1
|
Fabroni S, Trovato A, Ballistreri G, Tortorelli SA, Foti P, Romeo FV, Rapisarda P. Almond [ Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars ('Tuono', 'Pizzuta', 'Romana'). Molecules 2023; 28:molecules28020605. [PMID: 36677662 PMCID: PMC9864005 DOI: 10.3390/molecules28020605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
In this study we developed a new extract, by the use of conventional solid-solvent extraction and a food-grade hydroalcoholic solvent, rich in phenolic and triterpenoid components from almon hull to be employed as functional ingredient in food, pharma and cosmetic sectors. Two autochthonous Sicilian cultivars ('Pizzuta' and 'Romana') and an Apulian modern cultivar ('Tuono') have been tested for the production of the extract. Results showed that the two Sicilian varieties, and in particular the 'Romana' one, present the best characteristics to obtain extracts rich in triterpenoids and hydroxycinnamic acids, useful for the production of nutraceutical supplements. About triterpenoids, the performance of the hydroalcoholic extraction process allowed to never go below 46% of recovery for 'Pizzuta' samples, with significantly higher percentages of recovery for 'Tuono' and 'Romana' extracts (62.61% and 73.13%, respectively) while hydroxycinnamic acids were recovered at higher recovery rate (84%, 89% and 88% for 'Pizzuta', 'Romana' and 'Tuono' extracts, respectively). Invitro antioxidant and antimicrobial activities exerted by the extracts showed promising results with P. aeruginosa being the most affected strain, inhibited up to the 1/8 dilution with 'Romana' extract. All the three tested extracts exerted an antimicrobial action up to 1/4 dilutions but 'Romana' and 'Pizzuta' extracts always showed the greatest efficacy.
Collapse
|
2
|
Chen X, Lu S, Gong F, Sui X, Liu T, Wang T. Research on the synthesis of nanoparticles of betulinic acid and their targeting antitumor activity. J Biomed Mater Res B Appl Biomater 2022; 110:1789-1795. [PMID: 35179806 DOI: 10.1002/jbm.b.35036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Betulinic acid (BA), a natural pentacyclic lupine-type triterpene, has shown its prominent efficiency on the selective antitumor activity. However, its poor water solubility and bioavailability have limited its application. Herein, targeting nanoparticles were prepared to improve BA-based liposome (BL)'s restricted chemotherapeutic efficacy. Multi-layers membranes from the cancer cells were added as highly penetrative targeting ligands to functionalize the BA-based liposomes. In vitro experiments including the MTT assay and the fluorescence imaging of live/dead staining were adopted to prove its great inhibition in the growth of tumor cells. And it manifests that the antitumor efficacy of BL coated with cell membranes (BLCM) achieves nearly 4.3 times as that of BL under the same conditions in the MTT experiments. In addition, the fluorescence imaging stained with DAPI-FITC was applied to prove the targeting positioning effects on the BLCM. In a nutshell, the nanomedicine has good targeting antitumor efficacy and has great potential in being applied for the personalized cancer clinical treatment.
Collapse
Affiliation(s)
- Xuan Chen
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shuting Lu
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Fengrong Gong
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Gomez Martinez AE, Herr AE. Programmed Cell-Death Mechanism Analysis Using Same-Cell, Multimode DNA and Proteoform Electrophoresis. ACS MEASUREMENT SCIENCE AU 2021; 1:139-146. [PMID: 34939076 PMCID: PMC8679084 DOI: 10.1021/acsmeasuresciau.1c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/10/2021] [Indexed: 05/06/2023]
Abstract
Gaining insight into the timing of cell apoptosis events requires single-cell-resolution measurements of cell viability. We explore the supposition that mechanism-based scrutiny of programmed cell death would benefit from same-cell analysis of both the DNA state (intact vs fragmented) and the protein states, specifically the full-length vs cleaved state of the DNA-repair protein PARP1, which is cleaved by caspase-3 during caspase-dependent apoptosis. To make this same-cell, multimode measurement, we introduce the single-cell electrophoresis-based viability and protein (SEVAP) assay. Using SEVAP, we (1) isolate human breast cancer SKBR3 cells in microwells molded in thin polyacrylamide gels, (2) electrophoretically separate protein molecular states and DNA molecular states-using differences in electrophoretic mobility-from each single-cell lysate, and (3) perform in-gel DNA staining and PARP1 immunoprobing. Performed in an open microfluidic device, SEVAP scrutinized hundreds to thousands of individual SKBR3 cells. In each single-cell lysate separation, SEVAP baseline-resolved fragmented DNA from intact DNA (R s = 5.17) as well as cleaved PARP1 from full-length PARP1 (R s = 0.66). Comparing apoptotic and viable cells showed statistically similar profiles (expression, mobility, peak width) of housekeeping protein β-tubulin (Mann-Whitney U test). Clustering and cross-correlation analysis of DNA migration and PARP1 migration identified nonapoptotic vs apoptotic cells. Clustering analysis further suggested that cleaved PARP1 is a suitable apoptosis marker for this system. SEVAP is an efficient, multimode, end-point assay designed to elucidate cell-to-cell heterogeneity in mechanism-specific signaling during programmed cell death.
Collapse
Affiliation(s)
- Ana E. Gomez Martinez
- Department
of Bioengineering, University of California
Berkeley, Berkeley, California 94720, United States
- The
University of California Berkeley and University of California San
Francisco Graduate Program in Bioengineering, Berkeley, California 94720, United States
| | - Amy E. Herr
- Department
of Bioengineering, University of California
Berkeley, Berkeley, California 94720, United States
- The
University of California Berkeley and University of California San
Francisco Graduate Program in Bioengineering, Berkeley, California 94720, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Oleanolic Acid's Semisynthetic Derivatives HIMOXOL and Br-HIMOLID Show Proautophagic Potential and Inhibit Migration of HER2-Positive Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:ijms222011273. [PMID: 34681931 PMCID: PMC8538366 DOI: 10.3390/ijms222011273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Approximately 20–30% of the diagnosed breast cancers overexpress the human epidermal growth factor receptor 2 (HER2). This type of cancer is associated with a more aggressive phenotype; thus, there is a need for the discovery of new compounds that would improve the survival in HER2-positive breast cancer patients. It seems that one of the most promising therapeutic cancer strategies could be based on the biological activity of pentacyclic triterpenes’ derivatives and the best-known representative of this group, oleanolic acid (OA). The biological activity of oleanolic acid and its two semisynthetic derivatives, methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL) and 12α-bromo-3-hydroxyimonoolean-28→13-olide (Br-HIMOLID), was assessed in SK-BR-3 breast cancer cells (HER2-positive). Viability tests, cell cycle assessment, evaluation of apoptosis, autophagy, and adhesion/migration processes were performed using MTT, clonogenic, cytofluorometry, Western blot, and qPCR. Both derivatives revealed higher cytotoxicity in studied breast cancer cells than the maternal compound, OA. They also decreased cell viability, induced autophagy, and (when applied in sub-cytotoxic concentrations) decreased the migration of SK-BR-3 cells.This study is the first to report the cytostatic, proautophagic (mTOR/LC3/SQSTM/BECN1 pathway), and anti-migratory (integrin β1/FAK/paxillin pathway) activities of HIMOXOL and Br-HIMOLID in HER2-positive breast cancer cells.
Collapse
|
5
|
Sadeghian M, Rahmani S, Khalesi S, Hejazi E. A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr 2020; 40:1669-1681. [PMID: 33153820 DOI: 10.1016/j.clnu.2020.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2020] [Revised: 08/17/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Studies suggest that fasting before or during chemotherapy may induce differential stress resistance, reducing the adverse effects of chemotherapy and enhancing the efficacy of drugs. In this article, we review the effects of fasting, including intermittent, periodic, water-only short-term fasting, and caloric restriction on the responsiveness of tumor cells to cytotoxic drugs, their protective effect on normal cells, and possible mechanisms of action. METHODS We could not perform a systematic review due to the wide variation in the study population, design, dependent measures, and outcomes (eg, type of cancer, treatment variation, experimental setting, etc.). However, a systematic approach to search and review literature was used. The electronic databases PubMed (MEDLINE), Scopus, and Embase were searched up to July 2020. RESULTS Fasting potentially improves the response of tumor cells to chemotherapy by (1) repairing DNA damage in normal tissues (but not tumor cells); (2) upregulating autophagy flux as a protection against damage to organelles and some cancer cells; (3) altering apoptosis and increasing tumor cells' sensitivity to the apoptotic stimuli, and preventing apoptosis-mediated damage to normal cells; (4) depleting regulatory T cells and improving the stimulation of CD8 cells; and (5) accumulating unfolded proteins and protecting cancer cells from immune surveillance. We also discuss how 'fasting-mimicking diet' as a modified form of fasting enables patients to eat a low calorie, low protein, and low sugar diet while achieving similar metabolic outcomes of fasting. CONCLUSION This review suggests the potential benefits of fasting in combination with chemotherapy to reduce tumor progression and increase the effectiveness of chemotherapy. However, with limited human trials, it is not possible to generalize the findings from animal and in vitro studies. More human studies with adequate sample size and follow-ups are required to confirm these findings.
Collapse
Affiliation(s)
- Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sepideh Rahmani
- Department of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saman Khalesi
- Physical Activity Research Group, Appleton Institute & School of Health Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mahmud I, Shahria N, Yeasmin S, Iqbal A, Mukul EH, Gain S, Shilpi JA, Islam MK. Ethnomedicinal, phytochemical and pharmacological profile of a mangrove plant Ceriops Decandra GriffDin Hou. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2018; 16:jcim-2017-0129. [PMID: 29933245 DOI: 10.1515/jcim-2017-0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/03/2017] [Accepted: 05/08/2018] [Indexed: 01/11/2023]
Abstract
Ceriops decandra is a mangrove tree species, reputed for its folkloric uses in the treatment of gastrointestinal disorders, infection, snakebites, inflammation, and cancer. Different parts of the plant are rich with various phytoconstituents which include diterpenoids (ceriopsin A-G), triterpenoids (lupeol, α-amyrin, oleanolic acid, ursolic acid), and phenolics (catechin, procyanidins).These phytoconstituents and their derivatives could form a new basis for developing new drugs against various diseases. The objective of the present study is to compile the phytochemical, ethnobotanical, biological, and pharmacological significance of the plant to provide directions for future research to find out therapeutically active lead compounds for developing new drugs against diseases of current interest including diabetes, inflammation, and cancer.
Collapse
Affiliation(s)
- Imran Mahmud
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh.,Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Naznin Shahria
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Sabina Yeasmin
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Asif Iqbal
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Emdadul Hasan Mukul
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Sudipta Gain
- Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
| | - Jamil Ahmad Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Khirul Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh.,Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Protocols for Glycosyltransferase Assays: Ganglioside Globoside and Lewis-X Intermediate-Lactosylceramide Biosyntheses in Eukaryotic Systems. Methods Mol Biol 2018. [PMID: 29926409 DOI: 10.1007/978-1-4939-8552-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register]
Abstract
Protocols for assay of 24 different Glycolipid-Glycosyltransferases (GSL-GLTs) of the eukaryotic systems are described. Problems of quantitating the activities in crude membranes are also described. Different separation methods (for separation of substrate, donors, and the product of the reaction) have been described based on the paper chromatography or high voltage paper electrophoresis in 1.0% Na2B4O7. Liquid Scintillation counting system was used for quantitation of the enzymatic product. In the assay of each GSL-GLT it is recommended to compare the selected method to be used with the exact conditions used by the authors published previously. As a test case for these assays the following kinetic parameters for Lactosylceramide Synthase, GalT-2 (UDP-Gal: Glc-Cer β1-4-galactosyltransferase), (Km of glucosylceramide = 1.65 × 10-4 M; Km for UDP-Gal = 0.5 × 10-4 M; V max is determined in the presence of optimum detergent concentrations (2-15 mg/ml of Cutscum-Triton X-100, 2:1); Mn++ and Mg++, 10-20 mM) has been reported. The importance of use of GalT-2 assay method (as a model system) in the purified Golgi-rich membranes from 13-day-old embryonic chicken brains (13-ECB) is described.
Collapse
|
8
|
Induction of Apoptosis in Metastatic Breast Cancer Cells: XV. Downregulation of DNA Polymerase-α - Helicase Complex (Replisomes) and Glyco-Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:199-221. [PMID: 30637700 DOI: 10.1007/978-981-13-3065-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.
Collapse
|
9
|
Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells. Int J Mol Sci 2016; 17:ijms17050652. [PMID: 27144558 PMCID: PMC4881478 DOI: 10.3390/ijms17050652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022] Open
Abstract
Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.
Collapse
|
10
|
Regulations of glycolipid: XI. glycosyltransferase (GSL: GLTs) genes involved in SA-LeX and related GSLs biosynthesis in carcinoma cells by Biosimilar apoptotic agents: potential anticancer drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 842:329-54. [PMID: 25408353 DOI: 10.1007/978-3-319-11280-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2023]
|
11
|
Molecular dynamics study of the conformations of glycosidic linkages in sialic acid modified ganglioside GM3 analogues. Glycoconj J 2014; 31:365-86. [PMID: 24909815 DOI: 10.1007/s10719-014-9532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2014] [Revised: 04/25/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
The objective of the present study is to model the analogues of monosialoganglioside (GM3) by making modifications in its sialic acid residue with different substitutions in aqueous environment and to determine their structural stability based upon computational molecular dynamics. Molecular mechanics and molecular dynamics investigation was carried out to study the conformational preferences of the analogues of GM3. Dynamic simulations were carried out on the analogues of GM3 varying in the substituents at C-1, C-4, C-5, C-8 and C-9 positions of their sialic acid or Neuraminic acid (NeuAc) residue. The analogues are soaked in a periodic box of TIP3P water as solvent and subjected to a 10 ns molecular dynamics (MD) simulation using AMBER ff03 and gaff force fields with 30 ps equilibration. The analogue of GM3 with 9-N-succNeuAc (analogue5, C9 substitution) was observed to have the lowest energy of -6112.5 kcal/mol. Graphical analysis made on the MD trajectory reveals the direct and water mediated hydrogen bonds existing in these sialic acid analogues. The preferable conformations for glycosidic linkages of GM3 analogues found in different minimum energy regions in the conformational maps were identified. This study sheds light on the conformational preferences of GM3 analogues which may be essential for the design of GM3 analogues as inhibitors for different ganglioside specific pathogenic proteins such as bacterial toxins, influenza toxins and neuraminidases.
Collapse
|
12
|
Chung TW, Choi HJ, Kim SJ, Kwak CH, Song KH, Jin UH, Chang YC, Chang HW, Lee YC, Ha KT, Kim CH. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells. PLoS One 2014; 9:e92786. [PMID: 24829158 PMCID: PMC4020741 DOI: 10.1371/journal.pone.0092786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2013] [Accepted: 02/25/2014] [Indexed: 01/10/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum, CDDP) is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS), regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl) polymerase (PARP). We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA) rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.
Collapse
Affiliation(s)
- Tae-Wook Chung
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Hee-Jung Choi
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Seok-Jo Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Kwon-Ho Song
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Un-Ho Jin
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hyeun Wook Chang
- Faculty of Pharmacy, Yeungnam University, Kyungsan, Republic of Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
- * E-mail: (CHK); (KTH)
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Laboratory, Department of Biological Science, SungKyunKwan University, Suwon City, Kyunggi-Do, Republic of Korea
- * E-mail: (CHK); (KTH)
| |
Collapse
|
13
|
Nikolov S, Momekov G, Kitanov G, Ionkova I, Krasteva I, Toshkova R, Konstantinov S, Nedialkov P, Karaivanova M. Exploitation of the Bulgarian Flora's Biodiversity as a Source of Immunomodulatory and/or Antineoplastic Agents: Current Challenges and Perspectives. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2007.10817497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022] Open
|
14
|
Ko JC, Chiu HC, Syu JJ, Jian YJ, Chen CY, Jian YT, Huang YJ, Wo TY, Lin YW. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells. Biochem Pharmacol 2014; 88:119-27. [DOI: 10.1016/j.bcp.2014.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
|
15
|
Gramatzki D, Herrmann C, Happold C, Becker KA, Gulbins E, Weller M, Tabatabai G. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway. PLoS One 2013; 8:e63527. [PMID: 23667632 PMCID: PMC3646759 DOI: 10.1371/journal.pone.0063527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2012] [Accepted: 04/07/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/AIMS Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS) catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. METHODS Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA) was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ)-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. RESULTS Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. CONCLUSION Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not enhance the anti-glioma activity of alkylating chemotherapy or irradiation.
Collapse
Affiliation(s)
- Dorothee Gramatzki
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Caroline Herrmann
- Department of Preclinical Imaging and Radiopharmacy, University Hospital Tuebingen, Tuebingen, Germany
| | - Caroline Happold
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ghazaleh Tabatabai
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Aggarwal B, Prasad S, Sung B, Krishnan S, Guha S. Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature. CURRENT COLORECTAL CANCER REPORTS 2013; 9:37-56. [PMID: 23814530 DOI: 10.1007/s11888-012-0154-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States after cancers of the lung and the breast/prostate. While the incidence of CRC in the United States is among the highest in the world (approximately 52/100,000), its incidence in countries in India is among the lowest (approximately 7/100,000), suggesting that lifestyle factors may play a role in development of the disease. Whereas obesity, excessive alcohol consumption, a high-calorie diet, and a lack of physical activity promote this cancer, evidence indicates that foods containing folates, selenium, Vitamin D, dietary fiber, garlic, milk, calcium, spices, vegetables, and fruits are protective against CRC in humans. Numerous agents from "mother nature" (also called "nutraceuticals,") that have potential to both prevent and treat CRC have been identified. The most significant discoveries relate to compounds such as cardamonin, celastrol, curcumin, deguelin, diosgenin, thymoquinone, tocotrienol, ursolic acid, and zerumbone. Unlike pharmaceutical drugs, these agents modulate multiple targets, including transcription factors, growth factors, tumor cell survival factors, inflammatory pathways, and invasion and angiogenesis linked closely to CRC. We describe the potential of these dietary agents to suppress the growth of human CRC cells in culture and to inhibit tumor growth in animal models. We also describe clinical trials in which these agents have been tested for efficacy in humans. Because of their safety and affordability, these nutraceuticals provide a novel opportunity for treatment of CRC, an "old age" disease with an "age old" solution.
Collapse
Affiliation(s)
- Bharat Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Nighat Sultana
- Pharmaceutical Research Center, PCSIR Laboratories Complex,
Karachi, Pakistan
| | - Zafar Saeed Saify
- International Center for Chemical Sciences, H.E.J. Research Institute of Chemistry, University of Karachi,
Karachi, Pakistan
| |
Collapse
|
18
|
Basu S, Ma R, Moskal JR, Basu M. Ganglioside Biosynthesis in Developing Brains and Apoptotic Cancer Cells: X. Regulation of Glyco-genes Involved in GD3 and Sialyl-Lex/a Syntheses. Neurochem Res 2012; 37:1245-55. [DOI: 10.1007/s11064-012-0762-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2011] [Revised: 03/12/2012] [Accepted: 03/22/2012] [Indexed: 12/24/2022]
|
19
|
Basu S, Ma R, Moskal JR, Basu M, Banerjee S. Apoptosis of Breast Cancer Cells: Modulation of Genes for Glycoconjugate Biosynthesis and Targeted Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:233-55. [DOI: 10.1007/978-1-4614-3381-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
|
20
|
Tamoxifen lowers the MMP-9/TIMP-1 ratio and inhibits the invasion capacity of ER-positive non-small cell lung cancer cells. Biomed Pharmacother 2011; 65:525-8. [DOI: 10.1016/j.biopha.2011.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2011] [Accepted: 06/22/2011] [Indexed: 01/20/2023] Open
|
21
|
Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011; 3:1351-71. [PMID: 24212665 PMCID: PMC3756417 DOI: 10.3390/cancers3011351] [Citation(s) in RCA: 1204] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2011] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/02/2022] Open
Abstract
Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.
Collapse
Affiliation(s)
- Ana-Maria Florea
- Department of Neuropathology, Heinrich-Heine University, Düsseldorf, Germany; E-Mail:
| | - Dietrich Büsselberg
- Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
22
|
Ma R, Hopp EA, Decker NM, Loucks A, Johnson JR, Moskal J, Basu M, Banerjee S, Basu S. Regulation of Glycosyltransferase Genes in Apoptotic Breast Cancer Cells Induced by l-PPMP and Cisplatin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:621-42. [DOI: 10.1007/978-1-4419-7877-6_33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/10/2023]
|
23
|
Bishayee A, Ahmed S, Brankov N, Perloff M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. FRONT BIOSCI-LANDMRK 2011; 16:980-96. [PMID: 21196213 PMCID: PMC3057757 DOI: 10.2741/3730] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Breast cancer remains a major cause of death in the United States as well as the rest of the world. In view of the limited treatment options for patients with advanced breast cancer, preventive and novel therapeutic approaches play an important role in combating this disease. The plant-derived triterpenoids, commonly used for medicinal purposes in many Asian countries, posses various pharmacological properties. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells as well as anticancer efficacy in preclinical animal models. Numerous triterpenoids have been synthesized by structural modification of natural compounds. Some of these analogs are considered to be the most potent antiinflammatory and anticarcinogenic triterpenoids known. This review examines the potential role of natural triterpenoids and their derivatives in the chemoprevention and treatment of mammary tumors. Both in vitro and in vivo effects of these agents and related molecular mechanisms are presented. Potential challenges and future directions involved in the advancement of these promising compounds in the prevention and therapy of human breast cancer are also identified.
Collapse
Affiliation(s)
- Anupam Bishayee
- Cancer Therapeutics and Chemoprevention Group, Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA.
| | | | | | | |
Collapse
|
24
|
|
25
|
Post-translational and transcriptional regulation of glycolipid glycosyltransferase genes in apoptotic breast carcinoma cells: VII. Studied by DNA-microarray after treatment with l-PPMP. Glycoconj J 2009; 26:647-61. [DOI: 10.1007/s10719-008-9219-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2008] [Revised: 11/04/2008] [Accepted: 11/25/2008] [Indexed: 11/26/2022]
|
26
|
Novel sugar-cholestanols as anticancer agents against peritoneal dissemination of tumor cells. Glycoconj J 2008; 25:531-44. [PMID: 18327639 DOI: 10.1007/s10719-008-9108-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2007] [Revised: 12/08/2007] [Accepted: 01/09/2008] [Indexed: 12/21/2022]
Abstract
Chemically synthesized sugar-cholestanols with mono-, di-, and tri-saccharides attached to cholestanol showed strong inhibiting activity against the proliferation of colorectal and gastric cancer cells. In contrast, cholestanol without sugar moieties was totally ineffective. Furthermore, when cancer cells were exposed to GlcNAcRbetacholestanol (R=(-) or beta1-3Gal), the compound was rapidly taken up via the lipid rafts/microdomains on the cell surface. The uptake of sugar-cholestanol in mitochondria increased gradually and was followed by the release of cytochrome c from mitochondria and the activation of apoptotic signals through the mitochondrial pathway and the caspase cascade, leading to apoptotic cell death, characterized by DNA ladder formation and nuclear fragmentation. Additionally, the examination of GlcNAcRbetacholestanol in a mouse model of peritoneal dissemination showed a dramatic reduction of tumor growth (P < 0.003) and prolonged mouse survival time (P<0.0001). Based on these observations, we believe that the sugar-cholestanols described here have clinical potential as novel anticancer agents.
Collapse
|
27
|
Gu Y, Zhang J, Mi W, Yang J, Han F, Lu X, Yu W. Silencing of GM3 synthase suppresses lung metastasis of murine breast cancer cells. Breast Cancer Res 2008; 10:R1. [PMID: 18171481 PMCID: PMC2374951 DOI: 10.1186/bcr1841] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2007] [Revised: 10/24/2007] [Accepted: 01/03/2008] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Gangliosides are sialic acid containing glycosphingolipids that are ubiquitously distributed on vertebrate plasma membranes. GM3, a precursor for most of the more complex ganglioside species, is synthesized by GM3 synthase. Although total ganglioside levels are significantly higher in breast tumor tissue than in normal mammary tissue, the roles played by gangliosides in breast cancer formation and metastasis are not clear. METHODS To investigate the roles of gangliosides in breast tumor development, GM3 synthase was silenced in the highly metastatic 4T1 cells and over-expressed in the non-metastatic 67NR cells. The behavior of breast cancer cells was examined in vitro using migration assay, invasion assay, and soft agar assay. Tumor formation and metastasis in vivo were examined using a well established mouse mammary tumor model. RESULTS GM3 synthase silencing in 4T1 cells significantly inhibited cell migration, invasion and anchorage-independent growth in vitro, and lung metastasis in vivo. In addition, over-expression of GM3 synthase in nonmetastatic 67NR cells significantly induced cell migration and anchorage-independent growth. Further studies indicated that activation of the phosphoinositide-3 kinase/Akt pathway, and consequently inhibition of nuclear factor of activated T cell (NFAT)1 expression, could be the mechanism underlying the suppression of breast cancer migration/invasion induced by GM3 synthase silencing. CONCLUSION Our findings indicate that GM3 synthase silencing suppressed lung metastasis in murine breast cancer cells. The molecular mechanism that underlies GM3 synthase mediated migration and invasion was inhibition of the phosphoinositide-3 kinase/Akt pathway. The findings suggest that GM3 synthase may be of value as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yuchao Gu
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Junhua Zhang
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Wenyi Mi
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Jing Yang
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Feng Han
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Xinzhi Lu
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Wengong Yu
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China
| |
Collapse
|
28
|
Boyle PJ, Ma R, Tuteja N, Banerjee S, Basu S. Apoptosis of human breast carcinoma cells in the presence of cis-platin and L-/D-PPMP: IV. Modulation of replication complexes and glycolipid: Glycosyltransferases. Glycoconj J 2007; 23:175-87. [PMID: 16691501 DOI: 10.1007/s10719-006-7923-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
Abstract
Apoptosis of human breast carcinoma cells (SKBR-3, MCF-7, and MDA-468) has been observed after treatment of these cells with anti-cancer drug cis-platin and glycosphingolipid biosynthesis inhibitor L- and D-PPMP, respectively. These drugs initiated apoptosis in a dose-dependent manner as measured by phenotypic morphological changes, by binding of a fluorescent phophatidyl serine-specific dye (PSS-380) onto the outer leaflet of the cell membranes, and by activation of caspases, -3, -8, and -9. It was observed that in two hours very little apoptotic process had started but predominant biochemical changes occurred after 6 h. DNA degradation started after 24 hours of drug treatment. However, very little is known about the stability of the ';Replication Complexes'' during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during its replication, repair, and recombination processes. Previously, DNA helicase-III was characterized as a component of the replication complexes isolated from embryonic chicken brains as well as breast and colon carcinoma cells. Helicase activities were measured by a novel method (ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of the nicked ACT-DNA, by determining values obtained from +/- aphidicolin-treated incubation mixtures. In all three breast carcinoma cell lines, a common trend was observed: a decrease of activities of DNA polymerase-alpha and Helicase III. A sharp decrease of activities of the glycolipid sialyltransferases: SAT-2 (CMP-NeuAc; GD3 alpha2-8 sialyltransferase) and SAT-4 (CMP-NeuAc: GM1a alpha2-3 sialyltransferase) was observed in the apoptotic carcinoma cells treated with L-PPMP compared with cis-platin.
Collapse
Affiliation(s)
- Patrick J Boyle
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
29
|
Florea AM, Büsselberg D. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 2006; 19:419-27. [PMID: 16841251 DOI: 10.1007/s10534-005-4451-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2005] [Accepted: 10/26/2005] [Indexed: 11/26/2022]
Abstract
Metals and metal compounds are constituents of our natural environment. Their distribution depends on the existence of natural sources (e.g. volcanoes or erosion) and their use in human's activity. They are transformed naturally (e.g. by bacterial activity) with formation of organic species that influence their mobility and accumulation in abiotic as well as biotic systems. Up to date metal species are released into the environment questioning their influence on human health. Due to their widespread use in human activities such as industry, agriculture and even as medicine (e.g. As, Se, Pt), numerous health risks may be associated with exposure to these substances. Different reports on metal intoxication are documented and studies especially on neurotoxicity, genotoxicity, or carcinogenicity, are previously published in numerous articles. This mini-review gives an overview on the use and the actions of selected metal species of actual scientific concern, with a focus on neuronal cells.
Collapse
Affiliation(s)
- Ana-Maria Florea
- Institut für Physiologie Universitätsklinium Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | |
Collapse
|
30
|
Rzeski W, Stepulak A, Szymański M, Sifringer M, Kaczor J, Wejksza K, Zdzisińska B, Kandefer-Szerszeń M. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2006; 374:11-20. [PMID: 16964520 DOI: 10.1007/s00210-006-0090-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2006] [Accepted: 06/27/2006] [Indexed: 12/15/2022]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene found in many plant species, among others in the bark of white birch Betula alba. BA was reported to display a wide range of biological effects, including antiviral, antiparasitic, antibacterial and anti-inflammatory activities, and in particular to inhibit growth of cancer cells. The aim of the study was further in vitro characterization of BA anticancer activity. In this study, we demonstrated a remarkable antiproliferative effect of BA in all tested tumor cell cultures including neuroblastoma, rabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukemia and multiple myeloma, as well as in primary cultures isolated from ovarian carcinoma, cervical carcinoma and glioblastoma multiforme. Furthermore, we have shown that BA decreased cancer cell motility and induced apoptotic cell death. We also observed decrease of bcl2 and cyclin D1 genes expression, and increase of bax gene expression after betulinic acid treatment. These findings demonstrate the anticancer potential of betulinic acid and suggest that it may be taken into account as a supportive agent in the treatment of cancers with different tissue origin.
Collapse
Affiliation(s)
- Wojciech Rzeski
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi E, Inanami O, Asanuma T, Kuwabara M. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells. JOURNAL OF RADIATION RESEARCH 2006; 47:19-25. [PMID: 16571915 DOI: 10.1269/jrr.47.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/08/2023]
Abstract
In the present study, using inhibitors of ceramide synthase (fumonisin B1), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells.
Collapse
Affiliation(s)
- Eriko Takahashi
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
32
|
Tolstikova TG, Sorokina IV, Tolstikov GA, Tolstikov AG, Flekhter OB. Biological activity and pharmacological prospects of lupane terpenoids: I. natural lupane derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 32:42-55. [PMID: 16523720 DOI: 10.1134/s1068162006010031] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
The biological activity of natural and semisynthetic lupane triterpenoids is discussed in a two-part review. The first part is devoted to the pharmacological properties of natural lupane triterpenoids. Betulinic acid has proven to be the most effective antitumor agent among more than fifty natural lupanes.
Collapse
|
33
|
Gu X, Schwartz JL, Pang X, Zhou Y, Sirois DA, Sridhar R. Cytotoxicity of liposomal alpha-tocopheryl succinate towards hamster cheek pouch carcinoma (HCPC-1) cells in culture. Cancer Lett 2005; 239:281-91. [PMID: 16271438 PMCID: PMC1950561 DOI: 10.1016/j.canlet.2005.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2004] [Revised: 04/18/2005] [Accepted: 08/23/2005] [Indexed: 02/03/2023]
Abstract
There is compelling evidence for the cancer chemopreventive effects of vitamin E and related compounds. Of all the vitamin E derivatives that have been investigated to date, vitamin E acid succinate is the most effective anti-cancer agent. This report describes the preparation and testing of liposomal formulation of mono alpha-tocopheryl ester of succinic acid (alpha-TOS) for cytotoxicity against hamster cheek pouch carcinoma cell line (HCPC-1). Small unilamellar vesicles (SUV) of phosphatidylcholine incorporating 70 microM alpha-TOS were superior to alpha-TOS alone or SUV without incorporated alpha-TOS, as inducers of apoptosis in HCPC-1 cells. Liposomal alpha-TOS perturbed the lipid structure in cells, promoted apoptosis, and decreased cell viability. The mechanism of action of alpha-TOS appears to involve membrane damage and induction of ceramide mediated apoptosis.
Collapse
Affiliation(s)
- Xinbin Gu
- Department of Oral Diagnosis, College of Dentistry, Howard University, 600 W Street NW, Washington, DC 20059, USA.
| | | | | | | | | | | |
Collapse
|