1
|
Li H, Peng T, Qin Y. Evaluation of the clinical effect of 4D digital strabismus and amblyopia visual function correction system combined with traditional comprehensive treatment methods on anisometropic amblyopia. BMC Ophthalmol 2024; 24:433. [PMID: 39367380 PMCID: PMC11451224 DOI: 10.1186/s12886-024-03703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE The objective of this study was to evaluate the clinical efficacy of a 4D digital strabismus and amblyopia visual function correction system (4D-DSAAVFCS) in combination with conventional modalities compared with conventional modalities alone in children with anisometropic amblyopia. METHODS This nonrandomized controlled study collected data on best-corrected visual acuity (BCVA), simultaneous vision, fusion vision, near stereoscopic vision, the amplitude of P100 wave (graphic evoked visual potentials), and the latency of P100 wave from both eyes at the beginning of the treatment and one year later. The Mann‒Whitney U test was used to compare BCVA contrasts in different subgroups, and the independent samples t test was used to compare the amplitude and latency of P100 wave contrasts in different subgroups. The basic cure rate, simultaneous vision recovery rate, fusion vision recovery rate, and near stereoscopic vision recovery rate contrasts in different subgroups were compared via the chi-square test. RESULTS This study included 393 children (217 boys and 176 girls) aged 3 to 12 years with anisometropic amblyopia who were treated at the Aier Eye Hospital of Wuhan University from January 2020 to December 2022. The children were divided into two groups, the 4D group (263 cases) and the traditional group (130 cases), on the basis of the treatment modality. The children in the traditional group received treatment through the conventional method of occlusion and regular training. Meanwhile, the children in the 4D group received treatment through the traditional method and the 4D-DSAAVFCS. The 4D group was divided into two age groups: 3 ~ 6 years (161 cases) and 6 ~ 12 years (102 cases). The basic cure rate of the 4D group was significantly better than that of the traditional group (χ2 = 4.318, P < 0.05). There were no statistically significant differences in the BCVA, the latency of P100 wave, or the amplitude of P100 wave between the 4D group and the traditional group before treatment (U=-0.117, t=-0.05, all P > 0.05 ). After one year of treatment, a statistically significant difference was observed between the 4D group and the conventional group in terms of BCVA, the latency of P100 wave, and the amplitude of P100 wave (U=-1.243, t=-0.853, t=-1.546, all P < 0.05). These results suggest that the therapeutic effect was greater in the 4D group than in the conventional group. The recovery rates of simultaneous vision, convergent fusion, divergent fusion, and near stereoscopic vision were significantly greater in the 4D group than in the conventional group (χ2 = 4.344, 4.726, 5.123, and 2.036, respectively; all P < 0.05). Additionally, the basic cure rate of children aged 3 ~ 6 years in the 4D group was significantly greater than that of children aged 6 ~ 12 years (χ2 = 2.365, P < 0.05). In this study, BCVA was significantly lower in the 3 ~ 6-year-old group than in the 6 ~ 12-year-old group (U = -1.267, P < 0.05). Similarly, the amplitude of P100 wave was also significantly greater in the 3 ~ 6-year-old group than in the 6 ~ 12-year-old group (t = -1877, P < 0.05). The latency of P100 wave was lower in the 3 ~ 6-year-old group than in the 6 ~ 12-year-old group (t=-0.998, P < 0.05). Additionally, the recovery rate of near stereoscopic vision was significantly greater in the 3 ~ 6-year-old group than in the 6 ~ 12-year-old group (χ2 = 4.534, P < 0.05). CONCLUSION The combination of the traditional method with the 4D-DSAAVFCS was more effective than the traditional method alone in treating amblyopic children. This approach was particularly helpful in improving the visual acuity of the children and restoring their optic nerve conduction function, simultaneous vision, fusion vision, and near stereoscopic vision. The combination of the traditional method and the 4D-DSAAVFCS is more effective for younger children.
Collapse
Affiliation(s)
- Huangen Li
- Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Ting Peng
- Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Yinyan Qin
- Aier Eye Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Pincay J, Rodriguez M, Kaushal D, Tsang SH. Rod-sparing in a bardet-biedl syndrome patient with mutations in the ARL6 gene. Doc Ophthalmol 2024; 149:133-138. [PMID: 39078565 DOI: 10.1007/s10633-024-09985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE Bardet-Biedl Syndrome (BBS) is an autosomal recessive disorder characterized by pleiotropism that affects multiple organ systems. The primary features of BBS include rod-cone dystrophy, renal anomalies, post axial polydactyly, and neurologic deficits. The clinical picture of BBS is extensively heterogenous, with inter and intra familial patients varying in levels of syndromic manifestations and severity of symptoms. METHODS In this study we examined a monocular BBS patient who was compound heterozygous for mutations in the ARL6 (BBS3) gene. RESULTS The patient reported visual complaints consistent with a clinical picture of cone or cone-rod dystrophy. Fundus imaging showed retinal mottling on color photos and a parafoveal hyperfluorescent ring on short wave autofluorescence (SW-AF). Full field electroretinogram (ffERG) revealed normal scotopic step tracings and diminished amplitudes in the photopic steps. CONCLUSION This rod-sparing result was consistent with cone-dystrophy and is the first known case of a rod-sparing ffERG phenotype in a BBS patient with mutations in the ARL6 gene. This contributes to the existing phenotype and may potentially contribute to furthering our understanding of BBS pathophysiology.
Collapse
Affiliation(s)
- Jorge Pincay
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA
- State University of New York at Downstate Medical Center, Brooklyn, NY, USA
| | - Marilyn Rodriguez
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA
| | - Divya Kaushal
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
3
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
4
|
Areblom M, Kjellström S, Andréasson S, Öhberg A, Gränse L, Kjellström U. A Description of the Yield of Genetic Reinvestigation in Patients with Inherited Retinal Dystrophies and Previous Inconclusive Genetic Testing. Genes (Basel) 2023; 14:1413. [PMID: 37510321 PMCID: PMC10379620 DOI: 10.3390/genes14071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the present era of evolving gene-based therapies for inherited retinal dystrophies (IRDs), it has become increasingly important to verify the genotype in every case, to identify all subjects eligible for treatment. Moreover, combined insight concerning phenotypes and genotypes is crucial for improved understanding of thevisual impairment, prognosis, and inheritance. The objective of this study was to investigate to what extent renewed comprehensive genetic testing of patients diagnosed with IRD but with previously inconclusive DNA test results can verify the genotype, if confirmation of the genotype has an impact on the understanding of the clinical picture, and, to describe the genetic spectrum encountered in a Swedish IRD cohort. The study included 279 patients from the retinitis pigmentosa research registry (comprising diagnosis within the whole IRD spectrum), hosted at the Department of Ophthalmology, Skåne University hospital, Sweden. The phenotypes had already been evaluated with electrophysiology and other clinical tests, e.g., visual acuity, Goldmann perimetry, and fundus imaging at the first visit, sometime between 1988-2015 and the previous-in many cases, multiple-genetic testing, performed between 1995 and 2020 had been inconclusive. All patients were aged 0-25 years at the time of their first visit. Renewed genetic testing was performed using a next generation sequencing (NGS) IRD panel including 322 genes (Blueprint Genetics). Class 5 and 4 variants, according to ACMG guidelines, were considered pathogenic. Of the 279 samples tested, a confirmed genotype was determined in 182 (65%). The cohort was genetically heterogenous, including 65 different genes. The most prevailing were ABCA4 (16.5%), RPGR (6%), CEP290 (6%), and RS1 (5.5%). Other prevalent genes were CACNA1F (3%), PROM1 (3%), CHM (3%), and NYX (3%). In 7% of the patients there was a discrepancy between the diagnosis made based on phenotypical or genotypical findings alone. To conclude, repeated DNA-analysis was beneficial also in previously tested patients and improved our ability to verify the genotype-phenotype association increasing the understanding of how visual impairment manifests, prognosis, and the inheritance pattern. Moreover, repeated testing using a widely available method could identify additional patients eligible for future gene-based therapies.
Collapse
Affiliation(s)
- Maria Areblom
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Sten Andréasson
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Lotta Gränse
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Ulrika Kjellström
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
5
|
Benthal MC, McKeown AS, Kraft TW. Cone Photoreceptor Loss in Light-Damaged Albino Rats. Int J Mol Sci 2022; 23:3978. [PMID: 35409336 PMCID: PMC8999964 DOI: 10.3390/ijms23073978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the etiology of decreased cone-driven vision in a light damage (LD) model of retinal degeneration. To induce slow, moderate degeneration, albino rats underwent low-intensity light exposure for 10 days. Electroretinography was utilized to assess physiologic function of the rod- and cone-driven retinal function in LD and control rats. Immunohistochemistry targeting cone arrestin allowed for quantification of cone density and for comparison of the decline in function. Photoreceptor loss was quantified by outer nuclear layer thickness decreases, as observed by optical coherence tomography and histology. The LD rats showed decreased rod- and cone-driven function with partial recovery 30 days after cessation of light exposure. In addition, LD rats showed decreased cone photoreceptor densities in the central retinal region compared to control rats. Our results demonstrate that the loss of cone-driven visual function induced by light damage is at least partially due to the death of cone photoreceptors.
Collapse
Affiliation(s)
- Molly C. Benthal
- Department of Optometry, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA;
| | - Alex S. McKeown
- Department of Vision Sciences, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA;
| | - Timothy W. Kraft
- Department of Vision Sciences, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA;
| |
Collapse
|
6
|
Zrenner E, Holder GE, Schiefer U, Wild JM. Three-Year Changes in Visual Function in the Placebo Group of a Randomized Double-Blind International Multicenter Safety Study: Analysis of Electroretinography, Perimetry, Color Vision, and Visual Acuity in Individuals With Chronic Stable Angina Pectoris. Transl Vis Sci Technol 2022; 11:2. [PMID: 34982095 PMCID: PMC8742521 DOI: 10.1167/tvst.11.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether significant deteriorations in objective (electroretinography [ERG]) and subjective (standard automated and semi-automated kinetic perimetry; color discrimination; and best-corrected visual acuity) tests of visual function, potentially attributable to aging, occurred in the group randomized to placebo of a 3-year prospective multicenter ocular safety study of ivabradine for chronic stable angina pectoris. Methods The multicenter trial was conducted at 11 international ophthalmic centers. Changes in visual function between baseline and month 36 were analyzed by means of a two-tailed Wilcoxon signed-rank test, based on the Hodges and Lehman estimator of the median difference, with the 95% confidence intervals derived by Walsh averages. Results Thirty-eight participants from the placebo group completed the study (mean [SD], age, 62.7 [8.1] years). The group exhibited in each eye small, but statistically significant, reductions in the amplitudes of the dark-adapted (DA) ERG 3.0 a-wave, and light-adapted (LA) 3.0 b-wave, as well as increases in peak time for the DA 0.01 b-wave, DA 3.0 a-wave, LA 3.0 b-wave, and LA 3.0 30-Hz flicker response and in the isopter area I3e of the visual field. Conclusions Statistically significant deteriorations occurred in visual function over a period of 3 years, potentially attributable to age, within a group of individuals with chronic stable angina pectoris and unremarkable ophthalmological findings other than those attributable to age. Translational Relevance A longitudinal correction factor for age-related change in visual function may be useful in future trials to determine whether an observed deterioration in visual function is related to intervention or to aging.
Collapse
Affiliation(s)
- Eberhart Zrenner
- Center for Ophthalmology, University of Tübingen, Tübingen, Germany.,Werner Reichardt Center for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Graham E Holder
- Moorfields Eye Hospital, London, UK.,University College London, Institute of Ophthalmology, London, UK.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ulrich Schiefer
- Center for Ophthalmology, University of Tübingen, Tübingen, Germany.,Competence Center Vision Research, University of Applied Sciences Aalen, Aalen, Germany
| | - John M Wild
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Neuromodulation Induced by Sitagliptin: A New Strategy for Treating Diabetic Retinopathy. Biomedicines 2021; 9:biomedicines9121772. [PMID: 34944588 PMCID: PMC8698405 DOI: 10.3390/biomedicines9121772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy (DR) involves progressive neurovascular degeneration of the retina. Reduction in synaptic protein expression has been observed in retinas from several diabetic animal models and human retinas. We previously reported that the topical administration (eye drops) of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, prevented retinal neurodegeneration induced by diabetes in db/db mice. The aim of the present study is to examine whether the modulation of presynaptic proteins is a mechanism involved in the neuroprotective effect of sitagliptin. For this purpose, 12 db/db mice, aged 12 weeks, received a topical administration of sitagliptin (5 μL; concentration: 10 mg/mL) twice per day for 2 weeks, while other 12 db/db mice were treated with vehicle (5 μL). Twelve non-diabetic mice (db/+) were used as a control group. Protein levels were assessed by western blot and immunohistochemistry (IHC), and mRNA levels were evaluated by reverse transcription polymerase chain reaction (RT-PCR). Our results revealed a downregulation (protein and mRNA levels) of several presynaptic proteins such as synapsin I (Syn1), synaptophysin (Syp), synaptotagmin (Syt1), syntaxin 1A (Stx1a), vesicle-associated membrane protein 2 (Vamp2), and synaptosomal-associated protein of 25 kDa (Snap25) in diabetic mice treated with vehicle in comparison with non-diabetic mice. These proteins are involved in vesicle biogenesis, mobilization and docking, membrane fusion and recycling, and synaptic neurotransmission. Sitagliptin was able to significantly prevent the downregulation of all these proteins. We conclude that sitagliptin exerts beneficial effects in the retinas of db/db mice by preventing the downregulation of crucial presynaptic proteins. These neuroprotective effects open a new avenue for treating DR as well other retinal diseases in which neurodegeneration/synaptic abnormalities play a relevant role.
Collapse
|
8
|
Davis CQ, Hamilton R. Reference ranges for clinical electrophysiology of vision. Doc Ophthalmol 2021; 143:155-170. [PMID: 33880667 PMCID: PMC8494724 DOI: 10.1007/s10633-021-09831-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Establishing robust reference intervals for clinical procedures has received much attention from international clinical laboratories, with approved guidelines. Physiological measurement laboratories have given this topic less attention; however, most of the principles are transferable. METHODS Herein, we summarise those principles and expand them to cover bilateral measurements and one-tailed reference intervals, which are common issues for those interpreting clinical visual electrophysiology tests such as electroretinograms (ERGs), visual evoked potentials (VEPs) and electrooculograms (EOGs). RESULTS The gold standard process of establishing and defining reference intervals, which are adequately reliable, entails collecting data from a minimum of 120 suitable reference individuals for each partition (e.g. sex, age) and defining limits with nonparametric methods. Parametric techniques may be used under some conditions. A brief outline of methods for defining reference limits from patient data (indirect sampling) is given. Reference intervals established elsewhere, or with older protocols, can be transferred or verified with as few as 40 and 20 suitable reference individuals, respectively. Consideration is given to small numbers of reference subjects, interpretation of serial measurements using subject-based reference values, multidimensional reference regions and age-dependent reference values. Bilateral measurements, despite their correlation, can be used to improve reference intervals although additional care is required in computing the confidence in the reference interval or the reference interval itself when bilateral measurements are only available from some of subjects. DISCUSSION Good quality reference limits minimise false-positive and false-negative results, thereby maximising the clinical utility and patient benefit. Quality indicators include using appropriately sized reference datasets with appropriate numerical handling for reporting; using subject-based reference limits where appropriate; and limiting tests for each patient to only those which are clinically indicated, independent and highly discriminating.
Collapse
Affiliation(s)
| | - Ruth Hamilton
- Department of Clinical Physics and Bioengineering, Royal Hospital for Children, NHS Greater Glasgow and Clyde, Glasgow, UK.
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Retinal blood flow dysregulation precedes neural retinal dysfunction in type 2 diabetic mice. Sci Rep 2021; 11:18401. [PMID: 34526573 PMCID: PMC8443656 DOI: 10.1038/s41598-021-97651-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
We investigated and compared the susceptibility of retinal blood flow regulation and neural function in mice developing type 2 diabetes. The longitudinal changes in retinal neuronal function and blood flow responses to a 10-min systemic hyperoxia and a 3-min flicker stimulation were evaluated every 2 weeks in diabetic db/db mice and nondiabetic controls (db/m) from age 8 to 20 weeks. The retinal blood flow and neural activity were assessed using laser speckle flowgraphy and electroretinography (ERG), respectively. The db/db mice had significantly higher blood glucose levels and body weight. The resting retinal blood flow was steady and comparable between two groups throughout the study. Hyperoxia elicited a consistent decrease, and flicker light an increase, in retinal blood flow in db/m mice independent of age. However, these flow responses were significantly diminished in db/db mice at 8 weeks old and then the mice became unresponsive to stimulations at 12 weeks. Subsequently, the ERG implicit time for oscillatory potential was significantly increased at 14 weeks of age while the a-wave and b-wave amplitudes and implicit times remained unchanged. The deficiencies of flow regulation and neurovascular coupling in the retina appear to precede neural dysfunction in the mouse with type 2 diabetes.
Collapse
|
10
|
Bakhshi S, Behbahani S, Daftarian N. Application of a Mapping Method in the Analysis of Electroretinogram in Patients with Retinitis Pigmentosa. Semin Ophthalmol 2021; 37:351-357. [PMID: 34499573 DOI: 10.1080/08820538.2021.1967411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Retinitis pigmentosa (RP) is a group of degenerative retinal diseases characterized by mutations in genes affecting retinal pigment epithelium (RPE) function, as well as mutations directly involving photoreceptors. This paper aims to evaluate a nonlinear method to distinguish between the RP and normal eye based on the Electroretinogram (ERG) signal. METHOD ERG signal was recorded from 28 eyes of patients with the RP and 32 normal eyes. The ERG signal consists of four different stimuli, including two dark-adapted and two light-adapted stimuli. The time-domain analysis includes the amplitude and implicit time to consider the robustness of the nonlinear method. A parabolic mapping method was performed, and two criteria (Theta angle and density) extracted from the parabola were compared for both groups. RESULTS The results showed that a-wave's amplitude and implicit time significantly changed in the dark- and light-adapted stimuli. The amplitude of the b-wave showed significant changes in all stimuli. However, the implicit time of b-wave had a significant increase only in the dark-adapted 3.0 ERG. Both nonlinear criteria showed significant changes in the RP group for all the stimuli. The p-values of dark-adapted 3.0 (p = .0121), dark-adapted 10.0 (p = .0014), light-adapted 3.0 (p = .0119), and flicker 30 Hz (p = .0323) showed significant differences. Using the density criterion, the statistical test demonstrated a significant difference between the RP and healthy normal group in dark-adapted 3.0 (p = .0076), dark-adapted 10.0 (p = .0024), light-adapted 3.0 (p = .0021), and flicker 30 Hz (p = .0165). CONCLUSION The proposed features have made it possible to distinguish between healthy and RP eyes. This method might be helpful in early diagnosis.
Collapse
Affiliation(s)
- Samiyeh Bakhshi
- Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soroor Behbahani
- Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Kick GR, Meiman EJ, Sabol JC, Whiting REH, Ota-Kuroki J, Castaner LJ, Jensen CA, Katz ML. Visual system pathology in a canine model of CLN5 neuronal ceroid lipofuscinosis. Exp Eye Res 2021; 210:108686. [PMID: 34216614 PMCID: PMC8429270 DOI: 10.1016/j.exer.2021.108686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
CLN5 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disease characterized by progressive neurological decline, vision loss and seizures. Visual impairment in children with CLN5 disease is attributed to a progressive decline in retinal function accompanied by retinal degeneration as well as impaired central nervous system function associated with global brain atrophy. We studied visual system pathology in five Golden Retriever littermates homozygous for the CLN5 disease allele previously identified in the breed. The dogs exhibited signs of pronounced visual impairment by 21-22 months of age. Electroretinogram recordings showed a progressive decline in retinal function primarily affecting cone neural pathways. Altered visual evoked potential recordings indicated that disease progression affected visual signal processing in the brain. Aside from several small retinal detachment lesions, no gross retinal abnormalities were observed with in vivo ocular imaging and histologically the retinas did not exhibit apparent abnormalities by 23 months of age. However, there was extensive accumulation of autofluorescent membrane-bound lysosomal storage bodies in almost all retinal layers, as well as in the occipital cortex, by 20 months of age. In the retina, storage was particularly pronounced in retinal ganglion cells, the retinal pigment epithelium and in photoreceptor cells just interior to the outer limiting membrane. The visual system pathology of CLN5-affected Golden Retrievers is similar to that seen early in the human disease. It was not possible to follow the dogs to an advanced stage of disease progression due to the severity of behavioral and motor disease signs by 23 months of age. The findings reported here indicate that canine CLN5 disease will be a useful model of visual system disease in CLN5 neuronal ceroid lipofuscinosis. The baseline data obtained in this investigation will be useful in future therapeutic intervention studies. The findings indicate that there is a fairly broad time frame after disease onset within which treatments could be effective in preserving vision.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | | | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Cheryl A Jensen
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
12
|
Oscillatory potentials abnormalities in regular cannabis users: Amacrine cells dysfunction as a marker of central dopaminergic modulation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110083. [PMID: 32860840 DOI: 10.1016/j.pnpbp.2020.110083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cannabis is a neuromodulating substance that acts on central synaptic transmission. Regular cannabis use induces a decreased capacity for dopamine synthesis in the brain. The retina is considered an easy means of investigating dysfunctions of synaptic transmission in the brain. We have previously studied the impact of regular cannabis use on retinal function. Using the N95 wave of the pattern electroretinogram, we found a 6 ms-delayed ganglion cells response. Using the b-wave of the photopic flash electroretinogram, we found a 1 ms-delayed bipolar cells response. Here, we investigated amacrine cells function because these cells are located between the bipolar cells and the ganglion cells and contribute to amplifying the signal between these two layers of the retina. We tested the effect of regular cannabis use on these retinal dopaminergic cells. We assessed the role of these cells in amplifying the delay observed previously. METHODS We recorded dark-adapted 3.0 flash ERG oscillatory potentials in 56 regular cannabis users and 29 healthy controls. The amplitude and implicit time of OP1, OP2, OP3 and OP4 were evaluated. RESULTS Cannabis users showed a significant decrease in OP2 amplitude (p = 0.029, Mann-Whitney test) and OP3 amplitude (p = 0.024, Mann-Whitney test). No significant difference was found between the groups for OP1 and OP4 amplitude or for the implicit time of oscillatory potentials. CONCLUSIONS These results reflect the impact of regular cannabis use on amacrine cells function. They highlight abnormalities in dopaminergic transmission and are similar to those found in Parkinson's disease. Oscillatory potentials could be used as markers of central dopaminergic modulation.
Collapse
|
13
|
Shin H, Seo H, Chung WG, Joo BJ, Jang J, Park JU. Recent progress on wearable point-of-care devices for ocular systems. LAB ON A CHIP 2021; 21:1269-1286. [PMID: 33704299 DOI: 10.1039/d0lc01317j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The eye is a complex sensory organ that contains abundant information for specific diseases and pathological responses. It has emerged as a facile biological interface for wearable healthcare platforms because of its excellent accessibility. Recent advances in electronic devices have led to the extensive research of point-of-care (POC) systems for diagnosing and monitoring diseases by detecting the biomarkers within the eye. Among these systems, contact lenses, which make direct contact with the ocular surfaces, have been utilized as one of the promising candidates for non-invasive POC testing of various diseases. The continuous and long-term measurement from the sensor allows the patients to manage their symptoms in an effective and convenient way. Herein, we review the progress of contact lens sensors in terms of the materials, methodologies, device designs, and target biomarkers. The anatomical structure and biological mechanisms of the eye are also discussed to provide a comprehensive understanding of the principles of contact lens sensors. Intraocular pressure and glucose, which are the representative biomarkers found in the eyes, can be measured with the biosensors integrated with contact lenses for the diagnosis of glaucoma and diabetes. Furthermore, contact lens sensors for various general pathologies as well as other ocular diseases are also considered, thereby providing the prospects for further developments of smart contact lenses as a future POC system.
Collapse
Affiliation(s)
- Haein Shin
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
14
|
Leahy KE, Wright T, Grudzinska Pechhacker MK, Audo I, Tumber A, Tavares E, MacDonald H, Locke J, VandenHoven C, Zeitz C, Heon E, Buncic JR, Vincent A. Optic Atrophy and Inner Retinal Thinning in CACNA1F-related Congenital Stationary Night Blindness. Genes (Basel) 2021; 12:genes12030330. [PMID: 33668843 PMCID: PMC7996180 DOI: 10.3390/genes12030330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Hemizygous pathogenic variants in CACNA1F lead to defective signal transmission from retinal photoreceptors to bipolar cells and cause incomplete congenital stationary night blindness in humans. Although the primary defect is at the terminal end of first-order neurons (photoreceptors), there is limited knowledge of higher-order neuronal changes (inner retinal) in this disorder. This study aimed to investigate inner retinal changes in CACNA1F-retinopathy by analyzing macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness and optic disc pallor in 22 subjects with molecularly confirmed CACNA1F-retinopathy. Detailed ocular phenotypic data including distance and color vision, refraction and electroretinogram (ERG) were collected. Distance vision was universally reduced (mean: 0.42 LogMAR), six had abnormal color vision and myopia was common (n = 15; mean: −6.32 diopters). Mean GCL-IPL thickness was significantly lower in patients (55.00 µm) compared to age-matched controls (n = 87; 84.57 µm; p << 0.001). The GCL-IPL thickness correlated with scotopic standard (p = 0.04) and bright-flash (p = 0.014) ERG b/a ratios and photopic b-wave amplitudes (p = 0.05). Twenty-one patients had some degree of disc pallor (bilateral in 19). Fifteen putative disease-causing, including five novel variants were identified. This study establishes macular inner retinal thinning and optic atrophy as characteristic features of CACNA1F-retinopathy, which are independent of myopia and could impact potential future treatment strategies.
Collapse
Affiliation(s)
- Kate E Leahy
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
| | - Tom Wright
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
- Kensington Eye Institute, Toronto, ON M5T 3A9, Canada
| | - Monika K Grudzinska Pechhacker
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
| | - Isabelle Audo
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France; (I.A.); (C.Z.)
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012 Paris, France
- Institute of Ophthalmology, University College of London, London EC1V 9EL, UK
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
| | - Erika Tavares
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Heather MacDonald
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jeff Locke
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
| | - Cynthia VandenHoven
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
| | - Christina Zeitz
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France; (I.A.); (C.Z.)
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - J Raymond Buncic
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Correspondence: ; Tel.: +1-416-813-1500
| |
Collapse
|
15
|
Cabrera DeBuc D, Feuer WJ, Persad PJ, Somfai GM, Kostic M, Oropesa S, Mendoza Santiesteban C. Investigating Vascular Complexity and Neurogenic Alterations in Sectoral Regions of the Retina in Patients With Cognitive Impairment. Front Physiol 2020; 11:570412. [PMID: 33240097 PMCID: PMC7680898 DOI: 10.3389/fphys.2020.570412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Evidence is accumulating that cognitive function, and visual impairment may be related. In this pilot study, we investigated whether multifractal dimension and lacunarity analyses performed in sectoral regions of the retina may reveal changes in patients with cognitive impairment (CI) that may be masked in the study considering the whole retinal branching pattern. Prospective age-matched subjects (n = 69) with and with no CI and without the presence of any ophthalmic history were recruited (age > 55+ years). The Montreal Cognitive Assessment (MoCA) was used to measure CI, and full-field electroretinogram (ERG) was performed. Also, visual performance exams were conducted using the Rabin cone contrast test (CCT). Quantification of the retinal structure was performed in retinal fundus images [45o field of view (FOV), optic disk centered] with excellent quality for all individuals [19 healthy controls (HC) and 20 patients with CI] after evaluating the inclusion and exclusion criteria in all study participants recruited (n = 69). The skeletonized vasculature network that comprised the whole branching pattern observable in the full 45° FOV was obtained for each image and divided into nine equal regions (superotemporal, superior, superonasal, macular, optic disk, nasal, inferotemporal, inferior, and inferonasal). The multifractal behavior was analyzed by calculating the generalized dimension Dq (Do, D1, and D2), the lacunarity parameter (Λ), and singularity spectrum f(α) in the nine sectoral skeletonized images as well as in the skeletons that comprised the whole branching pattern observable in the full 45° FOV. The analyses were performed using the ImageJ program together with the FracLac plug-in. Independent sample t-tests or Mann Whitney U test and Pearson correlation coefficient were used to find associations between all parameters in both groups. The effect size (Cohen’s d) of the difference between both groups was also assessed. A p-value < 0.05 was considered statistically significant. Significant correlations between multifractal and Λ parameters with the MoCA and implicit time ERG-parameter were observed in the regional analysis. In contrast, no trend was found when considering the whole retinal branching pattern. Analysis of combined structural-functional parameters in sectoral regions of the retina, instead of individual retinal biomarkers, may provide a useful clinical marker of CI.
Collapse
Affiliation(s)
- Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - William J Feuer
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Patrice J Persad
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Gabor Mark Somfai
- Department of Ophthalmology, City Hospital Waid and Triemli, Zurich, Switzerland.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Maja Kostic
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Susel Oropesa
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | | |
Collapse
|
16
|
Hayasaka O, Anraku K, Akamatsu Y, Tseng YC, Archdale MV, Kotani T. Threshold and spectral sensitivity of vision in medaka Oryzias latipes determined by a novel template wave matching method. Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110808. [PMID: 32979502 DOI: 10.1016/j.cbpa.2020.110808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022]
Abstract
We propose a new analytical method for determining the response threshold in electroretinogram (ERG) in which the wave shows a biphasic slow dc-potential shift. This method uses the recorded wave to the highest intensity stimuli in each wavelength tested as a template wave f(t), and it was compared with other recorded waves obtained under lower intensities g(t). Our test recordings in medaka Oryzias latipes were analogous between the template and the compared waveforms, although there were differences in amplitude and time lag (τ, peak time difference) which occurred as a result of the difference in stimulus intensity. Cross-correlation analysis was applied. Based on the obtained cross-correlation function Cfg(τ) in each comparison, τ was determined as the time lag at which the cross-correlation coefficient Rfg(τ) showed the maximum value. Determined thresholds that were based on both the experimenter's visual inspection and this new method agreed well when the adoption condition was set to satisfy R(τ) ≥ 0.7 and τ ≤ 150 ms in scotopic or τ ≤ 120 ms in photopic conditions. We concluded that this "template wave matching method" is a quick and reliable objective assessment that can be used to determine the threshold. This study analyzed ERG recordings in response to 6 kinds of wavelength light stimuli (380 nm to 620 nm) at different photon flux densities. We report the threshold levels and relative spectral sensitivities in scotopic and photopic vision of medaka.
Collapse
Affiliation(s)
- Oki Hayasaka
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiko Anraku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan.
| | - Yuya Akamatsu
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Miguel Vazquez Archdale
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Tomonari Kotani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
17
|
Zrenner E, Holder GE, Schiefer U, Wild JM. Quality Control Procedures and Baseline Values for Electroretinography, Perimetry, Color Vision, and Visual Acuity in an International Multicenter Study: Observations from a Safety Trial in Chronic Stable Angina Pectoris. Transl Vis Sci Technol 2020; 9:38. [PMID: 32855884 PMCID: PMC7422805 DOI: 10.1167/tvst.9.8.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe quality control procedures and baseline values of electroretinography (ERG), kinetic and static perimetry, color discrimination, and best-corrected visual acuity from a multicenter ocular safety study. Methods A multicenter prospective longitudinal randomized placebo-controlled study was conducted at 11 ophthalmic centers that had received certification following training, instruction, and monitoring. ERGs were obtained with the Espion E2 Ganzfeld console, perimetry with the Octopus 101 perimeter, color discrimination with the Lanthony desaturated D15 test, and best-corrected visual acuity with the Early Treatment Diabetic Retinopathy Study chart. Ophthalmic eligibility required satisfactory outcomes for ERG and perimetry by the second or third pre-inclusion attempts, respectively. Quality control for the ERG was undertaken by two central readers. Results The mean (SD) age of the 97 individuals was 63.5 (7.9) range, 44–83 years. The overall coefficients of variation (CVs) for the ERG peak times were less than those of the only comparable single-center study. The CV for the mean defect of standard automated perimetry was approximately one-third that of the Ocular Hypertension Treatment Study. With increasing age, ERG peak times and color discrimination Total Error Score increased while ERG amplitudes and isopter area all decreased. Conclusions The data illustrate the benefit of identical equipment, stringent on-site instruction and training, quality control, certification, and validation methods. The latter are recommended for planning and conducting multicenter trials using ERG and perimetry to monitor safety and/or efficacy of treatment intervention. Translational Relevance Stringent quality control procedures and reliable reference values are indispensable prerequisites for informative clinical trials.
Collapse
Affiliation(s)
- Eberhart Zrenner
- Center for Ophthalmology, University of Tübingen, Tübingen, Germany.,Werner Reichardt Center for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Graham E Holder
- Moorfields Eye Hospital, London, UK.,University College London, Institute of Ophthalmology, London, UK
| | - Ulrich Schiefer
- Center for Ophthalmology, University of Tübingen, Tübingen, Germany.,Competence Center Vision Research, University of Applied Sciences Aalen, Aalen, Germany
| | - John M Wild
- College of Biomedical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Effect of Topical Administration of Somatostatin on Retinal Inflammation and Neurodegeneration in an Experimental Model of Diabetes. J Clin Med 2020; 9:jcm9082579. [PMID: 32784955 PMCID: PMC7463891 DOI: 10.3390/jcm9082579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Somatostatin (SST) is a neuroprotective peptide but little is known regarding the potential role of its anti-inflammatory effects on retinal neuroprotection. In a previous study, we provided the first evidence that topical (eye drops) administration of SST prevents retinal neurodegeneration in streptozotocin (STZ)-induced diabetic rats. However, STZ by itself could cause neurotoxicity, thus acting as a confounding factor. The aims of the present study were: (1) to test the effect of topical administration of SST in the db/db mouse model, a spontaneous model of type 2 diabetes, thus avoiding the confounding effect of STZ on neurodegeneration; (2) to further explore the anti-inflammatory mechanisms of SST in glial cells. This task was performed by using mouse retinal explants and cell cultures. In summary, we confirm that SST topically administered was able to prevent retinal neurodysfunction and neurodegeneration in db/db mice. Furthermore, we found that SST prevented the activation of the classical M1 response of Bv.2 microglial cells upon Lipopolysaccharide (LPS) stimulation as a potent pro-inflammatory trigger. The anti-inflammatory effect of SST in Bv.2 cells was also observed in response to hypoxia. In conclusion, we provide evidence that the neuroprotective effect of SST in diabetic retinas can be largely attributed to anti-inflammatory mechanisms.
Collapse
|
19
|
Sanderson KG, Millar E, Tumber A, Klatt R, Sondheimer N, Vincent A. Rod bipolar cell dysfunction in POLG retinopathy. Doc Ophthalmol 2020; 142:111-118. [PMID: 32567010 DOI: 10.1007/s10633-020-09777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To report the clinical and novel electrophysiological features in a child with POLG-related sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO). METHODS The proband, a male child of Indian descent, underwent serial systemic and ophthalmological evaluations from birth until 14 years of age. Eye examinations included visual acuity and extraocular movement assessments, fundus photography, spectral domain optical coherence tomography and full-field electroretinography (ERG). Detailed genetic testing was also performed. RESULTS The child carried a homozygous mutation in POLG (c.911T > G/p.Leu304Arg) and manifested systemic features such as seizures, headaches, areflexia, hypotonia, myopathy and vomiting. The child's distance visual acuity was 0.50 and 0.40 LogMAR in the right and left eyes, respectively. Bilateral ophthalmoplegia and ptosis were observed at 5 years of age. The dark-adapted (DA) ERG responses to 2.29 cd s m-2 and 7.6 cd s m-2 stimuli showed a markedly reduced b/a ratio; an electronegative configuration was noted to a DA 7.6 ERG. CONCLUSION This is the first documented case of an electronegative ERG in a POLG-related disorder consistent with generalized rod ON-bipolar dysfunction. The rest of the proband's systemic and ophthalmological features were consistent with SANDO but some features overlapped with other POLG-related disorders such as Alpers-Huttenlocher syndrome and autosomal dominant progressive external ophthalmoplegia demonstrating the wide phenotypic overlap expected due to POLG mutations.
Collapse
Affiliation(s)
- Kit Green Sanderson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Eoghan Millar
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Regan Klatt
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Neal Sondheimer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada. .,Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther 2020; 11:25. [PMID: 31931872 PMCID: PMC6958670 DOI: 10.1186/s13287-020-1549-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of this study is to determine if umbilical cord Wharton's jelly derived mesenchymal stem cells implanted in sub-tenon space have beneficial effects on visual functions in retinitis pigmentosa patients by reactivating the degenerated photoreceptors in dormant phase. MATERIAL AND METHODS This prospective, open-label, phase-3 clinical trial was conducted between April of 2019 and October of 2019 at Ankara University Faculty of Medicine, Department of Ophthalmology. 32 RP patients (34 eyes) were included in the study. The patients were followed for 6 months after the Wharton's jelly derived mesenchymal stem cell administration, and evaluated with consecutive examinations. All patients underwent a complete routine ophthalmic examination, and best corrected visual acuity, optical coherens tomography angiography, visual field, multifocal and full-field electroretinography were performed. The quantitative results were obtained from a comparison of the pre-injection and final examination (6th month) values. RESULTS The mean best corrected visual acuity was 70.5 letters prior to Wharton's jelly derived mesenchymal stem cell application and 80.6 letters at the 6th month (p = 0.01). The mean visual field median deviation value was 27.3 dB before the treatment and 24.7 dB at the 6th month (p = 0.01). The mean outer retinal thickness was 100.3 μm before the treatment and 119.1 μm at 6th month (p = 0.01). In the multifocal electroretinography results, P1 amplitudes improved in ring1 from 24.8 to 39.8 nv/deg2 (p = 0.01), in ring2 from 6.8 to 13.6 nv/deg2 (p = 0.01), and in ring3 from 3.1 to 5.7 nv/deg2 (p = 0.02). P1 implicit times improved in ring1 from 44.2 to 32.4 ms (p = 0.01), in ring2 from 45.2 to 33.2 ms (p = 0.02), and in ring3 from 41.9 to 32.4 ms (p = 0.01). The mean amplitude improved in 16 Tds from 2.4 to 5.0 nv/deg2 (p = 0.01) and in 32 Tds from 2.4 to 4.8 nv/deg2 (p = 0.01) in the full-field flicker electroretinography results. Full field flicker electroretinography mean implicit time also improved in 16 Tds from 43.3 to 37.9 ms (p = 0.01). No ocular or systemic adverse events related to the two types of surgical methods and/or Wharton's jelly derived mesenchymal stem cells itself were observed during the follow-up period. CONCLUSION RP is a genetic disorder that can result in blindness with outer retinal degeneration. Regardless of the type of genetic mutation, sub-tenon Wharton's jelly derived mesenchymal stem cell administration appears to be an effective and safe option. There are no serious adverse events or ophthalmic / systemic side effects for 6 months follow-up. Although the long-term adverse effects are still unknown, as an extraocular approach, subtenon implantation of the stem cells seems to be a reasonable way to avoid the devastating side effects of intravitreal/submacular injection. Further studies that include long-term follow-up are needed to determine the duration of efficacy and the frequency of application. TRIAL REGISTRATION SHGM56733164. Redistered 28 January 2019 https://shgm.saglik.gov.tr/organ-ve-doku-nakli-koordinatorlugu/56733164/203 E.507.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad, No 13/A Beştepe /Yenimahalle, Ankara, Turkey.
| |
Collapse
|
21
|
Arthur E, Somfai GM, Kostic M, Oropesa S, Santiesteban CM, DeBuc DC. Distinguishing cognitive impairment by using singularity spectrum and lacunarity analysis of the retinal vascular network. NEUROPHOTONICS 2019; 6:041109. [PMID: 31572744 PMCID: PMC6756485 DOI: 10.1117/1.nph.6.4.041109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The development of effective therapies for cognitive impairment (CI), especially due to Alzheimer's disease, demands diagnosing the condition during the prodromal phase. The diagnosis of CI involves expensive and invasive methods, such as positron emission tomography and cerebrospinal fluid assessment via spinal tap. Hence, a comparatively lower cost and noninvasive method of diagnosis is imperative. The human retina is an extension of the brain characterized by similarities in vascular and neural structures. The complications of CI are not only limited to the brain but also affect the retina for which the loss of retinal ganglion cells has been associated with neurodegeneration in the brain. The loss of retinal ganglion cells in individuals with CI may be related to reduced vascular demand and a potential remodeling of the retinal vascular branching complexity. Retinal imaging biomarkers may provide a low cost and noninvasive alternative for the diagnosis of CI. In this study, the retinal vascular branching complexity of patients with CI was characterized using the singularity spectrum multifractal dimension and lacunarity parameter. A reduced vascular branching complexity was observed in subjects with CI when compared to age- and sex-matched cognitively healthy controls. Significant associations were also found between retinal vascular and functional parameters.
Collapse
Affiliation(s)
- Edmund Arthur
- University of Miami, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, United States
| | - Gabor Mark Somfai
- Pallas Kliniken, Retinology Unit, Olten, Switzerland
- Semmelweis University, Department of Ophthalmology, Budapest, Hungary
| | - Maja Kostic
- University of Miami, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, United States
| | - Susel Oropesa
- University of Miami, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, United States
| | - Carlos Mendoza Santiesteban
- University of Miami, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, United States
| | - Delia Cabrera DeBuc
- University of Miami, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, United States
| |
Collapse
|
22
|
SOCS1-Derived Peptide Administered by Eye Drops Prevents Retinal Neuroinflammation and Vascular Leakage in Experimental Diabetes. Int J Mol Sci 2019; 20:ijms20153615. [PMID: 31344857 PMCID: PMC6695852 DOI: 10.3390/ijms20153615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023] Open
Abstract
Current treatments for diabetic retinopathy (DR) target late stages when vision has already been significantly affected. Accumulating evidence suggests that neuroinflammation plays a major role in the pathogenesis of DR, resulting in the disruption of the blood-retinal barrier. Suppressors of cytokine signaling (SOCS) are cytokine-inducible proteins that function as a negative feedback loop regulating cytokine responses. On this basis, the aim of the present study was to evaluate the effect of a SOCS1-derived peptide administered by eye drops (2 weeks) on retinal neuroinflammation and early microvascular abnormalities in a db/db mouse model. In brief, we found that SOCS1-derived peptide significantly reduced glial activation and neural apoptosis induced by diabetes, as well as retinal levels of proinflammatory cytokines. Moreover, a significant improvement of electroretinogram parameters was observed, thus revealing a clear impact of the histological findings on global retinal function. Finally, SOCS1-derived peptide prevented the disruption of the blood-retinal barrier. Overall, our results suggest that topical administration of SOCS1-derived peptide is effective in preventing retinal neuroinflammation and early microvascular impairment. These findings could open up a new strategy for the treatment of early stages of DR.
Collapse
|
23
|
More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. Neuropsychologia 2019; 128:178-186. [DOI: 10.1016/j.neuropsychologia.2017.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 11/12/2017] [Indexed: 11/18/2022]
|
24
|
Chen X, Liu CN, Fenyk-Melody JE. Effects of Sodium Lighting On Circadian Rhythms in Rats. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:311-320. [PMID: 30971327 DOI: 10.30802/aalas-jaalas-18-000079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rodent studies often must be conducted during an animal's active phase (that is, in darkness) yet also during a typical day shift for staff. Low-pressure sodium lighting (LPSL), to which human retinas are more sensitive than rodents' at low intensity, has been used to facilitate study conduct in dark phase. The assumption was that LPSL would be equivalent to total darkness due to low rodent retinal sensitivity but provide enough lighting for safe technical manipulations due to higher human retinal sensitivity. Unlike other light sources, LPSL has been tested for effects on circadian rhythm specific to locomotive activities in albino mice. Whether LPSL affects circadian rhythms in rats is unknown. In this study, circadian endpoints were derived from body temperature and locomotor activity via telemeters in 8 adult male Wistar rats. When moved from a 12:12-h white-light (that is, cold white fluorescent light):dark (LD) cycle to a 12:12-h white-light:sodium-light cycle, rats demonstrated free-running and disrupted circadian rhythms (that is, lengthened circadian period and reduced circadian robustness and amplitude). Body temperature and locomotor activity were significantly lower in the LPSL phase as compared with dark phase under the baseline condition. When exposed to a 12:12 h sodium-light:dark (SD) cycle, rats entrained with a circadian period similar to 12:12-h white-light:dark (LD), but significantly different from the period under constant darkness (DD). Circadian onset and acrophase were delayed under SD compared with LD. When illuminated with a LPSL pulse under DD, rats showed phase shifts similar to white-light pulse effects, consistent with the phase response curve. To determine whether the image-forming photoreceptors are involved in this process, we used electroretinography. Compared with white light, 589-nm light generated during electroretinography elicited rod photoreceptors responses with longer latency and cone photoreceptor responses with lower amplitude. These results indicate that LPSL is a weaker zeitgeber than white light and may alter the circadian system in rats. Furthermore, because LPSL appeared to be visible to rats, it may not be an appropriate substitute for actual darkness.
Collapse
Affiliation(s)
- Xian Chen
- Comparative Medicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Chang-Ning Liu
- Comparative Medicine, Pfizer Worldwide Research and Development, Groton, Connecticut;,
| | - Judith E Fenyk-Melody
- Comparative Medicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| |
Collapse
|
25
|
New Insights into the Mechanisms of Action of Topical Administration of GLP-1 in an Experimental Model of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8030339. [PMID: 30862093 PMCID: PMC6463072 DOI: 10.3390/jcm8030339] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
The main goals of this work were to assess whether the topical administration of glucagon-like peptide-1 (GLP-1) could revert the impairment of the neurovascular unit induced by long-term diabetes (24 weeks) in diabetic mice and to look into the underlying mechanisms. For that reason, db/db mice were treated with eye drops of GLP-1 or vehicle for 3 weeks. Moreover, db/+ mice were used as control. Studies performed in vivo included electroretinogramand the assessment of vascular leakage by using Evans Blue. NF-κB, GFAP and Ki67 proteins were analyzed by immunofluorescence (IF). Additionally, caspase 9, AMPK, IKBα, NF-κB, AKT, GSK3, β-catenin, Bcl-xl, and VEGF were analyzed by WB. Finally, VEGF, IL-1β, IL-6, TNF-α, IL-18, and NLRP3 were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. We found that topical administration of GLP-1 reverted reactive gliosis and albumin extravasation, and protected against apoptosis and retinal dysfunction. Regarding the involved mechanisms, GLP-1 exerted an anti-inflammatory action by decreasing NF-κB, inflammosome, and pro-inflammatory factors. In addition, it also decreased VEGF expression. Furthermore, GLP-1 promoted cell survival by increasing the anti-apoptotic protein Bcl-xl and the signaling pathway Akt/GSK3b/β-catenin. Finally, Ki67 results revealed that GLP-1 treatment could induce neurogenesis. In conclusion, the topical administration of GLP-1 reverts the impairment of the neurovascular unit by modulating essential pathways involved in the development of diabetic retinopathy (DR). These beneficial effects on the neurovascular unit could pave the way for clinical trials addressed to confirm the effectiveness of GLP-1 in early stages of DR.
Collapse
|
26
|
Cabrera DeBuc D, Somfai GM, Arthur E, Kostic M, Oropesa S, Mendoza Santiesteban C. Investigating Multimodal Diagnostic Eye Biomarkers of Cognitive Impairment by Measuring Vascular and Neurogenic Changes in the Retina. Front Physiol 2018; 9:1721. [PMID: 30574092 PMCID: PMC6291749 DOI: 10.3389/fphys.2018.01721] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated that cognitive impairment (CI) is not limited to the brain but also affects the retina. In this pilot study, we investigated the correlation between the retinal vascular complexity and neurodegenerative changes in patients with CI using a low-cost multimodal approach. Quantification of the retinal structure and function were conducted for every subject (n = 69) using advanced retinal imaging, full-field electroretinogram (ERG) and visual performance exams. The retinal vascular parameters were calculated using the Singapore Institute Vessel Assessment software. The Montreal Cognitive Assessment was used to measure CI. Pearson product moment correlation was performed between variables. Of the 69 participants, 32 had CI (46%). We found significantly altered microvascular network in individuals with CI (larger venular-asymmetry factor: 0.7 ± 0.2) compared with controls (0.6 ± 0.2). The vascular fractal dimension was lower in individuals with CI (capacity, information and correlation dimensions: D0, D1, and D2 (mean ± SD): 1.57 ± 0.06; 1.56 ± 0.06; 1.55 ± 0.06; age 81 ± 6years) vs. controls (1.61 ± 0.03; 1.59 ± 0.03; 1.58 ± 0.03; age: 80 ± 7 years). Also, drusen-like regions in the peripheral retina along with pigment dispersion were noted in subjects with mild CI. Functional loss in color vision as well as smaller ERG amplitudes and larger peak times were observed in the subjects with CI. Pearson product moment correlation showed significant associations between the vascular parameters (artery-vein ratio, total length-diameter ratio, D0, D1, D2 and the implicit time (IT) of the flicker response but these associations were not significant in the partial correlations. This study illustrates that there are multimodal retinal markers that may be sensitive to CI decline, and adds to the evidence that there is a statistical trend pointing to the correlation between retinal neuronal dysfunction and microvasculature changes suggesting that retinal geometric vascular and functional parameters might be associated with physiological changes in the retina due to CI. We suspect our analysis of combined structural-functional parameters, instead of individual biomarkers, may provide a useful clinical marker of CI that could also provide increased sensitivity and specificity for the differential diagnosis of CI. However, because of our study sample was small, the full extent of clinical applicability of our approach is provocative and still to be determined.
Collapse
Affiliation(s)
- Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Gabor Mark Somfai
- Retinology Unit, Pallas Kliniken, Olten, Switzerland.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Edmund Arthur
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Maja Kostic
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Susel Oropesa
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | | |
Collapse
|
27
|
Effects of Liposomal Formulation of Citicoline in Experimental Diabetes-Induced Retinal Neurodegeneration. Int J Mol Sci 2018; 19:ijms19082458. [PMID: 30127248 PMCID: PMC6121526 DOI: 10.3390/ijms19082458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) has been classically considered a microcirculatory disease of the retina. However, there is growing evidence to suggest that retinal neurodegeneration is also an early event in the pathogenesis of DR. Citicoline has been successfully used as a neuroprotective agent in the treatment of glaucoma but their effects on DR remain to be elucidated. On this basis, the main aim of the present study was to evaluate the effect of topical administration of citicoline in liposomal formulation on retinal neurodegeneration in db/db mouse and to investigate the underlying mechanisms of action. The treatment (citicoline or vehicle) was topically administered twice daily for 15 days. Retinal analyses were performed in vivo by electroretinography and ex vivo by using Western blot and immunofluorescence measurements. We found that the liposomal formulation of citicoline prevented glial activation and neural apoptosis in the diabetic retina. The main mechanism implicated in these beneficial effects were the inhibition of the downregulation of synaptophysin and its anti-inflammatory properties by means of preventing the upregulation of NF-κB and TNF-α (Tumor Necrosis Factor α) induced by diabetes. Overall, these results suggest that topical administration of citicoline in liposomal formulation could be considered as a new strategy for treating the early stages of DR.
Collapse
|
28
|
Predicting visual function after an ocular bee sting. Int Ophthalmol 2018; 39:1621-1626. [PMID: 30105490 DOI: 10.1007/s10792-018-0978-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE To report a case of toxic optic neuropathy caused by an ocular bee sting. METHODS Case report and literature review. RESULTS A 44-year-old female presented with no light perception vision 2 days after a corneal bee sting in her right eye. She was found to have diffuse cornea edema with overlying epithelial defect and a pinpoint penetrating laceration at 6 o'clock. There was an intense green color to the cornea. The pupil was fixed and dilated with an afferent pupillary defect. A small hyphema was seen, and a dense white cataract had formed. A diagnosis of toxic endophthalmitis with associated toxic optic neuropathy was made. The patient underwent pars plana vitrectomy and lensectomy with anterior chamber washout. She was also placed on systemic broad-spectrum antibiotics. She had noted clinical improvement over the course of her hospitalization and was discharged with light perception vision. A corneal opacity precluded viewing of the fundus. We utilized ganzfeld electroretinography and flash visual evoked potentials (2 and 10 Hz) to assess the visual function. Both tests were normal and predicted improvement following restorative surgery. She underwent a secondary lens implantation with penetrating keratoplasty 7 months later. This was followed by an epiretinal membrane peel 1 year after the bee sting. Her best corrected visual acuity improved to 20/80. CONCLUSION Toxic endophthalmitis and toxic optic neuropathy can be complications of ocular bee sting. We discuss the management of this rare occurrence and the role of electroretinographic testing and visual evoked potentials in predicting visual outcome.
Collapse
|
29
|
Hammoum I, Benlarbi M, Dellaa A, Kahloun R, Messaoud R, Amara S, Azaiz R, Charfeddine R, Dogui M, Khairallah M, Lukáts Á, Ben Chaouacha-Chekir R. Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 2018; 176:174-187. [PMID: 30009825 DOI: 10.1016/j.exer.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Diabetic retinopathy is a major cause of reduced visual acuity and acquired blindness. The aim of this work was to analyze functional and vascular changes in diabetic Meriones shawi (M.sh) an animal model of metabolic syndrome and type 2 diabetes. The animals were divided into four groups. Two groups were fed a high fat diet (HFD) for 3 and 7 months, two other groups served as age-matched controls. Retinal function was assessed using full field electroretinogram (Ff-ERG). Retinal thickness and vasculature were examined by optical coherence tomography, eye fundus and fluorescein angiography. Immunohistochemistry was used to examine key proteins of glutamate metabolism and synaptic transmission. Diabetic animals exhibited significantly delayed scotopic and photopic ERG responses and decreases in scotopic and photopic a- and b-wave amplitudes at both time points. Furthermore, a decrease of the amplitude of the flicker response and variable changes in the scotopic and photopic oscillatory potentials was reported. A significant decrease in retinal thickness was observed. No evident change in the visual streak area and no sign of vascular abnormality was present; however, some exudates in the periphery were visible in 7 months diabetic animals. Imunohistochemistry detected a decrease in the expression of glutamate synthetase, vesicular glutamate transporter 1 and synaptophysin proteins. Results indicate that a significant retinal dysfunction was present in the HFD induced diabetes involving both rod and cone pathways and this dysfunction correlate well with the morphological abnormalities reported previously. Furthermore, neurodegeneration and abnormalities in retinal function occur before vascular alterations would be detectable in diabetic M.sh.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Rim Kahloun
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Riadh Messaoud
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Soumaya Amara
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Mohamed Dogui
- Service of Functional Explorations of the Nervous System, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Khairallah
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia.
| |
Collapse
|
30
|
Abstract
Full-field electroretinography (ERG) belongs to the gold-standard of electrophysiological test systems in ophthalmology and reflects the sum response of the entire retina to light stimulation. The assessment of the retinal function is a fundamental diagnostic technique not only in the clinical ophthalmology it is also indispensable in the ophthalmic research, in particular, in therapeutic approaches where the in vivo follow up of the benefit after treatment is absolutely necessary. Several current therapeutic approaches have demonstrated long-lasting amelioration in respective disease models and show promise for a successful translation to human patients. In this chapter we provide electroretinography protocols of experimental data which may serve as informative features for upcoming gene therapeutic approaches and clinical trials.
Collapse
|
31
|
Abstract
PURPOSE To evaluate choroidal thickness (CT) in retinitis pigmentosa (RP) using enhanced depth imaging (EDI) optical coherence tomography (OCT). METHODS A retrospective analysis of a group of patients with RP who underwent EDI-OCT was performed. Choroidal thickness measurements were compared with those of age- and sex-matched healthy subjects. In the RP group, the possible association between subfoveal CT and some clinical parameters (visual acuity, age, age at disease onset, duration of the disease, macular thickness, visual field loss, electroretinography [ERG]) was evaluated. RESULTS The study recruited 39 patients with RP with an average age of 43.3 ± 11.3 years while the control group consisted of 73 healthy subjects with an average age of 42.9 ± 12.10 years. On average, CT was significantly thinner in the RP group compared to the controls (p<0.0001). In the RP group, we could not find any significant association between CT and the considered clinical parameters even if there was a trend for decreasing CT with increasing age (r = -0.23, p = 0.096). In the control group, subfoveal CT showed a slightly significant correlation with age (r = -0.21, p = 0.04) but not with macular thickness and visual acuity. CONCLUSIONS In our series, CT was significantly lower in the RP group in comparison with the controls, as measured by EDI-OCT, but did not correlate with age, age at onset, duration of the disease, macular thickness, visual acuity, visual field loss, or ERG responses. Although the clinical implications of choroidal changes in RP have not yet been clearly determined, the evaluation of choroidal features may provide information that could be useful to clarify the pathophysiology of the disease.
Collapse
|
32
|
Ioshimoto GL, Camargo AA, Liber AMP, Nagy BV, Damico FM, Ventura DF. Comparison between albino and pigmented rabbit ERGs. Doc Ophthalmol 2018; 136:113-123. [PMID: 29572760 DOI: 10.1007/s10633-018-9628-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Pigmented and albino rabbits are commonly used in visual research; however, the lack of pigment in the eyes may affect retinal responses. Here, we compare and describe the differences of retinal function between pigmented (English Butterfly) and albino (New Zealand) rabbits. METHODS Electroretinograms were recorded in pigmented and albino rabbits in the dark-adapted eye, in the light-adapted eye and for four temporal frequencies in the light-adapted eye. The implicit time and amplitude of the a- and b-waves were analyzed, as well as the amplitude and phase of the first harmonic component of the photopic flicker response. RESULTS Albino rabbits presented significantly larger amplitudes for both a- and b-waves at all intensities and frequencies. The intensity-response function of the scotopic b-wave also showed that the albino retina is more sensitive than the pigmented retina and the larger flicker amplitudes found in the albino group also revealed post-receptoral changes specifically related to cone pathways. CONCLUSIONS The larger amplitude of albino receptoral and post-receptoral activities might be attributed to greater availability of light due to scatter and reflection at the retinal layer, and as the differences in response amplitudes between the groups increase with flicker frequency, we suggest that ON bipolar cells recover faster in the albino group, suggesting that this might be a mechanism to explain the higher temporal resolution for albinos compared to the pigmented group.
Collapse
Affiliation(s)
- Gabriela Lourençon Ioshimoto
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil.
| | - Amanda Alves Camargo
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| | - André Maurício Passos Liber
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| | - Balázs Vince Nagy
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| | - Francisco Max Damico
- Department of Ophthalmology, Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, Universidade de São Paulo, Av. Prof. Mello Moraes 1721, Cidade Universitária, São Paulo, SP, CEP 05508-030, Brazil
| |
Collapse
|
33
|
Arslan U, Özmert E, Demirel S, Örnek F, Şermet F. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results. Graefes Arch Clin Exp Ophthalmol 2018; 256:893-908. [PMID: 29546474 DOI: 10.1007/s00417-018-3953-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE One of the main reasons for apoptosis and dormant cell phases in degenerative retinal diseases such as retinitis pigmentosa (RP) is growth factor withdrawal in the cellular microenvironment. Growth factors and neurotrophins can significantly slow down retinal degeneration and cell death in animal models. One possible source of autologous growth factors is platelet-rich plasma. The purpose of this study was to determine if subtenon injections of autologous platelet-rich plasma (aPRP) can have beneficial effects on visual function in RP patients by reactivating dormant photoreceptors. MATERIAL AND METHODS This prospective open-label clinical trial, conducted between September 2016 and February 2017, involved 71 eyes belonging to 48 RP patients with various degrees of narrowed visual field. Forty-nine eyes belonging to 37 patients were injected with aPRP. A comparison group was made up of 11 patients who had symmetrical bilateral narrowed visual field (VF) of both eyes. Among these 11 patients, one eye was injected with aPRP, while the other eye was injected with autologous platelet-poor plasma (aPPP) to serve as a control. The total duration of the study was 9 weeks: the aPRP or aPPP subtenon injections were applied three times, with 3-week intervals between injections, and the patients were followed for three more weeks after the third injection. Visual acuity (VA) tests were conducted on all patients, and VF, microperimetry (MP), and multifocal electroretinography (mfERG) tests were conducted on suitable patients to evaluate the visual function changes before and after the aPRP or aPPP injections. RESULTS The best-corrected visual acuity values in the ETDRS chart improved by 11.6 letters (from 70 to 81.6 letters) in 19 of 48 eyes following aPRP application; this result, however, was not statistically significant (p = 0.056). Following aPRP injections in 48 eyes, the mean deviation of the VF values improved from - 25.3 to - 23.1 dB (p = 0.0001). Results regarding the mfERG P1 amplitudes improved in ring 1 from 24.4 to 38.5 nv/deg2 (p = 0.0001), in ring 2 from 6.7 to 9.3 nv/deg2 (p = 0.0301), and in ring 3 from 3.5 to 4.5 nv/deg2 (p = 0.0329). The mfERG P1 implicit times improved in ring 1 from 40.0 to 34.4 ms (p = 0.01), in ring 2 from 42.5 to 33.2 ms (p = 0.01), and in ring 3 from 42.1 to 37.9 ms (p = 0.04). The mfERG N1 amplitudes improved in ring 1 from 0.18 to 0.25 nv/deg2 (p = 0.011) and in ring 2 from 0.05 to 0.08 nv/deg2 (p = 0.014). The mfERG N1 implicit time also improved in ring 1 from 18.9 to 16.2 ms (p = 0.040) and in ring 2 from 20.9 to 15.5 ms (p = 0.002). No improvement was seen in the 11 control eyes into which aPPP was injected. In the 23 RP patients with macular involvement, the MP average threshold values improved with aPRP injections from 15.0 to 16.4 dB (p = 0.0001). No ocular or systemic adverse events related to the injections or aPRP were observed during the follow-up period. CONCLUSION Preliminary clinical results are encouraging in terms of statistically significant improvements in VF, mfERG values, and MP. The subtenon injection of aPRP seems to be a therapeutic option for treatment and might lead to positive results in the vision of RP patients. Long-term results regarding adverse events are unknown. There have not been any serious adverse events and any ophthalmic or systemic side effects for 1 year follow-up. Further studies with long-term follow-up are needed to determine the duration of efficacy and the frequency of application.
Collapse
Affiliation(s)
- Umut Arslan
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Emin Özmert
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Sibel Demirel
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey. .,Cebeci Tıp Fakültesi, Vehbi Koç Göz hastanesi, Göz Hastalıkları Ana Bilimdalı, Mamak caddesi, Dikimevi/Ankara, Dikimevi/Ankara, Turkey.
| | - Firdevs Örnek
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Figen Şermet
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey
| |
Collapse
|
34
|
Zwierko T, Czepita DM, Lubiński W, Lubkowska A. Effects of Physical Effort on Neuroretinal Function in Athletes and Non-Athletes: An Electroretinographic Study. Eur J Ophthalmol 2018; 20:381-8. [DOI: 10.1177/112067211002000219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Damian M. Czepita
- Department of Ophthalmology, Pomeranian Medical Academy, Szczecin - Poland
| | - Wojciech Lubiński
- Department of Ophthalmology, Pomeranian Medical Academy, Szczecin - Poland
| | | |
Collapse
|
35
|
de Castro-Miró M, Tonda R, Marfany G, Casaroli-Marano RP, Gonzàlez-Duarte R. Novel mutation in the choroideremia gene and multi-Mendelian phenotypes in Spanish families. Br J Ophthalmol 2018; 102:1378-1386. [DOI: 10.1136/bjophthalmol-2017-311427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/20/2017] [Accepted: 12/30/2017] [Indexed: 11/04/2022]
Abstract
AimsWe aimed to accurately diagnose several retinitis pigmentosa (RP) patients with complex ocular phenotypes by combining massive sequencing genetic diagnosis and powerful clinical imaging techniques.MethodsWhole-exome sequencing (WES) of selected patients from two RP families was undertaken. The variants identified were validated by Sanger sequencing and cosegregation analysis. Accurate clinical re-evaluation was performed using electrophysiological and visual field records as well as non-invasive imaging techniques, such as swept-source optical coherence tomography and fundus autofluorescence.ResultsThe WES results highlighted one novel and one reported causative mutations in the X-linked choroideremia gene (CHM), which challenged the initial RP diagnosis. Subsequent clinical re-evaluation confirmed the choroideremia diagnosis. Carrier females showed different degrees of affectation, even between twin sisters, probably due to lyonization. A severe multi-Mendelian phenotype was associated with coincidental dominant pathogenic mutations in two additional genes: PAX6 and PDE6B.ConclusionsGenetic diagnosis via massive sequencing is instrumental in identifying causative mutations in retinal dystrophies and additional genetic variants with an impact on the phenotype. Multi-Mendelian phenotypes previously ascribed to rare syndromes can thus be dissected and molecularly diagnosed. Overall, the combination of powerful genetic diagnosis and clinical non-invasive imaging techniques enables efficient management of patients and their prioritisation for gene-specific therapies.
Collapse
|
36
|
de Araújo RB, Oyamada MK, Zacharias LC, Cunha LP, Preti RC, Monteiro MLR. Morphological and Functional Inner and Outer Retinal Layer Abnormalities in Eyes with Permanent Temporal Hemianopia from Chiasmal Compression. Front Neurol 2017; 8:619. [PMID: 29255441 PMCID: PMC5723053 DOI: 10.3389/fneur.2017.00619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
Purpose The aims of this study are to compare optical coherence tomography (OCT)-measured macular retinal layers in eyes with permanent temporal hemianopia from chiasmal compression and control eyes; to compare regular and slow-flash multifocal electroretinography (mfERG) in patients and controls; and to assess the correlation between OCT, mfERG, and central visual field (SAP) data. Methods Forty-three eyes of 30 patients with permanent temporal hemianopia due to pituitary tumors who were previously submitted to chiasm decompression and 37 healthy eyes of 19 controls were submitted to macular spectral domain OCT, mfERG, and 10-2 SAP testing. After segmentation, the thickness of the macular retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer, and photoreceptor layer (PRL) was measured. Amplitudes and oscillatory potentials (OPs) were measured on regular and slow-flash mfERG, respectively, and expressed as the mean values per quadrant and hemifield. Results RNFL, GCL, and IPL thickness measurements were significantly reduced in all quadrants, whereas INL, OPL, and PRL thicknesses were significantly increased in the nasal quadrants in patients compared to those in controls. Significant correlations between OCT and 10-2 SAP measurements were positive for the RNFL, GCL, and IPL and negative for the INL, OPL, and PRL. OPs and mfERG N1 amplitudes were significantly reduced in the nasal hemiretina of patients. Significant correlations were found between OP and mfERG amplitudes for inner and outer nasal hemiretina OCT measurements, respectively. Conclusion Patients with permanent temporal hemianopia from previously treated chiasmal compression demonstrated significant thinning of the RNFL, GCL, IPL, and thickening of the INL, OPL, and PRL associated with reduced OP and mfERG N1 amplitudes, suggesting that axonal injury to the inner retina leads to secondary damage to the outer retina in this condition.
Collapse
Affiliation(s)
- Rafael B de Araújo
- Laboratory of Investigation in Ophthalmology (LIM 33), Division of Ophthalmology, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria K Oyamada
- Laboratory of Investigation in Ophthalmology (LIM 33), Division of Ophthalmology, University of São Paulo Medical School, São Paulo, Brazil
| | - Leandro C Zacharias
- Laboratory of Investigation in Ophthalmology (LIM 33), Division of Ophthalmology, University of São Paulo Medical School, São Paulo, Brazil
| | - Leonardo P Cunha
- Department of Ophtalmology, School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rony C Preti
- Laboratory of Investigation in Ophthalmology (LIM 33), Division of Ophthalmology, University of São Paulo Medical School, São Paulo, Brazil
| | - Mário L R Monteiro
- Laboratory of Investigation in Ophthalmology (LIM 33), Division of Ophthalmology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
37
|
Schön C, Sothilingam V, Mühlfriedel R, Garcia Garrido M, Beck SC, Tanimoto N, Wissinger B, Paquet-Durand F, Biel M, Michalakis S, Seeliger MW. Gene Therapy Successfully Delays Degeneration in a Mouse Model of PDE6A-Linked Retinitis Pigmentosa (RP43). Hum Gene Ther 2017; 28:1180-1188. [PMID: 29212391 DOI: 10.1089/hum.2017.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Retinitis pigmentosa type 43 (RP43) is a blinding disease caused by mutations in the gene for rod phosphodiesterase 6 alpha (PDE6A). The disease process begins with a dysfunction of rod photoreceptors, subsequently followed by a currently untreatable progressive degeneration of the entire outer retina. Aiming at a curative approach via PDE6A gene supplementation, a novel adeno-associated viral (AAV) vector was developed for expression of the human PDE6A cDNA under control of the human rhodopsin promotor (rAAV8.PDE6A). This study assessed the therapeutic efficacy of rAAV8.PDE6A in the Pde6anmf363/nmf363-mutant mouse model of RP43. All mice included in this study were treated with sub-retinal injections of the vector at 2 weeks after birth. The therapeutic effect was monitored at 1 month and 6 months post injection. Biological function of the transgene was assessed in vivo by means of electroretinography. The degree of morphological rescue was investigated both in vivo using optical coherence tomography and ex vivo by immunohistological staining. It was found that the novel rAAV8.PDE6A vector resulted in a stable and efficient expression of PDE6A protein in rod photoreceptors of Pde6anmf363/nmf363 mice following treatment at both the short- and long-term time points. The treatment led to a substantial morphological preservation of outer nuclear layer thickness, rod outer segment structure, and prolonged survival of cone photoreceptors for at least 6 months. Additionally, the ERG analysis confirmed a restoration of retinal function in a group of treated mice. Taken together, this study provides successful proof-of-concept for the cross-species efficacy of the rAAV8.PDE6A vector developed for use in human patients. Importantly, the data show stable expression and rescue effects for a prolonged period of time, raising hope for future translational studies based on this approach.
Collapse
Affiliation(s)
- Christian Schön
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Regine Mühlfriedel
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Marina Garcia Garrido
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Susanne C Beck
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Naoyuki Tanimoto
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Eberhard Karls University, Tuebingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tuebingen, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias W Seeliger
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
38
|
Hernández C, Bogdanov P, Solà-Adell C, Sampedro J, Valeri M, Genís X, Simó-Servat O, García-Ramírez M, Simó R. Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. Diabetologia 2017; 60:2285-2298. [PMID: 28779212 DOI: 10.1007/s00125-017-4388-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS The main aims of the present study were: (1) to assess the expression and content of dipeptidyl peptidase IV (DPP-IV) in human and db/db mouse retinas, and in human vitreous fluid; and (2) to determine whether the topical administration of the DPP-IV inhibitors (DPP-IVi) would prevent retinal neurodegeneration and vascular leakage in db/db mice by reducing endogenous glucagon-like peptide 1 (GLP-1) degradation. METHODS To assess the expression and content of DPP-IV, human samples of vitreous fluid and retinas were obtained from participants with type 2 diabetes (n = 8) and age-matched non-diabetic individuals (n = 8), as well as from db/db (n = 72) and db/+ (n = 28) mice. The interventional study, which included 72 db/db mice, consisted of the topical administration (eye drops) of saxagliptin, sitagliptin or vehicle for 14 days. DPP-IV mRNA levels were assessed by RT-PCR, and protein content was measured by ELISA or western blotting. GLP-1 was assessed by immunofluorescence, and its downstream effector exchange protein activated by cAMP-1 (EPAC-1) was used as a measure of GLP-1 receptor activation. Retinal analyses were performed in vivo by electroretinography and ex vivo by RT-PCR (Epac-1, Iba-1 [also known as Aif1]), western blotting (EPAC-1, glial fibrillar acidic protein [GFAP], glutamate-aspartate transporter [GLAST]) and immunofluorescence measurements (GLP-1, GFAP, ionised calcium binding adaptor molecule 1 [IBA-1], TUNEL, GLAST, albumin and collagen IV). Glutamate was quantified by HPLC. In addition, vascular leakage was examined by the Evans Blue method. RESULTS DPP-IV was present in human vitreous fluid but in a range 100-fold less than in plasma. Both mRNA levels and protein content were much lower in the retina than in the liver or bowel, but were significantly higher in retinal pigment epithelium (RPE) from diabetic donors in comparison to non-diabetic donors (p < 0.05). Topical treatment with DPP-IVi prevented glial activation, apoptosis and vascular leakage induced by diabetes in db/db mice (p < 0.05). Moreover, it also significantly prevented diabetes-induced functional abnormalities in the electroretinogram. A significant increase of both GLP-1 and EPAC-1 was found after treatment with DPP-IVi (p < 0.05). Furthermore, GLAST downregulation induced by diabetes was prevented, resulting in a significant reduction of extracellular glutamate concentrations. All these effects were observed without any changes in blood glucose levels. CONCLUSIONS/INTERPRETATION The topical administration of DPP-IVi is effective in preventing neurodegeneration and vascular leakage in the diabetic retina. These effects can be attributed to an enhancement of GLP-1, but other mechanisms unrelated to the prevention of GLP-1 degradation cannot be ruled out.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Solà-Adell
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joel Sampedro
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Marta Valeri
- Unit of High Technology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Genís
- Banco de Sangre y Tejidos, Passeig Taulat 116, 08005, Barcelona, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta García-Ramírez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
39
|
Autosomal recessive cone-rod dystrophy can be caused by mutations in the ATF6 gene. Eur J Hum Genet 2017; 25:1210-1216. [PMID: 28812650 DOI: 10.1038/ejhg.2017.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/25/2017] [Accepted: 07/18/2017] [Indexed: 11/09/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are clinically and genetically highly heterogeneous, making clinical diagnosis difficult. The advances in high-throughput sequencing (ie, panel, exome and genome sequencing) have proven highly effective on defining the molecular basis of these disorders by identifying the underlying variants in the respective gene. Here we report two siblings affected by an IRD phenotype and a novel homozygous c.1691A>G (p.(Asp564Gly)) ATF6 (activating transcription factor 6A) missense substitution identified by whole exome sequencing analysis. The pathogenicity of the variant was confirmed by functional analyses done on patients' fibroblasts and on recombinant p.(Asp564Gly) protein. The ATF6Asp564Gly/Asp564Gly variant shows impaired production of the ATF6 cleaved transcriptional activator domain in response to endoplasmic reticulum stress. Detailed phenotypic examination revealed extinguished cone responses but also decreased rod responses together with the ability to discriminate some colours suggestive rather for cone-rod dystrophy than achromatopsia.
Collapse
|
40
|
Mühlfriedel R, Tanimoto N, Schön C, Sothilingam V, Garcia Garrido M, Beck SC, Huber G, Biel M, Seeliger MW, Michalakis S. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 2017; 11:292. [PMID: 28596720 PMCID: PMC5442229 DOI: 10.3389/fnins.2017.00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Achromatopsia type 2 (ACHM2) is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO) mouse model of ACHM2 that gene supplementation therapy is effective in rescuing cone function and morphology and delaying cone degeneration. In our preclinical approach, we use recombinant adeno-associated virus (AAV) vector-mediated gene transfer to express the murine Cnga3 gene under control of the mouse blue opsin promoter. Here, we provide novel data on the efficiency and permanence of such gene supplementation therapy in Cnga3 KO mice. Specifically, we compare the influence of two different AAV vector capsids, AAV2/5 (Y719F) and AAV2/8 (Y733F), on restoration of cone function, and assess the effect of age at time of treatment on the long-term outcome. The evaluation included in vivo analysis of retinal function using electroretinography (ERG) and immunohistochemical analysis of vector-driven Cnga3 transgene expression. We found that both vector capsid serotypes led to a comparable rescue of cone function over the observation period between 4 weeks and 3 months post treatment. In addition, a clear therapeutic effect was present in mice treated at 2 weeks of age as well as in mice treated at 3 months of age at the first assessment at 4 weeks after treatment. Importantly, the effect extended in both cases over the entire observation period of 12 months post treatment. However, the average ERG amplitude levels differed between the two groups, suggesting a role of the absolute age, or possibly, the associated state of the degeneration, on the achievable outcome. In summary, we found that the therapeutic time window of opportunity for AAV-mediated Cnga3 gene supplementation therapy in the Cnga3 KO mouse model extends at least to an age of 3 months, but is presumably limited by the condition, number and topographical distribution of remaining cones at the time of treatment. No impact of the choice of capsid on the therapeutic success was detected.
Collapse
Affiliation(s)
- Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Christian Schön
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Susanne C Beck
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Stylianos Michalakis
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| |
Collapse
|
41
|
Kurata K, Hosono K, Hotta Y. Long-Term Clinical Course in a Patient with Complete Congenital Stationary Night Blindness. Case Rep Ophthalmol 2017; 8:237-244. [PMID: 28512427 PMCID: PMC5422747 DOI: 10.1159/000462961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Indexed: 11/30/2022] Open
Abstract
Background This report describes a 45-year-old man with complete congenital stationary night blindness (CSNB1) who has been followed up for 38 years. Case The patient first visited our hospital as a 7-year-old boy with a complaint of low visual acuity. Best corrected visual acuity (BCVA) was 0.5 in the right eye and 0.6 in the left eye. The refractive error was approximately −5.0 D in both eyes. The fundus showed only myopic changes. A bright-flash electroretinogram (ERG) revealed a negative configuration. We diagnosed CSNB and corrected the refractive error with glasses. We continued to monitor the ERG and various waveform components as well as visual acuity and the appearance of the fundus. All NYX exons were screened for a causative mutation by polymerase chain reaction amplification, and direct sequencing was performed. Results By 10 years of age, BCVA had increased to 0.8 on the right and 0.9 on the left, with little change thereafter. The fundus continued to show only myopic changes. No changes were seen in the amplitude or implicit time of the a-wave or b-wave or in the b/a-wave ratio. A novel hemizygous insertion mutation, c.1205_1206insT, p.(Glu404Argfs*89), was detected in exon 2 of the NYX gene. Conclusion To our knowledge, this is the longest follow-up of a patient with CSNB1. No changes in the clinical course have been seen during follow-up. We believe that it is important to continue observations and accumulate clinical data for prognostic purposes on patients with CSNB1.
Collapse
Affiliation(s)
- Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
42
|
Wang Y, Qin S, Pen G, Chen D, Han C, Miao C, Lu B, Su C, Feng S, Li W, Han J, Cho NC, Si Y. Original Research: Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model. Exp Biol Med (Maywood) 2016; 242:92-101. [PMID: 27510582 DOI: 10.1177/1535370216663866] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023] Open
Abstract
Ocular complications associated with diabetes mellitus are progressive and becoming one of the most important causes of morbidity worldwide. The purpose of the study is to evaluate the protective effect of Polygonatum sibiricum polysaccharide, an important component of Polygonatum sibiricum, on ocular complications in streptozotocin-induced diabetes mellitus rats. Sprague Dawley rats were made diabetic with streptozotocin(60 mg/kg, i.v.) and then the rats were treated with Polygonatum sibiricum polysaccharide 200, 400 and 800 mg/kg.d by gavage for 12 weeks. Biochemical analysis indicated that Polygonatum sibiricum polysaccharide lowered the levels of fasting blood glucose and glycated hemoglobin in blood and elevated the levels of insulin and C-peptide in plasma of diabetes mellitus rats in a dose-dependent manner. Physical measurements revealed that Polygonatum sibiricum polysaccharide improved clinical symptoms of polydipsia, polyphagia, polyuria and weight loss in diabetes mellitus rats. The content of malondialdehyde and activity of superoxide dismutase in plasma were determined, and the data showed Polygonatum sibiricum polysaccharide suppressed oxidative stress reaction. Lens opacification was observed using slit lamp illumination, and the data showed Polygonatum sibiricum polysaccharide delayed cataract progression in a dose-dependent manner. Electroretinogram showed Polygonatum sibiricum polysaccharide treatment reversed the decrease of electroretinogram b and OPs2 waves' amplitudes. Flash-visual evoked potential test indicated that the peak time of P2 wave was prolonged, and the amplitude of N2-P2 was lowered in diabetes mellitus group, and Polygonatum sibiricum polysaccharide suppressed these changes. Fundus fluorescein angiography showed Polygonatum sibiricum polysaccharide alleviated the retinal vasculopathy in a dose-dependent manner. In conclusion, these results suggest that the administration of Polygonatum sibiricum polysaccharide slows the progression of diabetic retinopathy and cataract through alleviating hyperglycemia and reducing oxidative stress in streptozotocin-induced diabetes mellitus rats.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ophthalmology, Chonbuk National University, Jeollabuk-do 561-756, Republic of Korea (past position).,Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Guoqing Pen
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Di Chen
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Chao Han
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Chunrun Miao
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Baojin Lu
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Chao Su
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Shanlong Feng
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Wen Li
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Jingjing Han
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Nam C Cho
- Department of Ophthalmology, Chonbuk National University, Jeollabuk-do 561-756, Republic of Korea (past position)
| | - Yanhong Si
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| |
Collapse
|
43
|
de Moraes G, Layton CJ. Therapeutic targeting of diabetic retinal neuropathy as a strategy in preventing diabetic retinopathy. Clin Exp Ophthalmol 2016; 44:838-852. [PMID: 27334889 DOI: 10.1111/ceo.12795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/22/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
Diabetes causes a panretinal neurodegeneration herein termed diabetic retinal neuropathy, which manifests in the retina early and progresses throughout the disease. Clinical manifestations include changes in the ERG, perimetry, dark adaptation, contrast sensitivity and colour vision which correlate with laboratory findings of thinning of the retinal neuronal layers, increased apoptosis in neurons and activation of glial cells. Possible mechanisms include oxidative stress, neuronal AGE accumulation, altered balance of neurotrophic factors and loss of mitohormesis. Retinal neural damage precedes and is a biologically plausible cause of retinal vasculopathy later in diabetes, and this review suggests that strategies to target it directly could prevent diabetes induced blindness. The efficacy of fenofibrate in reducing retinopathy progression provides a possible proof of concept for this approach. Strategies which may target diabetic retinal neuropathy include reducing retinal metabolic demand, improving mitochondrial function with AMPK and Sirt1 activators or providing neurotrophic support with neurotrophic supplementation.
Collapse
Affiliation(s)
| | - Christopher J Layton
- Gallipoli Medical Research Foundation, Brisbane, Queensland, Australia.,University of Queensland School of Medicine, Brisbane, Queensland, Australia.,Greenslopes Private Hospital Ophthalmology Department, Greenslopes Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Sodi A, Mucciolo DP, Murro V, Zoppetti C, Terzuoli B, Mecocci A, Virgili G, Rizzo S. Computer-Assisted Evaluation of Retinal Vessel Diameter in Retinitis Pigmentosa. Ophthalmic Res 2016; 56:139-44. [DOI: 10.1159/000446843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022]
|
45
|
Hamilton R, Graham K. Effect of shorter dark adaptation on ISCEV standard DA 0.01 and DA 3 skin ERGs in healthy adults. Doc Ophthalmol 2016; 133:11-9. [DOI: 10.1007/s10633-016-9554-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/04/2016] [Indexed: 12/01/2022]
|
46
|
Çerman E, Akkoç T, Eraslan M, Şahin Ö, Özkara S, Vardar Aker F, Subaşı C, Karaöz E, Akkoç T. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS One 2016; 11:e0156495. [PMID: 27300133 PMCID: PMC4907488 DOI: 10.1371/journal.pone.0156495] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/16/2016] [Indexed: 01/09/2023] Open
Abstract
Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function.
Collapse
Affiliation(s)
- Eren Çerman
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
- * E-mail:
| | - Tolga Akkoç
- Genetic Engineering and Biotechnology Institution, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Muhsin Eraslan
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Özlem Şahin
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Selvinaz Özkara
- Haydarpaşa Numune Education and Research Hospital, Department of Pathology, Istanbul, Turkey
| | - Fugen Vardar Aker
- Haydarpaşa Numune Education and Research Hospital, Department of Pathology, Istanbul, Turkey
| | - Cansu Subaşı
- Kocaeli University Center for Stem Cell and Gene Therapies, Kocaeli, Turkey
| | - Erdal Karaöz
- Kocaeli University Center for Stem Cell and Gene Therapies, Kocaeli, Turkey
| | - Tunç Akkoç
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| |
Collapse
|
47
|
Miller NR, Johnson MA, Nolan T, Guo Y, Bernstein SL. A Single Intravitreal Injection of Ranibizumab Provides No Neuroprotection in a Nonhuman Primate Model of Moderate-to-Severe Nonarteritic Anterior Ischemic Optic Neuropathy. Invest Ophthalmol Vis Sci 2016; 56:7679-86. [PMID: 26624498 DOI: 10.1167/iovs.15-18015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Ranibizumab, a vascular endothelial growth factor-antagonist, is said to be neuroprotective when injected intravitreally in patients with nonarteritic anterior ischemic optic neuropathy (NAION). We evaluated the efficacy of a single intravitreal (IVT) injection of ranibizumab in a nonhuman primate model of NAION (pNAION). METHODS We induced pNAION in one eye of four adult male rhesus monkeys using a laser-activated rose Bengal induction method. We then immediately injected the eye with either ranibizumab or normal saline (NS) intravitreally. We performed a clinical assessment, optical coherence tomography, electrophysiological testing, fundus photography, and fluorescein angiography in three of the animals (one animal developed significant retinal hemorrhages and, therefore, could not be analyzed completely) prior to induction, 1 day and 1, 2, and 4 weeks thereafter. Following the 4-week analysis of the first eye, we induced pNAION in the contralateral eye and then injected either ranibizumab or NS, whichever substance had not been injected in the first eye. We euthanized all animals 5 to 12 weeks after the final assessment of the second eye and performed both immunohistochemical and light and electron microscopic analyses of the retina and optic nerves of both eyes. RESULTS A single IVT dose of ranibizumab administered immediately after induction of pNAION resulted in no significant reduction of clinical, electrophysiological, or histologic damage compared with vehicle-injected eyes. CONCLUSIONS A single IVT dose of ranibizumab is not neuroprotective when administered immediately after induction of pNAION.
Collapse
Affiliation(s)
- Neil R Miller
- The Wilmer Eye Institute the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States 2Department of Ophthalmology and Visual Sciences, the University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Mary A Johnson
- Department of Ophthalmology and Visual Sciences, the University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Theresa Nolan
- Department of Veterinary Resources, the University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Yan Guo
- Department of Ophthalmology and Visual Sciences, the University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Steven L Bernstein
- Department of Ophthalmology and Visual Sciences, the University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
48
|
Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, McBride MT, Flotte TR, Humphries M, Calcedo R, Hauswirth WW, Chulay JD, Stout JT. Results at 2 Years after Gene Therapy for RPE65-Deficient Leber Congenital Amaurosis and Severe Early-Childhood-Onset Retinal Dystrophy. Ophthalmology 2016; 123:1606-20. [PMID: 27102010 DOI: 10.1016/j.ophtha.2016.03.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To provide an initial assessment of the safety of a recombinant adeno-associated virus vector expressing RPE65 (rAAV2-CB-hRPE65) in adults and children with retinal degeneration caused by RPE65 mutations. DESIGN Nonrandomized, multicenter clinical trial. PARTICIPANTS Eight adults and 4 children, 6 to 39 years of age, with Leber congenital amaurosis (LCA) or severe early-childhood-onset retinal degeneration (SECORD). METHODS Patients received a subretinal injection of rAAV2-CB-hRPE65 in the poorer-seeing eye, at either of 2 dose levels, and were followed up for 2 years after treatment. MAIN OUTCOME MEASURES The primary safety measures were ocular and nonocular adverse events. Exploratory efficacy measures included changes in best-corrected visual acuity (BCVA), static perimetry central 30° visual field hill of vision (V30) and total visual field hill of vision (VTOT), kinetic perimetry visual field area, and responses to a quality-of-life questionnaire. RESULTS All patients tolerated subretinal injections and there were no treatment-related serious adverse events. Common adverse events were those associated with the surgical procedure and included subconjunctival hemorrhage in 8 patients and ocular hyperemia in 5 patients. In the treated eye, BCVA increased in 5 patients, V30 increased in 6 patients, VTOT increased in 5 patients, and kinetic visual field area improved in 3 patients. One subject showed a decrease in BCVA and 2 patients showed a decrease in kinetic visual field area. CONCLUSIONS Treatment with rAAV2-CB-hRPE65 was not associated with serious adverse events, and improvement in 1 or more measures of visual function was observed in 9 of 12 patients. The greatest improvements in visual acuity were observed in younger patients with better baseline visual acuity. Evaluation of more patients and a longer duration of follow-up will be needed to determine the rate of uncommon or rare side effects or safety concerns.
Collapse
Affiliation(s)
- Richard G Weleber
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon.
| | - Mark E Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| | - David J Wilson
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| | - Shalesh Kaushal
- Department of Ophthalmology, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Laura R Erker
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| | - Lauren Jensen
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| | - Maureen T McBride
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| | - Terence R Flotte
- Office of the Dean, University of Massachusetts, Medical Center, Worcester, Massachusetts
| | - Margaret Humphries
- Department of Ophthalmology, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Roberto Calcedo
- Gene Therapy Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida School of Medicine, Gainesville, Florida
| | | | - J Timothy Stout
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
49
|
Liu YJ, Lian ZY, Liu G, Zhou HY, Yang HJ. RNA sequencing reveals retinal transcriptome changes in STZ-induced diabetic rats. Mol Med Rep 2016; 13:2101-9. [PMID: 26781437 PMCID: PMC4768987 DOI: 10.3892/mmr.2016.4793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/11/2015] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate changes in retinal gene expression in streptozotocin (STZ)‑induced diabetic rats using next‑generation sequencing, utilize transcriptome signatures to investigate the molecular mechanisms of diabetic retinopathy (DR), and identify novel strategies for the treatment of DR. Diabetes was chemically induced in 10‑week‑old male Sprague‑Dawley rats using STZ. Flash‑electroretinography (F‑ERG) was performed to evaluate the visual function of the rats. The retinas of the rats were removed to perform high throughput RNA sequence (RNA‑seq) analysis. The a‑wave, b‑wave, oscillatory potential 1 (OP1), OP2 and ∑OP amplitudes were significantly reduced in the diabetic group, compared with those of the control group (P<0.05). Furthermore, the implicit b‑wave duration 16 weeks post‑STZ induction were significantly longer in the diabetic rats, compared with the control rats (P<0.001). A total of 868 genes were identified, of which 565 were upregulated and 303 were downregulated. Among the differentially expressed genes (DEGs), 94 apoptotic genes and apoptosis regulatory genes, and 19 inflammatory genes were detected. The results of the KEGG pathway significant enrichment analysis revealed enrichment in cell adhesion molecules, complement and coagulation cascades, and antigen processing and presentation. Diabetes alters several transcripts in the retina, and RNA‑seq provides novel insights into the molecular mechanisms underlying DR.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi-Yun Lian
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Geng Liu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Ying Zhou
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui-Jun Yang
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
50
|
Electroretinography (ERG): Electrophysiological Examination of the Retina. Neuroophthalmology 2016. [DOI: 10.1007/978-3-319-28956-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|