-N mice have a limited T-cell repertoire specific to neu, we hypothesized that the absence of these T cells led to differences in the vaccine response. However, transfer of neu-specific T cells from vaccinated FVB/N mice was not effective in inducing tumor regression, as these cells did not proliferate in the tumor-draining lymph node. Vaccination given with low-dose cyclophosphamide to deplete regulatory T cells delayed tumor growth but did not result in tumor regression. Finally, we showed that T cells given with vaccination were effective in inhibiting tumor growth, if administered with approaches to deplete myeloid-derived suppressor cells. Our data show that both central deletion of lymphocytes and peripheral immunosuppressive mechanisms are present in neu-N mice. However, the major impediment to successful vaccination is the peripheral tumor-induced immune suppression.
Collapse
|
12
|
Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity. PLoS One 2010; 5. [PMID: 20844763 PMCID: PMC2937034 DOI: 10.1371/journal.pone.0012670] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/16/2010] [Indexed: 02/06/2023] Open
Abstract
Background Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. Methodology/Principal Findings VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. Conclusions/Significance This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.
Collapse
|
13
|
Alphavirus vectors for cancer therapy. Virus Res 2010; 153:179-96. [PMID: 20692305 DOI: 10.1016/j.virusres.2010.07.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/23/2022]
Abstract
Alphaviruses contain a single strand RNA genome that can be easily modified to express heterologous genes at very high levels in a broad variety of cells, including tumor cells. Alphavirus vectors can be used as viral particles containing a packaged vector RNA, or directly as nucleic acids in the form of RNA or DNA. In the latter case alphavirus RNA is cloned within a DNA vector downstream of a eukaryotic promoter. Expression mediated by these vectors is generally transient due to the induction of apoptosis. The high expression levels, induction of apoptosis, and activation of type I IFN response are the key features that have made alphavirus vectors very attractive for cancer treatment and vaccination. Alphavirus vectors have been successfully used as vaccines to induce protective and therapeutic immune responses against many tumor-associated antigens in animal models of mastocytoma, melanoma, mammary, prostate, and virally induced tumors. Alphavirus vectors have also shown a high antitumoral efficacy by expressing antitumoral molecules in tumor cells, which include cytokines, antiangiogenic factors or toxic proteins. In these studies induction of apoptosis in tumor cells contributed to the antitumoral efficacy by the release of tumor antigens that can be uptaken by antigen presenting cells, enhancing immune responses against tumors. The potential use of alphaviruses as oncolytic agents has also been evaluated for avirulent strains of Semliki Forest virus and Sindbis virus. The fact that this latter virus has a natural tropism for tumor cells has led to many studies in which this vector was able to reach metastatic tumors when administered systemically. Other "artificial" strategies to increase the tropism of alphavirus for tumors have also been evaluated and will be discussed.
Collapse
|
14
|
Morse MA, Hobeika AC, Osada T, Berglund P, Hubby B, Negri S, Niedzwiecki D, Devi GR, Burnett BK, Clay TM, Smith J, Lyerly HK. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J Clin Invest 2010; 120:3234-41. [PMID: 20679728 DOI: 10.1172/jci42672] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 06/16/2010] [Indexed: 01/23/2023] Open
Abstract
Therapeutic anticancer vaccines are designed to boost patients' immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.
Collapse
Affiliation(s)
- Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Farkas AM, Finn OJ. Vaccines based on abnormal self-antigens as tumor-associated antigens: immune regulation. Semin Immunol 2010; 22:125-31. [PMID: 20403708 DOI: 10.1016/j.smim.2010.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/15/2010] [Indexed: 01/21/2023]
Abstract
Abnormal expression of "self" antigens on tumors compared with normal cells provides opportunities and challenges for development of cancer vaccines. We review recent work in pre-clinical transgenic mouse models and in clinical trials that has elucidated multiple regulatory mechanisms that interfere with the induction of effective immunity. We discuss these as being either part of the normal function of the immune system or being driven by the tumor microenvironment. Collectively this work shows that it is possible to design vaccines based on tumor-associated antigens and elicit effective immunity against abnormal expression of these antigens on tumors without causing autoimmunity.
Collapse
Affiliation(s)
- Adam M Farkas
- Department of Immunology, University of Pittsburgh School of Medicine, E1044, Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | |
Collapse
|
16
|
Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P, Olmsted RA, Hoeper A, Morris J, Negri S, Maughan MF, Chulay JD. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 2009; 28:484-93. [DOI: 10.1016/j.vaccine.2009.09.135] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/21/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
|
17
|
Nishimoto KP, Laust AK, Nelson EL. A human dendritic cell subset receptive to the Venezuelan equine encephalitis virus-derived replicon particle constitutively expresses IL-32. THE JOURNAL OF IMMUNOLOGY 2008; 181:4010-8. [PMID: 18768856 DOI: 10.4049/jimmunol.181.6.4010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are a diverse population with the capacity to respond to a variety of pathogens. Because of their critical role in pathogenesis and Ag-specific adaptive immune responses, DCs are the focus of extensive study and incorporation into a variety of immunotherapeutic strategies. The diversity of DC subsets imposes a substantial challenge to the successful development of DC-based therapies, requiring identification of the involved subset(s) and the potential roles each contributes to the immunologic responses. The recently developed and promising Venezuelan equine encephalitis replicon particle (VRP) vector system has conserved tropism for a subset of myeloid DCs. This immunotherapeutic vector permits in situ targeting of DCs; however, it targets a restricted subset of DCs, which are heretofore uncharacterized. Using a novel technique, we isolated VRP-receptive and -nonreceptive populations from human monocyte-derived DCs. Comparative gene expression analysis revealed significant differential gene expression, supporting the existence of two distinct DC populations. Further analysis identified constitutive expression of the proinflammatory cytokine IL-32 as a distinguishing characteristic of VRP-receptive DCs. IL-32 transcript was exclusively expressed (>50 fold) in the VRP-receptive DC population relative to the background level of expression in the nonreceptive population. The presence of IL-32 transcript was accompanied by protein expression. These data are the first to identify a subset of immature monocyte-derived DCs constitutively expressing IL-32 and they provide insights into both DC biology and potential mechanisms employed by this potent vector system.
Collapse
Affiliation(s)
- Kevin P Nishimoto
- Molecular Biology and Biochemistry, School of Biological Sciences, University of California at Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
18
|
Kamrud KI, Alterson KD, Andrews C, Copp LO, Lewis WC, Hubby B, Patel D, Rayner JO, Talarico T, Smith JF. Analysis of Venezuelan equine encephalitis replicon particles packaged in different coats. PLoS One 2008; 3:e2709. [PMID: 18628938 PMCID: PMC2447172 DOI: 10.1371/journal.pone.0002709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/19/2008] [Indexed: 11/19/2022] Open
Abstract
Background The Venezuelan equine encephalitis (VEE) virus replicon system was used to produce virus-like replicon particles (VRP) packaged with a number of different VEE-derived glycoprotein (GP) coats. The GP coat is believed to be responsible for the cellular tropism noted for VRP and it is possible that different VEE GP coats may have different affinities for cells. We examined VRP packaged in four different VEE GP coats for their ability to infect cells in vitro and to induce both humoral and cellular immune responses in vivo. Methodology/Principal Findings The VRP preparations were characterized to determine both infectious units (IU) and genome equivalents (GE) prior to in vivo analysis. VRP packaged with different VEE GP coats demonstrated widely varying GE/IU ratios based on Vero cell infectivity. BALB/c mice were immunized with the different VRP based on equal GE titers and the humoral and cellular responses to the expressed HIV gag gene measured. The magnitude of the immune responses measured in mice revealed small but significant differences between different GP coats when immunization was based on GE titers. Conclusions/Significance We suggest that care should be taken when alternative coat proteins are used to package vector-based systems as the titers determined by cell culture infection may not represent accurate particle numbers and in turn may not accurately represent actual in vivo dose.
Collapse
Affiliation(s)
- Kurt I Kamrud
- AlphaVax, Inc., Research Triangle Park, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Garcia-Hernandez MDLL, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 2008; 68:861-9. [PMID: 18245488 DOI: 10.1158/0008-5472.can-07-0445] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate stem cell antigen (PSCA) is an attractive antigen to target using therapeutic vaccines because of its overexpression in prostate cancer, especially in metastatic tissues, and its limited expression in other organs. Our studies offer the first evidence that a PSCA-based vaccine can induce long-term protection against prostate cancer development in prostate cancer-prone transgenic adenocarcinoma mouse prostate (TRAMP) mice. Eight-week-old TRAMP mice displaying prostate intraepithelial neoplasia were vaccinated with a heterologous prime/boost strategy consisting of gene gun-delivered PSCA-cDNA followed by Venezuelan equine encephalitis virus replicons encoding PSCA. Our results show the induction of an immune response against a newly defined PSCA epitope that is mediated primarily by CD8 T cells. The prostates of PSCA-vaccinated mice were infiltrated by CD4-positive, CD8-positive, CD11b-positive, and CD11c-positive cells. Vaccination induced MHC class I expression and cytokine production [IFN-gamma, tumor necrosis factor-alpha, interleukin 2 (IL-2), IL-4, and IL-5] within prostate tumors. This tumor microenvironment correlated with low Gleason scores and weak PSCA staining on tumor cells present in hyperplastic zones and in areas that contained focal and well-differentiated adenocarcinomas. PSCA-vaccinated TRAMP mice had a 90% survival rate at 12 months of age. In contrast, all control mice had succumbed to prostate cancer or had heavy tumor loads. Crucially, this long-term protective immune response was not associated with any measurable induction of autoimmunity. The possibility of inducing long-term protection against prostate cancer by vaccination at the earliest signs of its development has the potential to cause a dramatic paradigm shift in the treatment of this disease.
Collapse
Affiliation(s)
- Maria de la Luz Garcia-Hernandez
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
20
|
Chen L, Ewing D, Subramanian H, Block K, Rayner J, Alterson KD, Sedegah M, Hayes C, Porter K, Raviprakash K. A heterologous DNA prime-Venezuelan equine encephalitis virus replicon particle boost dengue vaccine regimen affords complete protection from virus challenge in cynomolgus macaques. J Virol 2007; 81:11634-9. [PMID: 17715224 PMCID: PMC2168814 DOI: 10.1128/jvi.00996-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A candidate vaccine (D1ME-VRP) expressing dengue virus type 1 premembrane and envelope proteins in a Venezuelan equine encephalitis (VEE) virus replicon particle (VRP) system was constructed and tested in conjunction with a plasmid DNA vaccine (D1ME-DNA) expressing identical dengue virus sequences. Cynomolgus macaques were vaccinated with three doses of DNA (DDD), three doses of VRP (VVV group), or a heterologous DNA prime-VRP boost regimen (DDV) using two doses of DNA vaccine and a third dose of VRP vaccine. Four weeks after the final immunization, the DDV group produced the highest dengue virus type 1-specific immunoglobulin G antibody responses and virus-neutralizing antibody titers. Moderate T-cell responses were demonstrated only in DDD- and DDV-vaccinated animals. When vaccinated animals were challenged with live virus, all vaccination regimens showed significant protection from viremia. DDV-immunized animals were completely protected from viremia (mean time of viremia = 0 days), whereas DDD- and VVV-vaccinated animals had mean times of viremia of 0.66 and 0.75 day, respectively, compared to 6.33 days for the control group of animals.
Collapse
Affiliation(s)
- Lan Chen
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Durso RJ, Andjelic S, Gardner JP, Margitich DJ, Donovan GP, Arrigale RR, Wang X, Maughan MF, Talarico TL, Olmsted RA, Heston WDW, Maddon PJ, Olson WC. A Novel Alphavirus Vaccine Encoding Prostate-Specific Membrane Antigen Elicits Potent Cellular and Humoral Immune Responses. Clin Cancer Res 2007; 13:3999-4008. [PMID: 17606734 DOI: 10.1158/1078-0432.ccr-06-2202] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) is an attractive target for active immunotherapy. Alphavirus vaccines have shown promise in eliciting immunity to tumor antigens. This study investigated the immunogenicity of alphavirus vaccine replicon particles (VRP) that encode PSMA (PSMA-VRP). EXPERIMENTAL DESIGN Cells were infected with PSMA-VRP and evaluated for PSMA expression and folate hydrolase activity. Mice were immunized s.c. with PSMA-VRP or purified PSMA protein. Sera, splenocytes, and purified T cells were evaluated for the magnitude, durability, and epitope specificity of the anti-PSMA response. Antibodies were measured by flow cytometry, and cellular responses were measured by IFN-gamma enzyme-linked immunospot and chromium release assays. Cellular responses in BALB/c and C57BL/6 mice were mapped using overlapping 15-mer PSMA peptides. A Good Laboratory Practice-compliant toxicology study was conducted in rabbits. RESULTS PSMA-VRP directed high-level expression of active PSMA. Robust T-cell and B-cell responses were elicited by a single injection of 2 x 10(5) infectious units, and responses were boosted following repeat immunizations. Anti-PSMA responses were detected following three immunizations with 10(2) infectious units and increased with increasing dose. PSMA-VRP was more immunogenic than adjuvanted PSMA protein. Responses to PSMA-VRP were characterized by Th-1 cytokines, potent CTL activity, and IgG2a/IgG2b antibodies. T-cell responses in BALB/c and C57BL/6 mice were directed toward different PSMA peptides. Immunogenic doses of PSMA-VRP were well tolerated in mice and rabbits. CONCLUSIONS PSMA-VRP elicited potent cellular and humoral immunity in mice, and specific anti-PSMA responses were boosted on repeat dosing. PSMA-VRP represents a promising approach for immunotherapy of prostate cancer.
Collapse
Affiliation(s)
- Robert J Durso
- Progenics Pharmaceuticals, Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nishimoto KP, Laust AK, Wang K, Kamrud KI, Hubby B, Smith JF, Nelson EL. Restricted and selective tropism of a Venezuelan equine encephalitis virus-derived replicon vector for human dendritic cells. Viral Immunol 2007; 20:88-104. [PMID: 17425424 DOI: 10.1089/vim.2006.0090] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) consist of heterogeneous phenotypic populations and have diverse immunostimulatory functions dependent on both lineage and functional phenotype, but as exceptionally potent antigen-presenting cells, they are targets for generating effective antigen-specific immune responses. A promising replicon particle vector derived from Venezuelan equine encephalitis virus (VEE) has been reported to transduce murine footpad DCs. However, the receptive DC subset, the degree of restriction for this tropism, and the extent of conservation between rodents and humans have not been well characterized. Using fresh peripheral blood DCs, mononuclear cells, monocyte-derived macrophages, and monocyte-derived DCs, our results demonstrate conservation of VEE replicon particle (VRP) tropism for DCs between humans and rodents. We observed that a subset of immature myeloid DCs is the target population, and that VRP-transduced immature DCs retain intact functional capacity, for example, the ability to resist the cytopathic effects of VRP transduction and the capacity to acquire the mature phenotype. These studies support the demonstration of selective VRP tropism for human DCs and provide further insight into the biology of the VRP vector, its parent virus, and human DCs.
Collapse
Affiliation(s)
- Kevin P Nishimoto
- Molecular Biology and Biochemistry, School of Medicine, School of Biological Sciences, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kamrud KI, Custer M, Dudek JM, Owens G, Alterson KD, Lee JS, Groebner JL, Smith JF. Alphavirus replicon approach to promoterless analysis of IRES elements. Virology 2007; 360:376-87. [PMID: 17156813 PMCID: PMC1885372 DOI: 10.1016/j.virol.2006.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 08/30/2006] [Accepted: 10/30/2006] [Indexed: 02/05/2023]
Abstract
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.
Collapse
Affiliation(s)
- K I Kamrud
- AlphaVax, Inc., 2 Triangle Drive, Research Triangle Park, NC 27709-0307, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Laust AK, Sur BW, Wang K, Hubby B, Smith JF, Nelson EL. VRP immunotherapy targeting neu: treatment efficacy and evidence for immunoediting in a stringent rat mammary tumor model. Breast Cancer Res Treat 2007; 106:371-82. [PMID: 17351745 DOI: 10.1007/s10549-007-9517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
The ability to overcome intrinsic tolerance to a strict "self" tumor-associated antigen (TAA) and successfully treat pre-existing tumor is the most stringent test for anti-tumor immunotherapeutic strategies. Although this capacity has been demonstrated in various models using complicated strategies that may not be readily translated into the clinical arena, straightforward antigen-specific immunotherapeutic strategies in the most stringent models of common epithelial cancers have largely failed to meet this standard. We employed an immunotherapeutic strategy using an alphavirus-based, virus-like replicon particle (VRP), which has in vivo tropism for dendritic cells, to elicit immune responses to the non-mutated TAA rat neu in an aggressive rat mammary tumor model. Using this VRP-based immunotherapeutic strategy targeting a single TAA, we generated effective anti-tumor immunity in the setting of pre-existing tumor resulting in the cure of 36% of rats over multiple experiments, P = 0.002. We also observed down-regulation of rat neu expression in tumors that showed initial responses followed by tumor escape with resumption of rapid tumor growth. These responses were accompanied by significant anti-tumor proliferative responses and CD8+ cellular tumor infiltrates, all of which were restricted to animals receiving the anti-neu immunotherapy. Together these data, obtained in a stringent "self" TAA model, indicate that the VRP-based antigen-specific immunotherapy elicits sufficiently potent immune responses to exert immunologic pressure, selection, and editing of the growing tumors, thus supporting the activity of this straightforward immunotherapy and suggesting that it is a promising platform upon which to build even more potent strategies.
Collapse
Affiliation(s)
- Amanda K Laust
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kowalski J, Adkins K, Gangolli S, Ren J, Arendt H, DeStefano J, Obregon J, Tummolo D, Natuk RJ, Brown TP, Parks CL, Udem SA, Long D. Evaluation of neurovirulence and biodistribution of Venezuelan equine encephalitis replicon particles expressing herpes simplex virus type 2 glycoprotein D. Vaccine 2006; 25:2296-305. [PMID: 17239997 DOI: 10.1016/j.vaccine.2006.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 11/28/2006] [Indexed: 12/25/2022]
Abstract
The safety of a propagation-defective Venezuelan equine encephalitis virus (VEEV) replicon particle vaccine was examined in mice. After intracranial inoculation we observed approximately 5% body weight loss, modest inflammatory changes in the brain, genome replication, and foreign gene expression. These changes were transient and significantly less severe than those caused by TC-83, a live-attenuated vaccinal strain of VEEV that has been safely used to immunize military personnel and laboratory workers. Replicon particles injected intramuscularly or intravenously were detected at limited sites 3 days post-administration, and were undetectable by day 22. There was no evidence of dissemination to spinal cord or brain after systemic administration. These results demonstrate that propagation-defective VEEV replicon particles are minimally neurovirulent and lack neuroinvasive potential.
Collapse
MESH Headings
- Animals
- Body Weight
- Brain/metabolism
- Brain/virology
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Injections, Intramuscular
- Injections, Intravenous
- Mice
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Replicon/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spinal Cord/metabolism
- Spinal Cord/virology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Envelope Proteins/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Jacek Kowalski
- Vaccine Discovery Department, Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodriguez-Madoz JR, Prieto J, Smerdou C. Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther 2006; 12:153-63. [PMID: 15963931 DOI: 10.1016/j.ymthe.2005.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022] Open
Abstract
To evaluate the use of alphavirus vectors for tumor treatment we have constructed and compared two Semliki Forest virus (SFV) vectors expressing different levels of IL-12. SFV-IL-12 expresses both IL-12 subunits from a single subgenomic promoter, while in SFV-enhIL-12 each IL-12 subunit is expressed from an independent subgenomic promoter fused to the SFV capsid translation enhancer. This latter strategy provided an eightfold increase of IL-12 expression. We chose the poorly immunogenic MC38 colon adenocarcinoma model to evaluate the therapeutic potential of SFV vectors. A single intratumoral injection of 10(8) viral particles of SFV-IL-12 or SFV-enh-IL-12 induced>or=80% complete tumor regressions with long-term tumor-free survival. However, lower doses of SFV-enhIL-12 were more efficient than SFV-IL-12 in inducing antitumoral responses, indicating a positive correlation between the IL-12 expression level and the therapeutic effect. Moreover, repeated intratumoral injections of suboptimal doses of SFV-enhIL-12 increased the antitumoral response. In all cases SFV vectors were more efficient at eliminating tumors than a first-generation adenovirus vector expressing IL-12. In addition, the antitumoral effect of SFV vectors was only moderately affected by preimmunization of animals with high doses of SFV vectors. This antitumoral effect was produced, at least partially, by a potent CTL-mediated immune response.
Collapse
Affiliation(s)
- Juan R Rodriguez-Madoz
- Division of Gene Therapy, School of Medicine, Center for Applied Medical Research, University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain
| | | | | |
Collapse
|
27
|
Goldberg SM, Bartido SM, Gardner JP, Guevara-Patiño JA, Montgomery SC, Perales MA, Maughan MF, Dempsey J, Donovan GP, Olson WC, Houghton AN, Wolchok JD. Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin Cancer Res 2006; 11:8114-21. [PMID: 16299244 DOI: 10.1158/1078-0432.ccr-05-1410] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunization of mice with xenogeneic DNA encoding human tyrosinase-related proteins 1 and 2 breaks tolerance to these self-antigens and leads to tumor rejection. Viral vectors used alone or in heterologous DNA prime/viral boost combinations have shown improved responses to certain infectious diseases. The purpose of this study was to compare viral and plasmid DNA in combination vaccination strategies in the context of a tumor antigen. EXPERIMENTAL DESIGN Using tyrosinase as a prototypical differentiation antigen, we determined the optimal regimen for immunization with plasmid DNA. Then, using propagation-incompetent alphavirus vectors (virus-like replicon particles, VRP) encoding tyrosinase, we tested different combinations of priming with DNA or VRP followed by boosting with VRP. We subsequently followed antibody production, T-cell response, and tumor rejection. RESULTS T-cell responses to newly identified mouse tyrosinase epitopes were generated in mice immunized with plasmid DNA encoding human (xenogeneic) tyrosinase. In contrast, when VRP encoding either mouse or human tyrosinase were used as single agents, antibody and T-cell responses and a significant delay in tumor growth in vivo were observed. Similarly, a heterologous vaccine regimen using DNA prime and VRP boost showed a markedly stronger response than DNA vaccination alone. CONCLUSIONS Alphavirus replicon particle vectors encoding the melanoma antigen tyrosinase (self or xenogeneic) induce immune responses and tumor protection when administered either alone or in the heterologous DNA prime/VRP boost approaches that are superior to the use of plasmid DNA alone.
Collapse
Affiliation(s)
- Stacie M Goldberg
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Riezebos-Brilman A, de Mare A, Bungener L, Huckriede A, Wilschut J, Daemen T. Recombinant alphaviruses as vectors for anti-tumour and anti-microbial immunotherapy. J Clin Virol 2006; 35:233-43. [PMID: 16448844 DOI: 10.1016/j.jcv.2005.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/07/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vectors derived from alphaviruses are gaining interest for their high transfection potency and strong immunogenicity. OBJECTIVES After a brief introduction on alphaviruses and their vectors, an overview is given on current preclinical immunotherapy studies using vector systems based on alphaviruses. The efficacy of alphavirus vectors in inducing immune responses will be illustrated by a more detailed description of immunization studies using recombinant Semliki Forest virus for the treatment of human papilloma virus-induced cervical cancer. RESULTS Immunization with recombinant alphavirus results in the induction of humoral and cellular immune responses against microbes, infected cells and cancer cells. Preclinical studies demonstrate that infectious diseases and cancer can be treated prophylactically as well as therapeutically. CONCLUSIONS Alphavirus-based genetic immunization strategies are highly effective in animal model systems, comparing quite favourably with any other approach. Therefore, we hope and expect to see an efficient induction of tumour-or microbial immunity and a positive outcome in future clinical efficacy studies.
Collapse
Affiliation(s)
- Annelies Riezebos-Brilman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Tscharke DC, Suhrbier A. From mice to humans – murine intelligence for human CD8+T cell vaccine design. Expert Opin Biol Ther 2005; 5:263-71. [PMID: 15757387 DOI: 10.1517/14712598.5.2.263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There has been considerable progress in the design of vaccines capable of safely and effectively inducing CD8(+) T cells for prophylaxis and treatment of chronic infectious diseases and cancer. Much of what is known about CD8(+) T cell-mediated immunity has come from pioneering work in mice; this broad overview discusses recent work in mouse systems where lessons may be drawn for human vaccine development. The areas highlighted include antivector immunity, immunodominance, dendritic cell biology and targeting, the role of Toll-like receptors and their exploitation by novel adjuvants, the role of CD4(+) T cell help, regulatory T cells and, finally, some comments on the different requirements of prophylactic versus therapeutic vaccines.
Collapse
Affiliation(s)
- David C Tscharke
- Queensland Institute of Medical Research, EBVBiology, P.O. Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| | | |
Collapse
|