1
|
Matsumoto K, Sugimoto F, Mizuno T, Hayashi T, Okamura R, Nishioka T, Yasuda H, Horie S, Kido MA, Kato S. Immunohistochemical characterization of transient receptor potential vanilloid types 2 and 1 in a trinitrobenzene sulfonic acid-induced rat colitis model with visceral hypersensitivity. Cell Tissue Res 2023; 391:287-303. [PMID: 36513829 DOI: 10.1007/s00441-022-03723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Transient receptor potential vanilloid type 2 (TRPV2) and type 1 (TRPV1) are originally identified as heat-sensitive TRP channels. We compared the expression patterns of TRPV2 and TRPV1 in the rat distal colon and extrinsic primary afferent neurons, and investigated their roles in visceral hypersensitivity in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rats. Both TRPV2 and TRPV1 expressions in the colon, dorsal root ganglion (DRG), and nodose ganglion (NG) were significantly upregulated in the TNBS-induced colitis model. TRPV2 cell bodies co-localized with the intrinsic primary afferent marker NeuN and the inhibitory motor neuronal marker nNOS in the myenteric plexus. TRPV2 expressions were further detected in the resident macrophage marker ED2 in the mucosa. In contrast, no TRPV1-expressing cell bodies were detected in the myenteric plexus. Both TRPV2- and TRPV1-positive cell bodies in the DRG and NG were double-labeled with the neuronal retrograde tracer fluorescent fluorogold. Large- and medium-sized TRPV2-positive neurons were labeled with the A-fiber marker NF200, calcitonin gene-related peptide (CGRP), and substance P (SP) in the DRG while small-sized TRPV1-positive neurons were labeled with the C-fiber markers IB4, CGRP, and SP. TRPV2- and TRPV1-positive NG neurons were labeled with NF200 and IB4. TNBS treatment increased p-ERK1/2-positive cells in TRPV2 and TRPV1 neurons but did not affect the TRPV2 and TRPV1 subpopulations in the DRG and NG. Both TRPV2 and TRPV1 antagonists significantly alleviated visceral hypersensitivity in TNBS-induced colitis model rats. These findings suggest that intrinsic/extrinsic TRPV2- and extrinsic TRPV1-neurons contribute to visceral hypersensitivity in an experimental colitis model.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan.
| | - Fumika Sugimoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Toshiki Mizuno
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Taisei Hayashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Ririka Okamura
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Takuya Nishioka
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Josai International University, Chiba, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| |
Collapse
|
2
|
López‐Estévez S, López‐Torrellardona JM, Parera M, Martínez V. Long-lasting visceral hypersensitivity in a model of DSS-induced colitis in rats. Neurogastroenterol Motil 2022; 34:e14441. [PMID: 36239298 PMCID: PMC9787759 DOI: 10.1111/nmo.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Persistent visceral hypersensitivity is a key component of functional and inflammatory gastrointestinal diseases. Current animal models fail to fully reproduce the characteristics of visceral pain in humans, particularly as it relates to persistent hypersensitivity. This work explores the validity of DSS-induced colitis in rats as a model to mimic chronic intestinal hypersensitivity. METHODS Exposure to DSS (5% for 7 days) was used to induce colitis in rats. Thereafter, changes in viscerosensitivity (visceromotor responses to colorectal distension-CRD), the presence of somatic referred pain (mechanosensitivity of the hind paws, von Frey test) and the expression (qRT-PCR) of sensory-related markers (colon, lumbosacral DRGs, and lumbosacral spinal cord) were assessed at different times during the 35 days period after colitis induction. RESULTS Following colitis, a sustained increase in visceromotor responses to CRD were observed, indicative of the presence of visceral hypersensitivity. Responses in animals without colitis remained stable over time. In colitic animals, somatic referred hypersensitivity was also detected. DSS-induced colitis was associated to a differential expression of sensory-related markers (with both pro- and anti-nociceptive action) in the colon, lumbosacral DRGs and lumbosacral spinal cord; indicating the presence of peripheral and central sensitization. CONCLUSIONS AND INFERENCES DSS-induced colitis in rats is associated to the generation of a long-lasting state of visceral (colonic) hypersensitivity, despite clinical colitis resolution. This model reproduces the changes in intestinal sensitivity characteristics of inflammatory and functional gastrointestinal disorders in humans and can be used in the characterization of new pharmacological treatments against visceral pain.
Collapse
Affiliation(s)
- Sergio López‐Estévez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Marc Parera
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
3
|
Cunningham P, Sumal A, Patton E, Helms H, Noneman MT, Martinez-Muñiz G, Bader JE, Chatzistamou I, Aladhami A, Unger C, Enos RT, Shin HK, Velázquez KT. Ojeok-san ameliorates visceral and somatic nociception in a mouse model of colitis induced colorectal cancer. PLoS One 2022; 17:e0270338. [PMID: 35737651 PMCID: PMC9223640 DOI: 10.1371/journal.pone.0270338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer patients can develop visceral, somatic, and neuropathic pain, largely due to the malignancy itself and its treatments. Often cancer patients and survivors turn to the use of complementary and alternative medicine (CAM) to alleviate pain and fatigue. Thus, it is necessary to investigate how CAM therapies work as novel analgesics to treat cancer pain. Ojeok-san (OJS) is an herbal formula consisting of seventeen herbs. This herbal formula has been shown to possess anti-inflammatory, immunoregulatory, and analgesic properties. In this study, we examined the potential beneficial effects and mechanism of action of OJS in a preclinical model of colitis-associated colorectal cancer. Male and female C57BL/6J mice were exposed to the carcinogen, azoxymethane (AOM, 10 mg/kg) and a chemical inflammatory driver, dextran sulfate sodium (DSS1-2%), to promote tumorigenesis in the colorectum. OJS was given orally (500, 1000, and 2000 mg/kg) to determine its influence on disease activity, tumor burden, nociception, sedation, Erk signaling, and behavioral and metabolic outcomes. In addition, in vitro studies were performed to assess CT-26 cell viability, dorsal root ganglia (DRG) activation, and bone-marrow-derived macrophage (BMDM) inflammatory response to lipopolysaccharide stimulation after OJS treatment. We found that administration of 2000 mg/kg of OJS was able to mitigate mechanical somatic and visceral nociception via Erk signaling without affecting symptom score and polyp number. Moreover, we discovered that OJS has sedative properties and elicits prolonged total sleeping time in AOM/DSS mice. Our in vitro experiments showed that OJS has the capacity to reduce TNFα gene expression in LPS-stimulated BMDM, but no changes were observed in DRG spike number and CT-26 cell proliferation. Taken together, these data suggest that OJS ameliorates nociception in mice and warrants further examination as a potential CAM therapy to promote analgesia.
Collapse
Affiliation(s)
- Patrice Cunningham
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Aman Sumal
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Emma Patton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Henry Helms
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Matthew T. Noneman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Gustavo Martinez-Muñiz
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Ahmed Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Christian Unger
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Reilly T. Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Hyeun Kyoo Shin
- Basic Herbal Medicine Research Group, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kandy T. Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
4
|
Decraecker L, Boeckxstaens G, Denadai-Souza A. Inhibition of Serine Proteases as a Novel Therapeutic Strategy for Abdominal Pain in IBS. Front Physiol 2022; 13:880422. [PMID: 35665224 PMCID: PMC9161638 DOI: 10.3389/fphys.2022.880422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Serine proteases are heavily present in the gastrointestinal tract where they are essential in numerous physiological processes. An imbalance in the proteolytic activity is a central mechanism underlying abdominal pain in irritable bowel syndrome (IBS). Therefore, protease inhibitors are emerging as a promising therapeutic tool to manage abdominal pain in this functional gastrointestinal disorder. With this review, we provide an up-to-date overview of the implications of serine proteases in the development of abdominal pain in IBS, along with a critical assessment of the current developments and prospects of protease inhibitors as a therapeutic tool. In particular, we highlight the current knowledge gap concerning the identity of dysregulated serine proteases that are released by the rectal mucosa of IBS patients. Finally, we suggest a workflow with state-of-the-art techniques that will help address the knowledge gap, guiding future research towards the development of more effective and selective protease inhibitors to manage abdominal pain in IBS.
Collapse
|
5
|
Acute visceral pain relief mediated by A3AR agonists in rats: involvement of N-type voltage-gated calcium channels. Pain 2021; 161:2179-2190. [PMID: 32379223 DOI: 10.1097/j.pain.0000000000001905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.
Collapse
|
6
|
Parisio C, Lucarini E, Micheli L, Toti A, Khatib M, Mulinacci N, Calosi L, Bani D, Di Cesare Mannelli L, Ghelardini C. Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions. Int J Mol Sci 2020; 21:E4304. [PMID: 32560291 PMCID: PMC7353021 DOI: 10.3390/ijms21124304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| |
Collapse
|
7
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Prevalence and Impact of Functional Abdominal Pain Disorders in Children With Inflammatory Bowel Diseases (IBD-FAPD). J Pediatr Gastroenterol Nutr 2017; 65:212-217. [PMID: 27906801 DOI: 10.1097/mpg.0000000000001479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We sought to describe the prevalence of the overlap of functional abdominal pain disorders (FAPDs) in children with inflammatory bowel diseases (IBDs), a condition we have designated as IBD-FAPD. We also aimed to describe the psychological profile of this group, and to assess predictors of disease and the impact of IBD-FAPD on quality of life. METHODS This cross-sectional prospective study included patients ages 8 to 18 years with a diagnosis of IBD. Disease activity was assessed by physician's global assessment, laboratory studies, and abbreviated Pediatric Crohn's Disease Activity Index or Pediatric Ulcerative Colitis Activity Index scoring. Age-appropriate validated questionnaires were used to diagnose FAPDs according to the Rome III criteria, depression, anxiety symptoms, and quality of life. RESULTS There were 128 patients recruited. Eighty-one (63%) completed questionnaires (36 girls; 45 boys; mean age 14.4 ± 2.6 years) (62 Crohn disease, 19 ulcerative colitis). The prevalence of IBD-FAPD in clinical remission was 26% (17 Crohn disease, 4 ulcerative colitis; 95% confidence interval: 20.6%-79.4%), with significantly more girls having IBD-FAPD (P = 0.038). Anxiety symptoms were in 14.3% of patients with IBD-FAPD (P = 0.06) and depression in 23.8% (P = 0.006). The average Pediatric Quality of Life Inventory Gastrointestinal Symptoms score for the IBD-FAPD group was significantly lower than those without FAPDs (71 vs 86.5, P = 0.008). CONCLUSIONS In our cohort, the prevalence of IBD-FAPD was 26%. This is the first study to assess all FAPDs using the Rome III criteria and to demonstrate increased anxiety, depression, and worse quality of life in children with IBD-FAPD. The identification of patients predisposed to IBD-FAPD may allow implementing strategies that could improve symptoms and quality of life.
Collapse
|
9
|
Babygirija R, Sood M, Kannampalli P, Sengupta JN, Miranda A. Percutaneous electrical nerve field stimulation modulates central pain pathways and attenuates post-inflammatory visceral and somatic hyperalgesia in rats. Neuroscience 2017; 356:11-21. [DOI: 10.1016/j.neuroscience.2017.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
|
10
|
Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams DJ, Brierley SM. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA B receptors. Gut 2017; 66:1083-1094. [PMID: 26887818 PMCID: PMC5532460 DOI: 10.1136/gutjnl-2015-310971] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE α-Conotoxin Vc1.1 is a small disulfide-bonded peptide from the venom of the marine cone snail Conus victoriae. Vc1.1 has antinociceptive actions in animal models of neuropathic pain, but its applicability to inhibiting human dorsal root ganglion (DRG) neuroexcitability and reducing chronic visceral pain (CVP) is unknown. DESIGN We determined the inhibitory actions of Vc1.1 on human DRG neurons and on mouse colonic sensory afferents in healthy and chronic visceral hypersensitivity (CVH) states. In mice, visceral nociception was assessed by neuronal activation within the spinal cord in response to noxious colorectal distension (CRD). Quantitative-reverse-transcription-PCR, single-cell-reverse-transcription-PCR and immunohistochemistry determined γ-aminobutyric acid receptor B (GABABR) and voltage-gated calcium channel (CaV2.2, CaV2.3) expression in human and mouse DRG neurons. RESULTS Vc1.1 reduced the excitability of human DRG neurons, whereas a synthetic Vc1.1 analogue that is inactive at GABABR did not. Human DRG neurons expressed GABABR and its downstream effector channels CaV2.2 and CaV2.3. Mouse colonic DRG neurons exhibited high GABABR, CaV2.2 and CaV2.3 expression, with upregulation of the CaV2.2 exon-37a variant during CVH. Vc1.1 inhibited mouse colonic afferents ex vivo and nociceptive signalling of noxious CRD into the spinal cord in vivo, with greatest efficacy observed during CVH. A selective GABABR antagonist prevented Vc1.1-induced inhibition, whereas blocking both CaV2.2 and CaV2.3 caused inhibition comparable with Vc1.1 alone. CONCLUSIONS Vc1.1-mediated activation of GABABR is a novel mechanism for reducing the excitability of human DRG neurons. Vc1.1-induced activation of GABABR on the peripheral endings of colonic afferents reduces nociceptive signalling. The enhanced antinociceptive actions of Vc1.1 during CVH suggest it is a novel candidate for the treatment for CVP.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | | | - Guy Page
- Anabios, San Diego, California, USA
| | | | - David J Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David J Adams
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Tsang SW, Auyeung KKW, Bian ZX, Ko JKS. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis. Curr Neuropharmacol 2017; 14:842-856. [PMID: 27009115 PMCID: PMC5333584 DOI: 10.2174/1570159x14666160324144154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/07/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients.
Collapse
Affiliation(s)
| | | | | | - J K S Ko
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
12
|
Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood‐Van Meerveld B, Cryan JF. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci Ther 2016; 22:102-17. [PMID: 26662472 PMCID: PMC6492884 DOI: 10.1111/cns.12490] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs of the body, which affects a significant proportion of the population and is a common feature of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS). While IBS is multifactorial, with no single etiology to completely explain the disorder, many patients also experience comorbid behavioral disorders, such as anxiety or depression; thus, IBS is described as a disorder of the gut-brain axis. Stress is implicated in the development and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry, as well as change motility and permeability throughout the gastrointestinal (GI) tract. More recently, the role of the gut microbiota in the bidirectional communication along the gut-brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviors. This review will highlight the evidence by which stress and the gut microbiota interact in the regulation of visceral nociception. We will focus on the influence of stress on the microbiota and the mechanisms by which microbiota can affect the stress response and behavioral outcomes with an emphasis on visceral pain.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Present address:
Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Anthony C. Johnson
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Siobhain M. O'Mahony
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Timothy G. Dinan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Beverley Greenwood‐Van Meerveld
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- V.A. Medical CenterOklahoma CityOKUSA
| | - John F. Cryan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
13
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|
14
|
Hughes PA, Moretta M, Lim A, Grasby DJ, Bird D, Brierley SM, Liebregts T, Adam B, Blackshaw LA, Holtmann G, Bampton P, Hoffmann P, Andrews JM, Zola H, Krumbiegel D. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients. Brain Behav Immun 2014; 42:191-203. [PMID: 25063707 DOI: 10.1016/j.bbi.2014.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/29/2022] Open
Abstract
Alterations in the neuro-immune axis contribute toward viscerosensory nerve sensitivity and symptoms in Irritable Bowel Syndrome (IBS). Inhibitory factors secreted from immune cells inhibit colo-rectal afferents in health, and loss of this inhibition may lead to hypersensitivity and symptoms. We aimed to determine the immune cell type(s) responsible for opioid secretion in humans and whether this is altered in patients with IBS. The β-endorphin content of specific immune cell lineages in peripheral blood and colonic mucosal biopsies were compared between healthy subjects (HS) and IBS patients. Peripheral blood mononuclear cell (PBMC) supernatants from HS and IBS patients were applied to colo-rectal sensory afferent endings in mice with post-inflammatory chronic visceral hypersensitivity (CVH). β-Endorphin was identified predominantly in monocyte/macrophages relative to T or B cells in human PBMC and colonic lamina propria. Monocyte derived β-endorphin levels and colonic macrophage numbers were lower in IBS patients than healthy subjects. PBMC supernatants from healthy subjects had greater inhibitory effects on colo-rectal afferent mechanosensitivity than those from IBS patients. The inhibitory effects of PBMC supernatants were more prominent in CVH mice compared to healthy mice due to an increase in μ-opioid receptor expression in dorsal root ganglia neurons in CVH mice. Monocyte/macrophages are the predominant immune cell type responsible for β-endorphin secretion in humans. IBS patients have lower monocyte derived β-endorphin levels than healthy subjects, causing less inhibition of colonic afferent endings. Consequently, altered immune function contributes toward visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Patrick A Hughes
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Leukocyte Biology Laboratory, Women's and Children's Health Research Institute, North Adelaide, SA 5006, Australia.
| | - Melissa Moretta
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Amanda Lim
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Dallas J Grasby
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Daniel Bird
- Leukocyte Biology Laboratory, Women's and Children's Health Research Institute, North Adelaide, SA 5006, Australia
| | - Stuart M Brierley
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tobias Liebregts
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Birgit Adam
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - L Ashley Blackshaw
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Gerald Holtmann
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Peter Bampton
- Department of Gastroenterology, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jane M Andrews
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Heddy Zola
- Leukocyte Biology Laboratory, Women's and Children's Health Research Institute, North Adelaide, SA 5006, Australia; Discipline of Paediatrics, Faculty of Health Sciences, University of Adelaide, SA 5005, Australia
| | - Doreen Krumbiegel
- Leukocyte Biology Laboratory, Women's and Children's Health Research Institute, North Adelaide, SA 5006, Australia; Discipline of Paediatrics, Faculty of Health Sciences, University of Adelaide, SA 5005, Australia; SA Pathology, Adelaide, SA 5000, Australia
| |
Collapse
|
15
|
Abstract
The gastrointestinal tract is innervated by several distinct populations of neurons, whose cell bodies either reside within (intrinsic) or outside (extrinsic) the gastrointestinal wall. Normally, most individuals are unaware of the continuous, complicated functions of these neurons. However, for patients with gastrointestinal disorders, such as IBD and IBS, altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Although bouts of intestinal inflammation underlie the symptoms associated with IBD, increasing preclinical and clinical evidence indicates that infection and inflammation are also key risk factors for the development of other gastrointestinal disorders. Notably, a strong correlation exists between prior exposure to gut infection and symptom occurrence in IBS. This Review discusses the evidence for neuroplasticity (structural, synaptic or intrinsic changes that alter neuronal function) affecting gastrointestinal function. Such changes are evident during inflammation and, in many cases, long after healing of the damaged tissues, when the nervous system fails to reset back to normal. Neuroplasticity within distinct populations of neurons has a fundamental role in the aberrant motility, secretion and sensation associated with common clinical gastrointestinal disorders. To find appropriate therapeutic treatments for these disorders, the extent and time course of neuroplasticity must be fully appreciated.
Collapse
|
16
|
Deiteren A, Vermeulen W, Moreels TG, Pelckmans PA, De Man JG, De Winter BY. The effect of chemically induced colitis, psychological stress and their combination on visceral pain in female Wistar rats. Stress 2014; 17:431-44. [PMID: 25089934 DOI: 10.3109/10253890.2014.951034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Visceral sensitivity is of pathophysiological importance in abdominal pain disorders and can be modulated by inflammation and stress. However, it is unclear whether inflammation and stress alter visceral perception independently of each other or in conjunction through neuroendocrine interactions. Therefore, we compared the short- and long-term effects of experimental colitis and water avoidance stress (WAS), alone or in combination, on visceral sensitivity in female Wistar rats. Colitis was induced by trinitrobenzene sulfonic acid (TNBS) and colonoscopically confirmed. During WAS, rats were placed on a platform surrounded by water for 1 h. Visceral sensitivity was assessed by quantifying the visceromotor responses (VMRs) to colorectal distension. Activation of the hypothalamic-pituitary-adrenal axis was determined by measuring serum corticosterone in a separate protocol. TNBS instillation resulted in overt colitis, associated with significant visceral hypersensitivity during the acute inflammatory phase (3 days post-TNBS; n = 8/group); after colitis had subsided (28 days post-TNBS), hypersensitivity was resolved (n = 4-8/group). Single WAS was associated with increased VMRs of a magnitude comparable to acute TNBS-induced hypersensitivity (n = 8/group). However, after repetitive WAS no significant hypersensitivity was present (n = 8/group). No additive effect of colitis and stress was seen on visceral pain perception (n = 6-8/group). Corticosterone levels were only increased in acute TNBS-colitis, acute WAS and their combination. To conclude, both colitis and stress successfully induced short-term visceral hypersensitivity and activated the hypothalamic-pituitary-adrenal axis, but long-term effects were absent. In addition, our current findings do not support an additive effect of colitis and stress on visceral sensitivity in female Wistar rats.
Collapse
Affiliation(s)
- Annemie Deiteren
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp , Antwerp , Belgium and
| | | | | | | | | | | |
Collapse
|
17
|
Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nat Commun 2014; 5:3165. [DOI: 10.1038/ncomms4165] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022] Open
|
18
|
Castro J, Harrington AM, Hughes PA, Martin CM, Ge P, Shea CM, Jin H, Jacobson S, Hannig G, Mann E, Cohen MB, MacDougall JE, Lavins BJ, Kurtz CB, Silos-Santiago I, Johnston JM, Currie MG, Blackshaw LA, Brierley SM. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3',5'-monophosphate. Gastroenterology 2013; 145:1334-46.e1-11. [PMID: 23958540 DOI: 10.1053/j.gastro.2013.08.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Linaclotide is a minimally absorbed agonist of guanylate cyclase-C (GUCY2C or GC-C) that reduces symptoms associated with irritable bowel syndrome with constipation (IBS-C). Little is known about the mechanism by which linaclotide reduces abdominal pain in patients with IBS-C. METHODS We determined the effects of linaclotide on colonic sensory afferents in healthy mice and those with chronic visceral hypersensitivity. We assessed pain transmission by measuring activation of dorsal horn neurons in the spinal cord in response to noxious colorectal distention. Levels of Gucy2c messenger RNA were measured in tissues from mice using quantitative reverse transcription polymerase chain reaction and in situ hybridization. We used human intestinal cell lines to measure release of cyclic guanosine-3',5'-monophosphate (cGMP) by linaclotide. We performed a post-hoc analysis of data from a phase III, double-blind, parallel-group study in which 805 patients with IBS-C were randomly assigned to groups given an oral placebo or 290 μg linaclotide once daily for 26 weeks. We quantified changes in IBS-C symptoms, including abdominal pain. RESULTS In mice, linaclotide inhibited colonic nociceptors with greater efficacy during chronic visceral hypersensitivity. Intra-colonic administration of linaclotide reduced signaling of noxious colorectal distention to the spinal cord. The colonic mucosa, but not neurons, was found to express linaclotide's target, GC-C. The downstream effector of GC-C, cGMP, was released after administration of linaclotide and also inhibited nociceptors. The effects of linaclotide were lost in Gucy2c(-/-) mice and prevented by inhibiting cGMP transporters or removing the mucosa. During 26 weeks of linaclotide administration, a significantly greater percentage of patients (70%) had at least a 30% reduction in abdominal pain compared with patients given placebo (50%). CONCLUSIONS We have identified an analgesic mechanism of linaclotide: it activates GC-C expressed on mucosal epithelial cells, resulting in the production and release of cGMP. This extracellular cGMP acts on and inhibits nociceptors, thereby reducing nociception. We also found that linaclotide reduces chronic abdominal pain in patients with IBS-C.
Collapse
Affiliation(s)
- Joel Castro
- Nerve-Gut Research Laboratory, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Adam B, Tsopelas C, Liebregts T, Bartholomeusz FD, Holtmann G. Host immune response determines visceral hyperalgesia in a rat model of post-inflammatory irritable bowel syndrome. J Gastroenterol 2013; 48:1119-27. [PMID: 23307099 DOI: 10.1007/s00535-012-0729-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/29/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is associated with visceral hyperalgesia and frequently occurs after a transient gastrointestinal infection. Only a proportion of patients with acute gastroenteritis develop post-infectious IBS suggesting differences in host response to inflammatory stimuli. We aimed to investigate this concept by characterizing visceral sensitivity in two rat strains, following a chemically induced colitis. METHODS Colorectal instillation of trinitrobenzenesulfonic acid (TNBS) in aqueous ethanol was used to induce a transient colitis in Lewis and F344 rats. The colitis was characterized semiquantitatively by histology, as well as by quantitative methods using (99m)Tc-leukocytes (radioactive organ assay) and plasma IL-2 and IL-6 levels. Visceromotor response to colorectal distensions was assessed after 2 h and, 5, 14, and 28 days. RESULTS The colitis peaked on day 5 and dissipated to no visible mucosal damage on day 14. Cytokines were significantly increased in TNBS-treated rats at 2 h and on day 5. On day 14 cytokines were still significantly enhanced in Lewis but not Fisher rats. Both strains had a highly inflamed to non-inflamed tissue ratio at 3 h after TNBS instillation with increased uptake in Lewis compared to F344 rats. No (99m)Tc-tin-colloid-leukocytes were detected in colon samples on day 28. Visceromotor response was significantly elevated in both strains during the acute colitis (day 5), whereas only Lewis rats developed a post-inflammatory (day 28) visceral hyperalgesia. CONCLUSION Genetically determined host factors account for prolonged immune activation in response to a standardized inflammatory stimulus and are linked to susceptibility for a post-inflammatory visceral hyperalgesia.
Collapse
Affiliation(s)
- Birgit Adam
- Department of Bone Marrow Transplantation, University Hospital Essen, University Duisburg-Essen, West German Cancer Center, Hufelandstr. 55, 45122, Essen, Germany,
| | | | | | | | | |
Collapse
|
20
|
Abstract
Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular-mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.
Collapse
|
21
|
Feng B, La JH, Tanaka T, Schwartz ES, McMurray TP, Gebhart GF. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G817-24. [PMID: 22859364 PMCID: PMC3469593 DOI: 10.1152/ajpgi.00257.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15-60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14-28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14-28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs.
Collapse
Affiliation(s)
- Bin Feng
- Center for Pain Research, Department of Anesthesiology, School of Medicine, University of Pittsburgh, W1402 BST, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abdrakhmanova GR, Kang M, Imad Damaj M, Akbarali HI. Nicotine suppresses hyperexcitability of colonic sensory neurons and visceral hypersensivity in mouse model of colonic inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G740-7. [PMID: 22241859 PMCID: PMC3330777 DOI: 10.1152/ajpgi.00411.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L(1)-L(2)) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation (1). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from -37 to -32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L(1)-L(2)) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.
Collapse
Affiliation(s)
- Galya R. Abdrakhmanova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Liebregts T, Adam B, Bertel A, Lackner C, Neumann J, Talley NJ, Gerken G, Holtmann G. Psychological stress and the severity of post-inflammatory visceral hyperalgesia. Eur J Pain 2012; 11:216-22. [PMID: 16545971 DOI: 10.1016/j.ejpain.2006.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 01/27/2006] [Accepted: 02/06/2006] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Lowered visceral sensory thresholds are a key finding in at least a subgroup of patients with functional bowel disorders. Stress and inflammation contribute to this altered visceral sensory function. We aimed to elucidate the role of repetitive stress and acute mucosal inflammation, alone and in combination, on sensory function. METHODS In randomized order, trinitrobenzenesulfonic acid (TNBS) plus the equal amount of ethanol or saline were instilled into the colorectum of female Lewis rats. Colorectal distensions (CRD) were performed with a barostat device (3 min/40 mmHg); to quantify the visceromotor response (VMR) to CRD, electromyographic activity (EMG) of the abdominal muscles was recorded. In randomized order, equal numbers of both treatment groups underwent either seven days (1 h/day) repetitive water avoidance stress (WAS) or sham WAS. CRD's were conducted 28 days later. Colonic tissue samples were obtained to characterize inflammation and blood samples were taken at day 28 to measure plasma IL-2 levels by enzyme-linked immunosorbent assay (ELISA). RESULTS Compared to controls (662+/-114 microV) TNBS (1081+/-227 microV), WAS (1366+/-125 microV) and the combination of both (1477+/-390 microV) significantly augmented the VMR to CRD. TNBS and/or WAS caused significant inflammatory changes at day 5, while only TNBS+WAS also showed signs of mucosal inflammation on day 14 and significantly elevated IL-2 levels on day 28. CONCLUSIONS Stress and inflammation cause long lasting alterations of visceral sensory function. Concomitant stress further increases post-inflammatory visceral hyperalgesia.
Collapse
Affiliation(s)
- Tobias Liebregts
- Royal Adelaide Hospital, Department of Gastroenterology, Hepatology and General Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Larauche M, Mulak A, Taché Y. Stress and visceral pain: from animal models to clinical therapies. Exp Neurol 2012; 233:49-67. [PMID: 21575632 PMCID: PMC3224675 DOI: 10.1016/j.expneurol.2011.04.020] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/07/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have implicated stress (psychosocial and physical) as a trigger of first onset or exacerbation of irritable bowel syndrome (IBS) symptoms of which visceral pain is an integrant landmark. A number of experimental acute or chronic exteroceptive or interoceptive stressors induce visceral hyperalgesia in rodents although recent evidence also points to stress-related visceral analgesia as established in the somatic pain field. Underlying mechanisms of stress-related visceral hypersensitivity may involve a combination of sensitization of primary afferents, central sensitization in response to input from the viscera and dysregulation of descending pathways that modulate spinal nociceptive transmission or analgesic response. Biochemical coding of stress involves the recruitment of corticotropin releasing factor (CRF) signaling pathways. Experimental studies established that activation of brain and peripheral CRF receptor subtype 1 plays a primary role in the development of stress-related delayed visceral hyperalgesia while subtype 2 activation induces analgesic response. In line with stress pathways playing a role in IBS, non-pharmacologic and pharmacologic treatment modalities aimed at reducing stress perception using a broad range of evidence-based mind-body interventions and centrally-targeted medications to reduce anxiety impact on brain patterns activated by visceral stimuli and dampen visceral pain.
Collapse
Affiliation(s)
- Muriel Larauche
- CURE/Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
25
|
Larauche M, Mulak A, Taché Y. Stress-related alterations of visceral sensation: animal models for irritable bowel syndrome study. J Neurogastroenterol Motil 2011; 17:213-34. [PMID: 21860814 PMCID: PMC3155058 DOI: 10.5056/jnm.2011.17.3.213] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 12/11/2022] Open
Abstract
Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response.
Collapse
Affiliation(s)
- Muriel Larauche
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Agata Mulak
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
26
|
Larauche M, Mulak A, Taché Y. Stress and visceral pain: from animal models to clinical therapies. Exp Neurol 2011. [PMID: 21575632 DOI: 10.1016/j.expneurol.2011.04.020.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiological studies have implicated stress (psychosocial and physical) as a trigger of first onset or exacerbation of irritable bowel syndrome (IBS) symptoms of which visceral pain is an integrant landmark. A number of experimental acute or chronic exteroceptive or interoceptive stressors induce visceral hyperalgesia in rodents although recent evidence also points to stress-related visceral analgesia as established in the somatic pain field. Underlying mechanisms of stress-related visceral hypersensitivity may involve a combination of sensitization of primary afferents, central sensitization in response to input from the viscera and dysregulation of descending pathways that modulate spinal nociceptive transmission or analgesic response. Biochemical coding of stress involves the recruitment of corticotropin releasing factor (CRF) signaling pathways. Experimental studies established that activation of brain and peripheral CRF receptor subtype 1 plays a primary role in the development of stress-related delayed visceral hyperalgesia while subtype 2 activation induces analgesic response. In line with stress pathways playing a role in IBS, non-pharmacologic and pharmacologic treatment modalities aimed at reducing stress perception using a broad range of evidence-based mind-body interventions and centrally-targeted medications to reduce anxiety impact on brain patterns activated by visceral stimuli and dampen visceral pain.
Collapse
Affiliation(s)
- Muriel Larauche
- CURE/Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
27
|
Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol 2011; 46:164-74. [PMID: 20848144 DOI: 10.1007/s00535-010-0321-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/19/2010] [Indexed: 02/07/2023]
Abstract
AIMS Post-infectious irritable bowel syndrome (PI-IBS) is a subset of IBS which occurs after an episode of acute gastrointestinal infections. The mechanisms of PI-IBS are not fully understood. Currently, numerous animal models have been used in the study of PI-IBS. This article reviews the strengths and weaknesses of these models. METHODS All relevant articles were identified by searching in Ovid SP from 1962, the year the term PI-IBS was coined, up to December 31, 2009. The types of model were categorized as either post-infectious or post-inflammatory, and the characteristics of each kind of model were listed. RESULTS Based on our literature search, 268 articles were identified. Of those articles, 50 were included in this review. The existing PI-IBS models include infection with bacteria (e.g., Campylobacter jejuni, Salmonella enterica, and Campylobacter rodentium), and infection with parasites (e.g., Trichinella spiralis, Nippostrongylus brasiliensis, and Cryptosporidium parvum). The post-inflammatory IBS models are commonly induced with chemical agents, such as acetic acid, deoxycholic acid, dextran sulfate sodium, mustard oil, zymosan, and trinitrobenzene sulfonic acid (TNBS). TNBS is the most commonly used agent for post-inflammatory IBS models, but the experimental protocol varies. These models have one or more aspects similar to IBS patients. CONCLUSIONS Different methods have been used for the development of post-infectious or post-inflammatory IBS models. Each model has its weaknesses and strengths. More studies are needed to establish post-infection IBS models using more common pathogens. A standard protocol in developing TNBS-induced post-inflammatory IBS model is needed.
Collapse
|
28
|
Qiao LY, Grider JR. Colitis elicits differential changes in the expression levels of receptor tyrosine kinase TrkA and TrkB in colonic afferent neurons: a possible involvement of axonal transport. Pain 2010; 151:117-127. [PMID: 20638179 DOI: 10.1016/j.pain.2010.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/17/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022]
Abstract
The role of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in colitis-induced hypersensitivity has been suggested. NGF and BDNF facilitate cellular physiology through binding to receptor tyrosine kinase TrkA and TrkB, respectively. The present study by examining the mRNA and/or protein levels of TrkA and TrkB in the distal colon and in colonic primary afferent neurons in the dorsal root ganglia (DRG) during colitis demonstrated that colitis elicited location-specific changes in the mRNA and protein levels of TrkA and TrkB in colonic primary sensory pathways. In colitis both the TrkA and TrkB protein levels were increased in the L1 and S1 DRGs in a time-dependent manner; however, the level of TrkB mRNA but not TrkA mRNA was increased in these DRGs. Further experiments showed that colitis facilitated a retrograde transport of TrkA protein toward and an anterograde transport of TrkA mRNA away from the DRG, which may contribute to the increased TrkA mRNA level in the distal colon during colitis. Colitis also increased the level of NGF mRNA but not BDNF mRNA in the distal colon. Double staining showed that the expression of TrkA but not TrkB was increased in the specifically labeled colonic afferent neurons in the L1 and S1 DRGs during colitis; this increase in TrkA level was attenuated by pretreatment with resiniferatoxin. These results suggested that colitis-induced primary afferent activation involved retrograde transport of TrkA but not TrkB from the distal colon to primary afferent neurons in DRG.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
29
|
Simpson J, Sundler F, Humes DJ, Jenkins D, Scholefield JH, Spiller RC. Post inflammatory damage to the enteric nervous system in diverticular disease and its relationship to symptoms. Neurogastroenterol Motil 2009; 21:847-e58. [PMID: 19453515 DOI: 10.1111/j.1365-2982.2009.01308.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some patients with colonic diverticula suffer recurrent abdominal pain and exhibit visceral hypersensitivity, though the mechanism is unclear. Prior diverticulitis increases the risk of being symptomatic while experimental colitis in animals increases expression of neuropeptides within the enteric nervous system (ENS) which may mediate visceral hypersensitivity. Our aim was to determine the expression of neuropeptides within the ENS in diverticulitis (study 1) and in patients with symptomatic disease (study 2). Study 1 - Nerves in colonic resection specimens with either acute diverticulitis (AD, n = 16) or chronic diverticulitis (CD, n = 16) were assessed for neuropeptide expression recording % area staining with protein gene product (PGP9.5), substance P (SP), neuropeptide K (NPK), pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP) and galanin. Study 2 - Seventeen symptomatic and 15 asymptomatic patients with colonic diverticula underwent flexible sigmoidoscopy and multiple peridiverticular mucosal biopsies. Study 1- Neural tissue, as assessed by PGP staining was increased to a similar degree in circular muscle in both AD and CD. The CD specimens showed significant increases in the immunoreactivity of SP, NPK and galanin in both mucosal and circular muscle layer compared with controls. Study 2 - Mucosal histology was normal and PGP9.5 staining was similar between groups however patients with symptomatic diverticular disease demonstrated significantly higher levels of SP, NPK, VIP, PACAP and galanin within the mucosal plexus. Patients with symptomatic diverticular disease exhibit increased neuropeptides in mucosal biopsies which may reflect resolved prior inflammation, as it parallels the changes seen in acute and chronic diverticulitis.
Collapse
Affiliation(s)
- J Simpson
- Department of General Surgery, Wolfson Digestive Diseases Centre, University Hospital, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Hughes PA, Brierley SM, Blackshaw LA. Post-inflammatory modification of colonic afferent mechanosensitivity. Clin Exp Pharmacol Physiol 2009; 36:1034-40. [PMID: 19566823 DOI: 10.1111/j.1440-1681.2009.05248.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. The present review discusses interactions between the immune and nervous systems in post-infectious irritable bowel syndrome (PI-IBS). 2. Visceral pain is the single symptom that most affects the quality of life of patients with irritable bowel syndrome (IBS), yet it is the least successfully managed. An underlying hypersensitivity of colonic afferents to mechanical stimuli has long been implicated in visceral pain in IBS, but little more is known of the physiological aetiology. 3. The PI-IBS patients are a cohort of IBS patients who attribute their symptoms to a preceding gastrointestinal infection by pathogens such as Campylobacter or Salmonella. Current evidence suggests that the immune system remains activated in these patients and contributes to their visceral hypersensitivity. This is characterized by a shift in the phenotype of circulating immune cells towards a Type 1 (Th1 predominating) state. Products from these immune cells sensitize colonic afferents to mechanical stimuli. 4. Rectal instillation of trinitrobenzene sulphonic acid induces a Th1-mediated inflammatory response, consistent with clinical observations in PI-IBS. The visceral hypersensitivity observed in this model is biphasic, with an initial onset characterized by visceral hypersensitivity correlating with histological damage followed by a delayed phase that occurs after histological recovery. Interestingly, this chronic visceral hypersensitivity is mediated by afferents in closest apposition to blood vessels, but furthest from the initial site of damage. 5. Both clinical and experimental evidence indicates that chronic dysregulation of the immune system induces visceral afferent hypersensitivity and, therefore, may be the central mechanism underlying PI-IBS.
Collapse
Affiliation(s)
- P A Hughes
- Nerve-Gut Research Laboratory, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
31
|
Eijkelkamp N, Heijnen CJ, Elsenbruch S, Holtmann G, Schedlowski M, Kavelaars A. G protein-coupled receptor kinase 6 controls post-inflammatory visceral hyperalgesia. Brain Behav Immun 2009; 23:18-26. [PMID: 18687398 DOI: 10.1016/j.bbi.2008.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 11/30/2022] Open
Abstract
Post-inflammatory pain is a poorly understood phenomenon. G protein-coupled receptors are involved in regulating pain signaling in the context of inflammation. G protein-coupled receptor kinases (GRK) modulate signaling through these receptors. We investigated whether GRK6 contributes to post-inflammatory visceral hyperalgesia. Colitis was induced in female mice by 1% dextran sodium sulphate in drinking water for 7 days. Disease score, colon length, and colonic cytokines were determined. On day 49, when animals had recovered from colitis, we induced visceral pain by intracolonic capsaicin instillation. Behavioral responses to capsaicin were monitored for 20 min. Referred hyperalgesia was measured using von Frey hairs. Spinal cord c-Fos was visualized by immunohistochemistry. In contrast to our earlier observations in male GRK6-/- and wild type (WT) mice, we did not detect differences in the course of colitis or in expression of colonic cytokines between female GRK6-/- and WT mice. After recovery from colitis, capsaicin-induced behavioral pain responses and spinal cord c-Fos expression were more pronounced in female GRK6-/- than WT mice. Naive GRK6-/- and WT animals did not differ in pain and c-Fos responses to capsaicin. Capsaicin-induced referred hyperalgesia post-colitis was increased in GRK6-/- compared to WT mice. However, referred hyperalgesia post-colitis was not affected by ablation of GRK6. Furthermore, in vitro IL-1beta sensitized the capsaicin receptor TRPV1 and this process was inhibited by over-expression of GRK6. We describe the novel concept that GRK6 inhibits post-inflammatory visceral hyperalgesia but does not contribute to visceral pain in naive animals. We propose that GRK6 regulates inflammation-induced sensitization of TRPV1.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Psychoneuroimmunology, University Medical Center Utrecht, Room KC 03.068.0, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Faure C, Giguère L. Functional gastrointestinal disorders and visceral hypersensitivity in children and adolescents suffering from Crohn's disease. Inflamm Bowel Dis 2008; 14:1569-74. [PMID: 18521915 DOI: 10.1002/ibd.20506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Symptoms of abdominal pain are reported by children with active Crohn's disease (CD). During remissions abdominal pain improves in most children but some of them continue to experience pain. We hypothesized that these patients may suffer from protracted abdominal pain related to functional gastrointestinal disorders (FGID) and visceral hypersensitivity. The objective was to characterize the symptoms and to measure the rectal sensory threshold for pain (RSTP) by barostat in CD children and adolescents suffering from abdominal pain despite remission. METHODS Eight patients (median age 14.5 years; range 9.8-17) with quiescent CD but suffering from chronic abdominal pain were studied by rectal barostat. At the same time they completed validated questionnaires to assess FGID, anxiety, and depression. They were compared to 10 control children and 8 children with FGID also investigated in our laboratory. RESULTS All patients fulfilled Rome II criteria for irritable bowel syndrome (n = 5), functional abdominal pain (n = 2), and functional dyspepsia (n = 1). RSTP was significantly lower in CD patients compared to the normal controls: median (range) 25 mmHg (15-29) versus 40 mmHg (30-48) (P < 0.01). RSTP was similar in patients and children with FGID. Rectal compliance was similar in patients, children with FGID, and controls. Seven of the 8 patients had scores indicating an anxiety problem. CONCLUSIONS Protracted abdominal pain that affects children and adolescents with quiescent CD is related to FGID associated with visceral hypersensitivity and anxiety. The incidence of FGID in children suffering from CD requires further investigation.
Collapse
Affiliation(s)
- Christophe Faure
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
33
|
Increased 5-hydroxytryptamine mediates post-inflammatory visceral hypersensitivity via the 5-hydroxytryptamine 3 receptor in rats. Dig Dis Sci 2008; 53:2909-16. [PMID: 18357529 DOI: 10.1007/s10620-008-0244-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 03/05/2008] [Indexed: 01/06/2023]
Abstract
Visceral hypersensitivity often develops after intestinal inflammation, but the pathogenic mechanism has not been clearly elucidated. We investigated whether this post-inflammatory visceral hypersensitivity is mediated by 5-hydroxytryptamine through activation of the 5-hydroxytryptamine 3 receptor. In male Sprague-Dawley rats recovered from acetic acid-induced colitis, we monitored visceral nociceptive response by scoring the abdominal withdrawal reflex and simultaneously measuring the changes in arterial pulse rate. Seven days after induction of colitis, 52% of the rats showed an increased abdominal withdrawal reflex score and arterial pulse rate changes to colorectal distension, indicating that they had post-inflammatory visceral hypersensitivity. The 5-hydroxytryptamine 3 receptor antagonists, alosetron (20 mg/kg, p.o.) and granisetron (10 microg/kg, s.c.), inhibited post-inflammatory visceral hypersensitivity. Administration of a 5-hydroxytryptamine precursor, 5-hydroxytryptophan; 10 mg/kg, s.c.), induced visceral hypersensitivity in naïve rats, which was antagonized by granisetron. Increase in 5-hydroxytryptamine immunoreactive cells in colonic mucosal layer was found both in the rats with post-inflammatory visceral hypersensitivity and in the 5-hydroxytryptophan-treated rats. These results suggest that increased 5-hydroxytryptamine in colonic mucosa mediates post-inflammatory visceral hypersensitivity through activation of the 5-hydroxytryptamine 3 receptor.
Collapse
|
34
|
La JH, Sung TS, Kim HJ, Kim TW, Kang TM, Yang IS. Peripheral corticotropin releasing hormone mediates post-inflammatory visceral hypersensitivity in rats. World J Gastroenterol 2008; 14:731-6. [PMID: 18205263 PMCID: PMC2684000 DOI: 10.3748/wjg.14.731] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether peripheral corticotropin releasing hormone (CRH), which is up-regulated in intestinal inflammation, mediates the post-inflammatory visceral hypersensitivity in a rat model of colitis.
METHODS: We measured mucosal myeloperoxidase (MPO) activity as a marker of inflammation, plasma CRH level, and abdominal withdrawal reflex (AWR) to colorectal distension as a visceral nociceptive response at 2, 7 and 14 d after the induction of colitis with 4% acetic acid.
RESULTS: Colonic inflammation, quantified by MPO activity, significantly increased on d 2 and subsided thereafter, which indicated a resolution of inflammation within 7 d. On the contrary, plasma CRH level and AWR score were increased on d 2, remained high on d 7, and returned to control level on d 14. Intraperitoneal injection of a CRH antagonist, astressin (30 &mgr;g/kg), significantly attenuated the post-inflammatory visceral hypersensitivity on d 7. Furthermore, intraperitoneal administration of CRH (3 and 10 &mgr;g/kg) mimicked the post-inflammatory visceral hypersensitivity in naive rats.
CONCLUSION: These results suggest that increased peripheral CRH mediates the enhanced visceral nociception in rats recovered from experimental colitis.
Collapse
|
35
|
Noronha R, Akbarali H, Malykhina A, Foreman RD, Greenwood-Van Meerveld B. Changes in urinary bladder smooth muscle function in response to colonic inflammation. Am J Physiol Renal Physiol 2007; 293:F1461-7. [PMID: 17715261 DOI: 10.1152/ajprenal.00311.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Visceral organ “cross talk” is suspected to contribute to multiorgan symptomatology found in conditions such as irritable bowel syndrome and interstitial cystitis. The goal of the present study was to investigate the short- and long-term effects of acute colitis on bladder detrusor muscle contractility. We hypothesized that inflammation of the colon leads to changes in bladder function via direct changes in detrusor smooth muscle contractility. In this study, colonic inflammation was induced in male rats via an enema of trinitrobenzenesulfonic acid (TNBS) (50 mg/kg, 0.5 ml, 25% ethanol). Colitis was confirmed using gross morphology, histology, and measurements of myeloperoxidase activity. Saline enema-treated rats served as controls. Three, 15, and 30 days postenema treatment, bladder detrusor muscle contractility was investigated in response to electrical field stimulation (EFS), cholinergic agonism with carbachol (CCh), and KCl. During active colonic inflammation ( day 3 post-TNBS enema), the bladder detrusor muscle appeared normal and showed no significant inflammation. However, abnormalities in bladder detrusor muscle contractility occurred in response to EFS and CCh but not KCl. During and after recovery from colonic inflammation ( days 15 and 30 post-TNBS enema), changes in bladder detrusor muscle contractility in response to EFS and CCh returned to control levels. We found that a transient colonic inflammatory insult significantly attenuates the amplitude of bladder detrusor muscle contractions in vitro, at least in part, through changes in cholinergic innervation, which are reversible after recovery from the colitis.
Collapse
Affiliation(s)
- R Noronha
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | |
Collapse
|
36
|
Eijkelkamp N, Kavelaars A, Elsenbruch S, Schedlowski M, Holtmann G, Heijnen CJ. Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am J Physiol Gastrointest Liver Physiol 2007; 293:G749-57. [PMID: 17656446 DOI: 10.1152/ajpgi.00114.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During acute and chronic inflammation visceral pain perception is altered. Conflicting data exist, however, on visceral pain perception in the postinflammatory phase. The aim of the present study was to investigate whether visceral pain perception is altered after resolution of dextran sodium sulfate (DSS)-induced inflammation of the colon. Visceral sensory function in mice was assessed by monitoring behavioral responses to intracolonic capsaicin instillation. Two hours later the number of c-Fos-positive neurons in lamina I/II and X of spinal cord segments T(12/13)-S1 was determined as a measure of neuronal activation. DSS colitis was induced by adding 1% of DSS to the drinking water. The course of DSS-induced colitis was assessed by determining the disease activity index score. Animals developed a transient colitis and had recovered at day 49. At this time point, cytokine levels and colon length were similar to control animals. Importantly, after resolution of DSS-induced colitis the behavioral response to intracolonic capsaicin was increased compared with control mice. Moreover, capsaicin-induced spinal cord neuronal c-Fos expression was significantly increased. Interestingly, after colitis animals also exhibited referred somatic hyperalgesia as measured with von Frey hairs on the abdominal wall. We conclude that postinflammatory visceral hyperalgesia occurs after resolution of DSS-induced colitis and that capsaicin-induced behavioral responses and spinal cord neuronal c-Fos activation are effective readouts for determination of visceral pain perception.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Laboratory for Psychoneuroimmunology, Univ. Medical Center Utrecht, Rm. KC 03.063.0, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 2007; 148:1021-32. [PMID: 17719181 PMCID: PMC2128774 DOI: 10.1016/j.neuroscience.2007.05.034] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/13/2007] [Accepted: 06/11/2007] [Indexed: 01/04/2023]
Abstract
The transient receptor potential vanilloid 1 receptor (TRPV1) is an important nociceptor involved in neurogenic inflammation. We aimed to examine the role of TRPV1 in experimental colitis and in the development of visceral hypersensitivity to mechanical and chemical stimulation. Male Sprague-Dawley rats received a single dose of trinitrobenzenesulfonic acid (TNBS) in the distal colon. In the preemptive group, rats received the TRPV1 receptor antagonist JYL1421 (10 mumol/kg, i.v.) or vehicle 15 min prior to TNBS followed by daily doses for 7 days. In the post-inflammation group, rats received JYL1421 daily for 7 days starting on day 7 following TNBS. The visceromotor response (VMR) to colorectal distension (CRD), intraluminal capsaicin, capsaicin vehicle (pH 6.7) or acidic saline (pH 5.0) was assessed in all groups and compared with controls and naïve rats. Colon inflammation was evaluated with H&E staining and myeloperoxidase (MPO) activity. TRPV1 immunoreactivity was assessed in the thoraco-lumbar (TL) and lumbo-sacral (LS) dorsal root ganglia (DRG) neurons. In the preemptive vehicle group, TNBS resulted in a significant increase in the VMR to CRD, intraluminal capsaicin and acidic saline compared the JYL1421-treated group (P<0.05). Absence of microscopic colitis and significantly reduced MPO activity was also evident compared with vehicle-treated rats (P<0.05). TRPV1 immunoreactivity in the TL (69.1+/-4.6%) and LS (66.4+/-4.2%) DRG in vehicle-treated rats was increased following TNBS but significantly lower in the preemptive JYL1421-treated group (28.6+/-3.9 and 32.3+/-2.3 respectively, P<0.05). JYL1421 in the post-inflammation group improved microscopic colitis and significantly decreased the VMR to CRD compared with vehicle (P<0.05, >/=30 mm Hg) but had no effect on the VMR to chemical stimulation. TRPV1 immunoreactivity in the TL and LS DRG was no different from vehicle or naïve controls. These results suggest an important role for TRPV1 channel in the development of inflammation and subsequent mechanical and chemical visceral hyperalgesia.
Collapse
Affiliation(s)
- A Miranda
- Department of Pediatrics, Division of Pediatric Gastroenterology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Geerse GJ, van Gurp LCA, Wiegant VM, Stam R. Individual reactivity to the open-field predicts the expression of cardiovascular and behavioural sensitisation to novel stress. Behav Brain Res 2006; 175:9-17. [PMID: 16926056 DOI: 10.1016/j.bbr.2006.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 07/10/2006] [Accepted: 07/11/2006] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) is the fourth most common psychiatric disorder. It is associated with cardiovascular disorders and irritable bowel syndrome (IBS). Besides stressful life-events, a prior history of gastrointestinal infection is a predisposing factor for the development of IBS. Only a proportion of persons exposed to traumatic events develop PTSD. Several factors, like genetic predisposition, stressor intensity, cognitive appraisal mechanisms and coping processes influence the likelihood of developing PTSD after exposure to a trauma. We used a single session of footshocks in rats, an animal model with a high degree of validity for PTSD, to study whether transient colonic inflammation alters local and distal visceral sensitivity, and whether reactivity to the open-field (low (LA) or high (HA) active) predicts long-term stress-induced behavioural and cardiovascular sensitisation and altered visceral pain sensitivity. A distention series and noise challenge were given 2 weeks after foot-shocks, followed by a transient colonic inflammation period and a second distention series and noise challenge 4 weeks after foot-shocks. During exposure to noise, both before and after inflammation, footshocked rats showed increased immobility compared to controls, which was significantly greater in LA rats than in HA rats. LA preshocked rats also showed a greater blood pressure response to the noise test, but this only became evident in the second noise-test. Neither footshocks nor colonic inflammation affected duodenal pain sensitivity. The results provide additional evidence for long-lasting cardiovascular hyperresponsivity after a stressful event and indicate that its degree is predicted by personality traits or coping style.
Collapse
Affiliation(s)
- Gert-Jan Geerse
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | |
Collapse
|
39
|
Adam B, Liebregts T, Gschossmann JM, Krippner C, Scholl F, Ruwe M, Holtmann G. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 2006; 123:179-86. [PMID: 16630696 DOI: 10.1016/j.pain.2006.02.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 02/12/2006] [Accepted: 02/21/2006] [Indexed: 01/10/2023]
Abstract
Transient inflammation is known to alter visceral sensory function and frequently precede the onset of symptoms in a subgroup of patients with irritable bowel syndrome (IBS). Duration and severity of the initial inflammatory stimulus appear to be risk factors for the manifestation of symptoms. Therefore, we aimed to characterize dose-dependent effects of trinitrobenzenesulfonic acid (TNBS)/ethanol on: (1) colonic mucosa, (2) cytokine release and (3) visceral sensory function in a rat model. Acute inflammation was induced in male Lewis rats by single administration of various doses of TNBS/ethanol (total of 0.8, 0.4 or 0.2 ml) in test animals or saline in controls. Assessment of visceromotor response (VMR) to colorectal distensions, histological evaluation of severity of inflammation, and measurement of pro-inflammatory cytokine levels (IL-2, IL-6) using enzyme-linked immunosorbent assay (ELISA) were performed 2h and 3, 14, 28, 31 and 42 days after induction. Increased serum IL-2 and IL-6 levels were evident prior to mucosal lesions 2h after induction of colitis and persist up to 14 days (p<0.05 vs. saline), although no histological signs of inflammation were detected at 14 days. In the acute phase, VMR was only significantly increased after 0.8 ml and 0.4 ml TNBS/ethanol (p<0.05 vs. saline). After 28 days, distension-evoked responses were persistently elevated (p<0.05 vs. saline) in 0.8 and 0.4 ml TNBS/ethanol-treated rats. In 0.2 ml TNBS/ethanol group, VMR was only enhanced after repeated visceral stimulation. Visceral hyperalgesia occurs after a transient colitis. However, even a mild acute but asymptomatic colitis can induce long-lasting visceral hyperalgesia in the presence of additional stimuli.
Collapse
Affiliation(s)
- Birgit Adam
- Royal Adelaide Hospital, Department of Gastroenterology, Hepatology and General Medicine, University of Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Holtmann G, Talley NJ. Hypothesis driven research and molecular mechanisms in functional dyspepsia: the beginning of a beautiful friendship in research and practice? Am J Gastroenterol 2006; 101:593-5. [PMID: 16542295 DOI: 10.1111/j.1572-0241.2006.00480.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is accumulating evidence of a genetic predisposition in at least a subset of patients with functional GI symptoms. Hence, hunting for genes in irritable bowel syndrome and functional dyspepsia has become fashionable of late. Unfortunately, as in other fields, replication of gene association studies has most often been problematic. In this issue of the Journal, independent corroboration of an association of dyspepsia with GNbeta3 is reported. Other carefully selected putative genes including polymorphisms in the alpha2A adrenoreceptor, the serotonin reuptake transporter, and the 5-HT1A receptor were not associated. The study raises three key questions all considered in this editorial: (a) if GNbeta3 is truly associated with functional and uninvestigated dyspepsia, why might this be the case, (b) what molecular mechanisms may be of most relevance, and (c) perhaps most importantly, does or will this finding translate into clinical practice in terms of diagnosis or treatment? New knowledge of gene associations like GNbeta3 and their pathophysiological relevance may ultimately lead to better targeted therapy as well as new disease modifying treatments.
Collapse
|
41
|
Greenwood-Van Meerveld B, Johnson AC, Schulkin J, Myers DA. Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Res 2006; 1071:91-6. [PMID: 16423333 DOI: 10.1016/j.brainres.2005.11.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 12/22/2022]
Abstract
This study examined the long-term effects of an acute colitis on central corticotropin-releasing factor (CRF) expression. An increase in CRF mRNA in the paraventricular nucleus of the hypothalamus (PVN) and the central nucleus of the amygdala (CeA) was observed during active colitis, and the effect in the PVN was maintained following recovery. In summary, hypothalamic gene expression of CRF persists in the PVN despite resolution of an acute colitis.
Collapse
|
42
|
Larsson MH, Rapp L, Lindström E. Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil 2006; 18:144-52. [PMID: 16420293 DOI: 10.1111/j.1365-2982.2005.00736.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study aimed at evaluating the effect of dextran sodium sulphate (DSS)-induced colitis on visceral sensitivity, measured as the visceromotor response (VMR) to colorectal distension (CRD) in BALB/c and C57Bl/6 male mice. Inflammation was induced by the addition of 4% DSS to the drinking water for 5 (C57Bl/6) or 6-7 days (BALB/c). Parallel groups were used to monitor histopathological changes and visceral sensitivity. Pseudo-affective visceral pain responses were evoked using an increasing phasic CRD paradigm (10-60 mmHg) in conscious mice on predetermined days (pretreatment controls, 12, 16, 20, 30, 40 and 51). In both mouse strains, significant histopathological changes developed between days 2 and 5 of DSS treatment, and persisted until day 12 (P < 0.05). On day 15, inflammatory scores were reduced by about 50%. Despite evidence of inflammation in DSS-treated mice, no differences could be shown in the VMR to CRD between DSS-treated mice and controls at any time point tested. In addition, no differences were seen before and after DSS treatment in the same group of mice. In conclusion, these data suggest that DSS-induced colonic inflammation does not affect the visceral sensitivity to CRD, neither at short or long term, in BALB/c or C57Bl/6 male mice.
Collapse
Affiliation(s)
- M H Larsson
- Department of Integrative Pharmacology, Gastrointestinal Biology, AstraZeneca R&D Mölndal, Mölndal, Sweden.
| | | | | |
Collapse
|
43
|
Adam B, Liebregts T, Best J, Bechmann L, Lackner C, Neumann J, Koehler S, Holtmann G. A combination of peppermint oil and caraway oil attenuates the post-inflammatory visceral hyperalgesia in a rat model. Scand J Gastroenterol 2006; 41:155-60. [PMID: 16484120 DOI: 10.1080/00365520500206442] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Visceral hyperalgesia plays a pivotal role in manifestation of symptoms in patients with functional gastrointestinal disorders. In clinical studies combined treatment of peppermint- and caraway oil significantly reduced symptoms. Thus, the aim of this study was to characterize the effects of peppermint- and caraway oil, individually and in combination, on visceral nociception in a rat model of post-inflammatory visceral hyperalgesia. MATERIAL AND METHODS On day 28, male Lewis rats (n=80) were randomized to treatment with a rectal administration of trinitrobenzene sulphonic acid (TNBS)/ethanol or physiological saline solution. To quantify the visceromotor response to a standardized colorectal distension, bipolar electrodes were implanted into the external oblique musculature, just superior to the inguinal ligament for electromyographic recordings on day 3. On day 0, baseline measurement was performed. Thereafter, oral treatment with peppermint- or caraway oil or combination treatment was started and continued for 14 consecutive days. After 7 and 14 days of treatment a colorectal distension was performed. Colonic tissue samples were obtained on days 0, 7 and 14 to assess histological alterations due to the different treatment groups and the influence of different compounds. RESULTS After a single instillation of TNBS/ethanol persistent elevation of the visceromotor response at all different time-points was observed, although colonic mucosa was completely normal. After 14 days of combined treatment with peppermint- and caraway oil, a reduced visceromotor response of up to 50% compared to placebo was detected in TNBS/ethanol pretreated animals. In contrast, neither peppermint- nor caraway oil had a significant effect on post-inflammatory visceral hyperalgesia. In saline-treated controls there was no significant difference in the visceromotor response. CONCLUSIONS These data show that combined treatment with peppermint- and caraway oil modulates post-inflammatory visceral hyperalgesia synergistically. The exact mechanisms have to be further investigated.
Collapse
Affiliation(s)
- Birgit Adam
- Department of Gastroenterology, Hepatology and General Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Törnblom H, Abrahamsson H, Barbara G, Hellström PM, Lindberg G, Nyhlin H, Ohlsson B, Simrèn M, Sjölund K, Sjövall H, Schmidt PT, Ohman L. Inflammation as a cause of functional bowel disorders. Scand J Gastroenterol 2005; 40:1140-8. [PMID: 16265771 DOI: 10.1080/00365520510023657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hans Törnblom
- Karolinska Institutet, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gschossmann JM, Holtmann G, Netzer P, Essig M, Balsiger BM, Scheurer U. Abdominaler Schmerz. Internist (Berl) 2005; 46:1096-104. [PMID: 15990989 DOI: 10.1007/s00108-005-1457-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abdominal pain can result from a variety of different intra- and extra-abdominal disorders. Given the wide variety of etiological triggers for this pain, the primary task during the first stage of the diagnostic work-up is to determine as soon as possible the underlying cause and the degree of emergency. The aim of this evaluation is to adapt the therapeutic measures which are necessary for a causal treatment to the individual situation. Contrary to somatic causes of abdominal pain, the availability of such a causal therapy for functional bowel disorders is still very limited. Given this dilemma, the therapeutic focus of abdominal pain associated with these functional syndromes has to be placed on symptom-oriented treatment.
Collapse
Affiliation(s)
- J M Gschossmann
- Klinik für Gastroenterologie, Inselspital/Universität Bern, Schweiz.
| | | | | | | | | | | |
Collapse
|
46
|
Greenwood-Van Meerveld B, Johnson AC, Foreman RD, Linderoth B. Spinal cord stimulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Auton Neurosci 2005; 122:69-76. [PMID: 16182612 DOI: 10.1016/j.autneu.2005.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 08/04/2005] [Accepted: 08/06/2005] [Indexed: 12/22/2022]
Abstract
Spinal cord stimulation (SCS) has been found to relieve neuropathic and ischemic pain clinically and to attenuate a nociceptive reflex in an animal model of acute colonic hypersensitivity. The goal of the present study was to determine the effect of SCS in a rat model of post-inflammatory colonic hypersensitivity. Acute inflammation was induced in rats by a single enema of trinitrobenzenesulfonic acid (TNBS) (50 mg/kg, 0.5 ml, 25% EtOH). Control rats received a single saline enema. A visceromotor behavioral response (VMR), induced by innocuous colorectal distention (30 mm Hg, 10 min) was used to quantify the level of colonic sensitivity on day 3 and 30 post-enema. Prior to VMR testing, under general anesthesia, an electrode (cathode) was placed epidurally on the dorsal surface of the spinal cord at L1 with a paravertebral anode plate. Three to 7 days after implantation of the SCS electrode, the effect of SCS (50 Hz, 0.2 ms, amplitude 90% of motor threshold for 30 min) on colonic sensitivity was determined. On day 30, rats that had received a single TNBS enema were hypersensitive to innocuous colonic distention when compared to rats that received a saline enema (VMR/10 min: TNBS: 17.2+/-0.8 vs. Saline: 9.6+/-1.1, p<0.01). Spinal cord stimulation significantly reduced the VMR in the TNBS-enema group to a value that resembled the saline-enema group (VMR/10 min: TNBS: 11.2+/-1.2 vs. Saline: 10.0+/-1.0). This study provides the first evidence that SCS might be a potential therapeutic for the treatment of abdominal pain observed in patients with post-inflammatory irritable bowel syndrome.
Collapse
|
47
|
Liebregts T, Adam B, Bertel A, Jones S, Schulze J, Enders C, Sonnenborn U, Lackner K, Holtmann G. Effect of E. coli Nissle 1917 on post-inflammatory visceral sensory function in a rat model. Neurogastroenterol Motil 2005; 17:410-4. [PMID: 15916628 DOI: 10.1111/j.1365-2982.2005.00638.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Visceral hyperalgesia (VH) plays a key role for the manifestation of functional gastrointestinal (GI) disorders. In a subgroup of patients, the initial manifestation is preceded by GI inflammation. Recent studies have demonstrated an improvement of inflammation and symptoms during treatment with Escherichia coli Nissle 1917 (EcN). AIM We aimed to characterize the effects of EcN on visceral sensitivity in a rat model of post-inflammatory VH. METHODS Male Lewis rats underwent colorectal instillation of trinitrobenzenesulphonic acid (TNBS) plus an equal amount of ethanol (test group) or physiological saline solution (control group). After 28, 35 and 42 days, standardized colorectal distensions were performed and the visceromotor reflex (VMR) of abdominal wall muscles was quantified by electromyographic recording. From day 28 onwards, EcN was administered in drinking water. RESULTS After TNBS, a significant increase of VMR was observed compared with saline controls over all study days. Administration of EcN reduced the TNBS-induced hyperalgesia [EcN: 863+/-125 microV vs placebo: 1258+/-157 microV (P<0.05)] at day 35, while there were no significant alterations at any other study day. CONCLUSION The EcN administration caused a significant reduction of VH. Whether EcN might play a role in the treatment of post-infectious functional bowel disorders remains to be investigated in further studies.
Collapse
Affiliation(s)
- T Liebregts
- Department of Gastroenterology, Hepatology and General Medicine, University of Adelaide, Royal Adelaide Hospital, South Australia, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Irritable Bowel Syndrome (IBS) is multifactorial in its etiology and heterogeneous in its clinical presentation and pathogenesis. It is recognized that inflammation plays an important role in symptom generation, at least in a subset of patients with IBS. Previous gastroenteritis has been identified as the most important risk factor for IBS, and several studies reported that a substantial proportion of patients with gastrointestinal infection develops IBS symptoms,which can persist for several years. Recent studies have demonstrated that a proportion of IBS patients without any history of enteritis has signs of immune activation in the gut. There is clinical overlap between IBS and inflammatory bowel disease (IBD), with IBS-like symptoms frequently reported in patients before the diagnosis of IBD, and a higher than expected percentage reports of IBS symptoms in patients in remission from established IBD. Thus,these conditions may coexist with a higher than expected frequency, or may exist on a continuum, with IBS and IBD at different ends of the same spectrum. This article examines these relation-ships using immune activation and inflammation as a common pathogenic process to IBD and a subset of IBS patients.
Collapse
|
49
|
Bercik P, Verdu EF, Collins SM. Is irritable bowel syndrome a low-grade inflammatory bowel disease? Gastroenterol Clin North Am 2005; 34:235-45, vi-vii. [PMID: 15862932 DOI: 10.1016/j.gtc.2005.02.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Irritable Bowel Syndrome (IBS) is multifactorial in its etiology and heterogeneous in its clinical presentation and pathogenesis. It is recognized that inflammation plays an important role in symptom generation, at least in a subset of patients with IBS. Previous gastroenteritis has been identified as the most important risk factor for IBS, and several studies reported that a substantial proportion of patients with gastrointestinal infection develops IBS symptoms,which can persist for several years. Recent studies have demonstrated that a proportion of IBS patients without any history of enteritis has signs of immune activation in the gut. There is clinical overlap between IBS and inflammatory bowel disease (IBD), with IBS-like symptoms frequently reported in patients before the diagnosis of IBD, and a higher than expected percentage reports of IBS symptoms in patients in remission from established IBD. Thus,these conditions may coexist with a higher than expected frequency, or may exist on a continuum, with IBS and IBD at different ends of the same spectrum. This article examines these relation-ships using immune activation and inflammation as a common pathogenic process to IBD and a subset of IBS patients.
Collapse
Affiliation(s)
- Premysl Bercik
- Intestinal Disease Research Program and Division of Gastroenterology, McMaster University, 1200 Main Street West, HSC 3N49C, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | |
Collapse
|
50
|
Holtmann G, Liebregts T, Siffert W. Molecular basis of functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol 2004; 18:633-40. [PMID: 15324704 DOI: 10.1016/j.bpg.2004.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There are a number of abnormalities of gastrointestinal function, including sensory and motor dysfunction, which are believed to play a role in the manifestation of symptoms in patients with functional gastrointestinal disorders (FGID). In addition, there is a remarkable psychiatric comorbidity. Family and twin studies have provided strong evidence for a clustering of FGID in families and an increased concordance in monozygotic compared to dizygotic twins. This points towards the role of one or more hereditary (genetic) factors. Considering these disorders of function and the psychiatric comorbidity, polymorphisms of adrenergic, opioidergic or serotonergic receptors as well as G-protein beta3 (GNB3) subunit gene polymorphisms (C825T) and polymorphisms of 5-HT transporter genes are suitable causes. In addition, mediators or regulators of mucosal inflammation may trigger events that ultimately result in the manifestation of FGID. Thus, relevant polymorphisms of genes with immunmodulating and/or neuromodulating features (OPRM1, IL-4, IL-4R, TNFalpha) may also play a role in the manifestation of FGIDs.
Collapse
Affiliation(s)
- Gerald Holtmann
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Essen, Hufelandstr 55, 45122 Essen, Germany.
| | | | | |
Collapse
|