1
|
Coward LA. Hierarchies of description enable understanding of cognitive phenomena in terms of neuron activity. Cogn Process 2024; 25:333-347. [PMID: 38483738 PMCID: PMC11106207 DOI: 10.1007/s10339-024-01181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/07/2024] [Indexed: 05/22/2024]
Abstract
One objective of neuroscience is to understand a wide range of specific cognitive processes in terms of neuron activity. The huge amount of observational data about the brain makes achieving this objective challenging. Different models on different levels of detail provide some insight, but the relationship between models on different levels is not clear. Complex computing systems with trillions of components like transistors are fully understood in the sense that system features can be precisely related to transistor activity. Such understanding could not involve a designer simultaneously thinking about the ongoing activity of all the components active in the course of carrying out some system feature. Brain modeling approaches like dynamical systems are inadequate to support understanding of computing systems, because their use relies on approximations like treating all components as more or less identical. Understanding computing systems needs a much more sophisticated use of approximation, involving creation of hierarchies of description in which the higher levels are more approximate, with effective translation between different levels in the hierarchy made possible by using the same general types of information processes on every level. These types are instruction and data read/write. There are no direct resemblances between computers and brains, but natural selection pressures have resulted in brain resources being organized into modular hierarchies and in the existence of two general types of information processes called condition definition/detection and behavioral recommendation. As a result, it is possible to create hierarchies of description linking cognitive phenomena to neuron activity, analogous with but qualitatively different from the hierarchies of description used to understand computing systems. An intuitively satisfying understanding of cognitive processes in terms of more detailed brain activity is then possible.
Collapse
Affiliation(s)
- L Andrew Coward
- College of Engineering, Computing and Cybernetics, Australian National University, Canberra, Australia.
| |
Collapse
|
2
|
Stam CJ, de Haan W. Network Hyperexcitability in Early-Stage Alzheimer's Disease: Evaluation of Functional Connectivity Biomarkers in a Computational Disease Model. J Alzheimers Dis 2024; 99:1333-1348. [PMID: 38759000 PMCID: PMC11191539 DOI: 10.3233/jad-230825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Background There is increasing evidence from animal and clinical studies that network hyperexcitability (NH) may be an important pathophysiological process and potential target for treatment in early Alzheimer's disease (AD). Measures of functional connectivity (FC) have been proposed as promising biomarkers for NH, but it is unknown which measure has the highest sensitivity for early-stage changes in the excitation/inhibition balance. Objective We aim to test the performance of different FC measures in detecting NH at the earliest stage using a computational approach. Methods We use a whole brain computational model of activity dependent degeneration to simulate progressive AD pathology and NH. We investigate if and at what stage four measures of FC (amplitude envelope correlation corrected [AECc], phase lag index [PLI], joint permutation entropy [JPE] and a new measure: phase lag time [PLT]) can detect early-stage AD pathophysiology. Results The activity dependent degeneration model replicates spectral changes in line with clinical data and demonstrates increasing NH. Compared to relative theta power as a gold standard the AECc and PLI are shown to be less sensitive in detecting early-stage NH and AD-related neurophysiological abnormalities, while the JPE and the PLT show more sensitivity with excellent test characteristics. Conclusions Novel FC measures, which are better in detecting rapid fluctuations in neural activity and connectivity, may be superior to well-known measures such as the AECc and PLI in detecting early phase neurophysiological abnormalities and in particular NH in AD. These markers could improve early diagnosis and treatment target identification.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Willem de Haan
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| |
Collapse
|
3
|
Arski ON, Wong SM, Warsi NM, Pang E, Kerr E, Smith ML, Taylor MJ, Dunkley BT, Ochi A, Otsubo H, Sharma R, Yau I, Jain P, Donner EJ, Snead OC, Ibrahim GM. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia 2022; 63:2583-2596. [PMID: 35778973 DOI: 10.1111/epi.17357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS Intracranial recordings were acquired from stereotactically-implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative respectively. Trials with and without transient epileptiform events were compared. RESULTS Twelve children (mean age of 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rz = 9, Rz = 8). Retrieval trials that were in-phase with the preferred phase angle were associated with faster reaction times (p = 0.01, p = 0.03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (PDD z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rz = 5, Rz = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = 0.01, p = 0.03). SIGNIFICANCE This work highlights the role of hippocampal phase in working memory. We observe post-stimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.
Collapse
Affiliation(s)
- Olivia N Arski
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada
| | - Nebras M Warsi
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Elizabeth Pang
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth Kerr
- Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth J Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
H Myers M, Hossain G. Dual EEG alignment between participants during shared intentionality experiments. Brain Res 2022; 1790:147986. [PMID: 35714711 DOI: 10.1016/j.brainres.2022.147986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Electroencephalograph (EEG) analysis from human subjects have demonstrated that beta oscillations carried perceptual information across the cortex featuring amplitude and phase modulation occurrences when subjects are engaged in task-oriented activities. A hypothesis was tested that synchronized patterns could be found in the scalp EEG of two human subjects engaged in similar intentional activity. Signals were recorded from scalp electrodes and band-pass filtered. The Hilbert transform decomposes the EEG signals into the analytic phase and amplitude. With these components of the EEG signal, a systematic search of the alpha, beta, delta, gamma, and theta spectrum is executed to locate temporal patterns. The amplitude and phase modulation were classified with respect to task intervals. Temporal patterns were found in the alpha-beta range (15-30 Hz). Our results suggest that the scalp EEG can yield information about the timing of episodically synchronized brain activity in higher cognitive function between two individuals engaged in similar task-oriented activities.
Collapse
Affiliation(s)
- Mark H Myers
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States.
| | - Gahangir Hossain
- Department of Computer and Information Systems, West Texas A&M University, Canyon, TX, United States
| |
Collapse
|
5
|
Tewarie P, Prasse B, Meier J, Mandke K, Warrington S, Stam CJ, Brookes MJ, Van Mieghem P, Sotiropoulos SN, Hillebrand A. Predicting time-resolved electrophysiological brain networks from structural eigenmodes. Hum Brain Mapp 2022; 43:4475-4491. [PMID: 35642600 PMCID: PMC9435022 DOI: 10.1002/hbm.25967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/20/2023] Open
Abstract
How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting-state magnetoencephalography and diffusion magnetic resonance imaging data at the individual subject level. Our results show that even at short timescales, phase and amplitude connectivity can partly be expressed by structural eigenmodes, but hardly by direct structural connections. Albeit a stronger relationship was found between structural eigenmodes and time-resolved amplitude connectivity. Time-resolved connectivity for both phase and amplitude was mostly characterised by a stationary process, superimposed with very brief periods that showed deviations from this stationary process. For these brief periods, dynamic network states were extracted that showed different expressions of eigenmodes. Furthermore, the eigenmode expression was related to overall cognitive performance and co-occurred with fluctuations in community structure of functional networks. These results implicate that ongoing time-resolved resting-state networks, even at short timescales, can to some extent be understood in terms of activation and deactivation of structural eigenmodes and that these eigenmodes play a role in the dynamic integration and segregation of information across the cortex, subserving cognitive functions.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Bastian Prasse
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jil Meier
- Department of Neurology, Brain Simulation Section, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Sujatha Ravindran A, Malaya C, John I, Francisco GE, Layne C, Contreras-Vidal JL. Decoding Neural Activity Preceding Balance Loss During Standing with a Lower-limb Exoskeleton using an Interpretable Deep Learning Model. J Neural Eng 2022; 19. [PMID: 35508113 DOI: 10.1088/1741-2552/ac6ca9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Falls are a leading cause of death in adults 65 and older. Recent efforts to restore lower-limb function in these populations have seen an increase in the use of wearable robotic systems; however, fall prevention measures in these systems require early detection of balance loss to be effective. Prior studies have investigated whether kinematic variables contain information about an impending fall, but few have examined the potential of using electroencephalography (EEG) as a fall-predicting signal and how the brain responds to avoid a fall. To address this, we decoded neural activity in a balance perturbation task while wearing an exoskeleton. We acquired EEG, electromyography (EMG), and center of pressure (COP) data from 7 healthy participants during mechanical perturbations while standing. The timing of the perturbations was randomized in all trials. We found perturbation evoked potentials (PEP) components as early as 75-134 ms after the onset of the external perturbation, which preceded both the peak in EMG (∼ 180 ms) and the COP (∼ 350 ms). A convolutional neural network trained to predict balance perturbations from single-trial EEG had a mean F-score of 75.0 ± 4.3 %. Clustering GradCAM-based model explanations demonstrated that the model utilized components in the PEP and was not driven by artifacts. Additionally, dynamic functional connectivity results agreed with model explanations; the nodal connectivity measured using phase difference derivative was higher in the occipital-parietal region in the early stage of perturbations, before shifting to the parietal, motor, and back to the frontal-parietal channels. Continuous-time decoding of COP trajectories from EEG, using a gated recurrent unit model, achieved a mean Pearson's correlation coefficient of 0.7 ± 0.06. Overall, our findings suggest that EEG signals contain short-latency neural information related to an impending fall, which may be useful for developing brain-machine interface systems for fall prevention in robotic exoskeletons.
Collapse
Affiliation(s)
- Akshay Sujatha Ravindran
- Department of Electrical and Computer Engineering, University of Houston, 4800 calhoun road, E413, Cullen Engineering Building 1, University of Houston, Houston, Texas, 77204, UNITED STATES
| | - Christopher Malaya
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Isaac John
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, Texas, 77030, UNITED STATES
| | - Charles Layne
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Jose Luis Contreras-Vidal
- Electrical and Computer Engineering, University of Houston, N308 Engineering Building I, Houston, Texas, 77204-4005, UNITED STATES
| |
Collapse
|
7
|
Sadaghiani S, Brookes MJ, Baillet S. Connectomics of human electrophysiology. Neuroimage 2022; 247:118788. [PMID: 34906715 PMCID: PMC8943906 DOI: 10.1016/j.neuroimage.2021.118788] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
We present both a scientific overview and conceptual positions concerning the challenges and assets of electrophysiological measurements in the search for the nature and functions of the human connectome. We discuss how the field has been inspired by findings and approaches from functional magnetic resonance imaging (fMRI) and informed by a small number of significant multimodal empirical studies, which show that the canonical networks that are commonplace in fMRI are in fact rooted in electrophysiological processes. This review is also an opportunity to produce a brief, up-to-date critical survey of current data modalities and analytical methods available for deriving both static and dynamic connectomes from electrophysiology. We review hurdles that challenge the significance and impact of current electrophysiology connectome research. We then encourage the field to take a leap of faith and embrace the wealth of electrophysiological signals, despite their apparent, disconcerting complexity. Our position is that electrophysiology connectomics is poised to inform testable mechanistic models of information integration in hierarchical brain networks, constructed from observable oscillatory and aperiodic signal components and their polyrhythmic interactions.
Collapse
Affiliation(s)
- Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana-Champaign, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, United States
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Schirner M, Kong X, Yeo BTT, Deco G, Ritter P. Dynamic primitives of brain network interaction Special Issue "Advances in Mapping the Connectome". Neuroimage 2022; 250:118928. [PMID: 35101596 DOI: 10.1016/j.neuroimage.2022.118928] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
What dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled neural populations in brain network models (BNMs). From detailed spiking networks to more abstract population models, there is strong support for the idea that the brain operates near critical instabilities that give rise to multistable or metastable dynamics that in turn lead to the intermittently synchronized slow oscillations underlying FC(D). We explore further consequences from these fundamental mechanisms and how they fit with reality. We conclude by highlighting the need for integrative brain models that connect separate mechanisms across levels of description and spatiotemporal scales and link them with cognitive function.
Collapse
Affiliation(s)
- Michael Schirner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| | - Xiaolu Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Clayton, Australia
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Alotaibi N, Bakheet D, Konn D, Vollmer B, Maharatna K. Cognitive Outcome Prediction in Infants With Neonatal Hypoxic-Ischemic Encephalopathy Based on Functional Connectivity and Complexity of the Electroencephalography Signal. Front Hum Neurosci 2022; 15:795006. [PMID: 35153702 PMCID: PMC8830486 DOI: 10.3389/fnhum.2021.795006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Impaired neurodevelopmental outcome, in particular cognitive impairment, after neonatal hypoxic-ischemic encephalopathy is a major concern for parents, clinicians, and society. This study aims to investigate the potential benefits of using advanced quantitative electroencephalography analysis (qEEG) for early prediction of cognitive outcomes, assessed here at 2 years of age. EEG data were recorded within the first week after birth from a cohort of twenty infants with neonatal hypoxic-ischemic encephalopathy (HIE). A proposed regression framework was based on two different sets of features, namely graph-theoretical features derived from the weighted phase-lag index (WPLI) and entropies metrics represented by sample entropy (SampEn), permutation entropy (PEn), and spectral entropy (SpEn). Both sets of features were calculated within the noise-assisted multivariate empirical mode decomposition (NA-MEMD) domain. Correlation analysis showed a significant association in the delta band between the proposed features, graph attributes (radius, transitivity, global efficiency, and characteristic path length) and entropy features (Pen and SpEn) from the neonatal EEG data and the cognitive development at age two years. These features were used to train and test the tree ensemble (boosted and bagged) regression models. The highest prediction performance was reached to 14.27 root mean square error (RMSE), 12.07 mean absolute error (MAE), and 0.45 R-squared using the entropy features with a boosted tree regression model. Thus, the results demonstrate that the proposed qEEG features show the state of brain function at an early stage; hence, they could serve as predictive biomarkers of later cognitive impairment, which could facilitate identifying those who might benefit from early targeted intervention.
Collapse
Affiliation(s)
- Noura Alotaibi
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
- Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah, Saudi Arabia
| | - Dalal Bakheet
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
- Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah, Saudi Arabia
| | - Daniel Konn
- Clinical Neurophysiology, University Hospital Southampton, Southampton, United Kingdom
| | - Brigitte Vollmer
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Paediatric Neurology, Southampton Children’s Hospital, Southampton, United Kingdom
| | - Koushik Maharatna
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Pope M, Fukushima M, Betzel RF, Sporns O. Modular origins of high-amplitude cofluctuations in fine-scale functional connectivity dynamics. Proc Natl Acad Sci U S A 2021; 118:e2109380118. [PMID: 34750261 PMCID: PMC8609635 DOI: 10.1073/pnas.2109380118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
The topology of structural brain networks shapes brain dynamics, including the correlation structure of brain activity (functional connectivity) as estimated from functional neuroimaging data. Empirical studies have shown that functional connectivity fluctuates over time, exhibiting patterns that vary in the spatial arrangement of correlations among segregated functional systems. Recently, an exact decomposition of functional connectivity into frame-wise contributions has revealed fine-scale dynamics that are punctuated by brief and intermittent episodes (events) of high-amplitude cofluctuations involving large sets of brain regions. Their origin is currently unclear. Here, we demonstrate that similar episodes readily appear in silico using computational simulations of whole-brain dynamics. As in empirical data, simulated events contribute disproportionately to long-time functional connectivity, involve recurrence of patterned cofluctuations, and can be clustered into distinct families. Importantly, comparison of event-related patterns of cofluctuations to underlying patterns of structural connectivity reveals that modular organization present in the coupling matrix shapes patterns of event-related cofluctuations. Our work suggests that brief, intermittent events in functional dynamics are partly shaped by modular organization of structural connectivity.
Collapse
Affiliation(s)
- Maria Pope
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN 47405
| | - Makoto Fukushima
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan
| | - Richard F Betzel
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
- Cognitive Science Program, Indiana University, Bloomington, IN 47405
- Network Science Institute, Indiana University, Bloomington, IN 47405
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN 47405;
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
- Cognitive Science Program, Indiana University, Bloomington, IN 47405
- Network Science Institute, Indiana University, Bloomington, IN 47405
| |
Collapse
|
11
|
Luppi AI, Mediano PAM, Rosas FE, Harrison DJ, Carhart-Harris RL, Bor D, Stamatakis EA. What it is like to be a bit: an integrated information decomposition account of emergent mental phenomena. Neurosci Conscious 2021; 2021:niab027. [PMID: 34804593 PMCID: PMC8600547 DOI: 10.1093/nc/niab027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
A central question in neuroscience concerns the relationship between consciousness and its physical substrate. Here, we argue that a richer characterization of consciousness can be obtained by viewing it as constituted of distinct information-theoretic elements. In other words, we propose a shift from quantification of consciousness-viewed as integrated information-to its decomposition. Through this approach, termed Integrated Information Decomposition (ΦID), we lay out a formal argument that whether the consciousness of a given system is an emergent phenomenon depends on its information-theoretic composition-providing a principled answer to the long-standing dispute on the relationship between consciousness and emergence. Furthermore, we show that two organisms may attain the same amount of integrated information, yet differ in their information-theoretic composition. Building on ΦID's revised understanding of integrated information, termed ΦR, we also introduce the notion of ΦR-ing ratio to quantify how efficiently an entity uses information for conscious processing. A combination of ΦR and ΦR-ing ratio may provide an important way to compare the neural basis of different aspects of consciousness. Decomposition of consciousness enables us to identify qualitatively different 'modes of consciousness', establishing a common space for mapping the phenomenology of different conscious states. We outline both theoretical and empirical avenues to carry out such mapping between phenomenology and information-theoretic modes, starting from a central feature of everyday consciousness: selfhood. Overall, ΦID yields rich new ways to explore the relationship between information, consciousness, and its emergence from neural dynamics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - David J Harrison
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge CB2 3RH, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
12
|
Wong SM, Arski ON, Warsi NM, Pang EW, Kerr E, Smith ML, Dunkley BT, Ochi A, Otsubo H, Sharma R, Jain P, Donner E, Snead OC, Ibrahim GM. Phase Resetting in the Anterior Cingulate Cortex Subserves Childhood Attention and Is Impaired by Epilepsy. Cereb Cortex 2021; 32:29-40. [PMID: 34255825 DOI: 10.1093/cercor/bhab192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/12/2022] Open
Abstract
The neural mechanisms that underlie selective attention in children are poorly understood. By administering a set-shifting task to children with intracranial electrodes stereotactically implanted within anterior cingulate cortex (ACC) for epilepsy monitoring, we demonstrate that selective attention in a set-shifting task is dependent upon theta-band phase resetting immediately following stimulus onset and that the preferred theta phase angle is predictive of reaction time during attentional shift. We also observe selective enhancement of oscillatory coupling between the ACC and the dorsal attention network and decoupling with the default mode network during task performance. When transient focal epileptic activity occurs around the time of stimulus onset, phase resetting is impaired, connectivity changes with attentional and default mode networks are abolished, and reaction times are prolonged. The results of the present work highlight the fundamental mechanistic role of oscillatory phase in ACC in supporting attentional circuitry and present novel opportunities to remediate attention deficits in children with epilepsy.
Collapse
Affiliation(s)
- Simeon M Wong
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, ON, M5S 3G9, Canada.,Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, 686 Bay St., Toronto, Ontario, M5G 0A4, Canada
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, 686 Bay St., Toronto, Ontario, M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| | - Nebras M Warsi
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, ON, M5S 3G9, Canada.,Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, 686 Bay St., Toronto, Ontario, M5G 0A4, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada
| | - Elizabeth W Pang
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, 686 Bay St., Toronto, Ontario, M5G 0A4, Canada.,Division of Neurology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada
| | - Elizabeth Kerr
- Department of Psychology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto, M5G 1X8, Canada
| | - Mary Lou Smith
- Department of Psychology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto, M5G 1X8, Canada
| | - Benjamin T Dunkley
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, ON, M5S 3G9, Canada
| | - Ayako Ochi
- Division of Neurology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada
| | - Hiroshi Otsubo
- Division of Neurology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada
| | - Roy Sharma
- Division of Neurology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada
| | - Puneet Jain
- Division of Neurology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada
| | - Elizabeth Donner
- Division of Neurology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada
| | - O Carter Snead
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, 686 Bay St., Toronto, Ontario, M5G 0A4, Canada.,Division of Neurology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada.,Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, ON, M5S 3G9, Canada.,Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, 686 Bay St., Toronto, Ontario, M5G 0A4, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| |
Collapse
|
13
|
Shine JM, Müller EJ, Munn B, Cabral J, Moran RJ, Breakspear M. Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nat Neurosci 2021; 24:765-776. [PMID: 33958801 DOI: 10.1038/s41593-021-00824-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Decades of neurobiological research have disclosed the diverse manners in which the response properties of neurons are dynamically modulated to support adaptive cognitive functions. This neuromodulation is achieved through alterations in the biophysical properties of the neuron. However, changes in cognitive function do not arise directly from the modulation of individual neurons, but are mediated by population dynamics in mesoscopic neural ensembles. Understanding this multiscale mapping is an important but nontrivial issue. Here, we bridge these different levels of description by showing how computational models parametrically map classic neuromodulatory processes onto systems-level models of neural activity. The ensuing critical balance of systems-level activity supports perception and action, although our knowledge of this mapping remains incomplete. In this way, quantitative models that link microscale neuronal neuromodulation to systems-level brain function highlight gaps in knowledge and suggest new directions for integrating theoretical and experimental work.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Eli J Müller
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Brandon Munn
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | | | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia. .,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
14
|
Otsubo H, Ogawa H, Pang E, Wong SM, Ibrahim GM, Widjaja E. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expert Rev Neurother 2021; 21:1225-1240. [PMID: 33780318 DOI: 10.1080/14737175.2021.1910024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Magnetoencephalography (MEG) is a noninvasive technique that is used for presurgical evaluation of children with drug-resistant epilepsy (DRE).Areas covered: The contributions of MEG for localizing the epileptogenic zone are discussed, in particular in extra-temporal lobe epilepsy and focal cortical dysplasia, which are common in children, as well as in difficult to localize epilepsy such as operculo-insular epilepsy. Further, the authors review current evidence on MEG for mapping eloquent cortex, its performance, application in clinical practice, and potential challenges.Expert opinion: MEG could change the clinical management of children with DRE by directing placement of intracranial electrodes thereby enhancing their yield. With improved identification of a circumscribed epileptogenic zone, MEG could render more patients as suitable candidates for epilepsy surgery and increase utilization of surgery.
Collapse
Affiliation(s)
- Hiroshi Otsubo
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Hiroshi Ogawa
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth Pang
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Simeon M Wong
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elysa Widjaja
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
15
|
Glomb K, Cabral J, Cattani A, Mazzoni A, Raj A, Franceschiello B. Computational Models in Electroencephalography. Brain Topogr 2021; 35:142-161. [PMID: 33779888 PMCID: PMC8813814 DOI: 10.1007/s10548-021-00828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.
Collapse
Affiliation(s)
- Katharina Glomb
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
| | - Anna Cattani
- Department of Psychiatry, University of Wisconsin-Madison, Madison, USA.,Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ashish Raj
- School of Medicine, UCSF, San Francisco, USA
| | - Benedetta Franceschiello
- Department of Ophthalmology, Hopital Ophthalmic Jules Gonin, FAA, Lausanne, Switzerland.,CIBM Centre for Biomedical Imaging, EEG Section CHUV-UNIL, Lausanne, Switzerland.,Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
16
|
Tewarie P, Hunt BAE, O'Neill GC, Byrne A, Aquino K, Bauer M, Mullinger KJ, Coombes S, Brookes MJ. Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity. Cereb Cortex 2020; 29:2668-2681. [PMID: 29897408 DOI: 10.1093/cercor/bhy136] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Event-related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain "activity". However, the precise nature of these effects remains unclear; in particular, whether such fluctuations reflect local dynamics, integration between regions, or both, is unknown. Here, using magnetoencephalography, we show that movement induced oscillatory modulation is associated with transient connectivity between sensorimotor regions. Further, in resting-state data, we demonstrate a significant association between oscillatory modulation and dynamic connectivity. A confound with such empirical measurements is that increased amplitude necessarily means increased signal-to-noise ratio (SNR): this means that the question of whether amplitude and connectivity are genuinely coupled, or whether increased connectivity is observed purely due to increased SNR is unanswered. Here, we counter this problem by analogy with computational models which show that, in the presence of global network coupling and local multistability, the link between oscillatory modulation and long-range connectivity is a natural consequence of neural networks. Our results provide evidence for the notion that connectivity is mediated by neural oscillations, and suggest that time-frequency spectrograms are not merely a description of local synchrony but also reflect fluctuations in long-range connectivity.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Benjamin A E Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Aine Byrne
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Kevin Aquino
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Markus Bauer
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Ozel P, Karaca A, Olamat A, Akan A, Ozcoban MA, Tan O. Intrinsic Synchronization Analysis of Brain Activity in Obsessive-compulsive Disorders. Int J Neural Syst 2020; 30:2050046. [PMID: 32902344 DOI: 10.1142/s012906572050046x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is one of the neuropsychiatric disorders qualified by intrusive and iterative annoying thoughts and mental attitudes that are activated by these thoughts. In recent studies, advanced signal processing techniques have been favored to diagnose OCD. This research suggests four different measurements; intrinsic phase-locked value, intrinsic coherence, intrinsic synchronization likelihood, and intrinsic visibility graph similarity that quantifies the synchronization level and complexity in electroencephalography (EEG) signals. This intrinsic synchronization is achieved by utilizing Multivariate Empirical Mode Decomposition (MEMD), a data-driven method that resolves nonlinear and nonstationary data into their intrinsic mode functions. Our intrinsic technique in this study demonstrates that MEMD-based synchronization analysis gives us much more detailed knowledge rather than utilizing the synchronization method alone. Furthermore, the nonlinear synchronization method presents more consistent results considering OCD heterogeneity. Statistical evaluation using sample [Formula: see text]-test and [Formula: see text]-test has shown the significance of such new methodology.
Collapse
Affiliation(s)
- Pinar Ozel
- Department of Biomedical Engineering, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
| | - Ali Karaca
- Department of Electrical and Electronics Engineering, Inonu University, Malatya, Turkey
| | - Ali Olamat
- Department of Biomedical Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aydin Akan
- Department of Electrical and Electronics Engineering, Izmir University of Economics, Izmir
| | - Mehmet Akif Ozcoban
- Department of Electronic and Automation in Junior Technical College, Gaziantep University, Gaziantep, Turkey
| | - Oguz Tan
- Neuropsychiatry Health, Practice and Research Centre, Uskudar University, Istanbul, Turkey
| |
Collapse
|
18
|
Yuk V, Anagnostou E, Taylor MJ. Altered Connectivity During a False-Belief Task in Adults With Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:901-912. [PMID: 32600899 DOI: 10.1016/j.bpsc.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Deficits in social communication are one of the main features of autism spectrum disorder (ASD). Adults with ASD show atypical brain activity during false-belief understanding, an aspect of social communication involving the ability to infer that an individual can have an incorrect belief about a situation. Our study is the first to investigate whether adults with ASD exhibit differences in frequency-specific functional connectivity patterns during false-belief reasoning. METHODS We used magnetoencephalography to contrast functional connectivity underlying false-belief understanding between 40 adults with ASD and 39 control adults. We examined whole-brain phase synchrony measures during a false-belief task in 3 frequency bands: theta (4-7 Hz), alpha (8-14 Hz), and beta (15-30 Hz). RESULTS Adults with ASD demonstrated reduced theta-band connectivity compared with control adults between several right-lateralized and midline regions such as the medial prefrontal cortex, right temporoparietal junction, right inferior frontal gyrus, and right superior temporal gyrus. During false-belief trials, they also recruited a network in the beta band that included primary visual regions such as the bilateral inferior occipital gyri and the left anterior temporoparietal junction. CONCLUSIONS Reduced theta-band synchrony between areas associated with mentalizing, inhibition, and visual processing implies some difficulty in communication among these functions in ASD. This impairment in top-down control in the theta band may be counterbalanced by their engagement of a beta-band network because both the left anterior temporoparietal junction and beta-band oscillations are associated with attentional processes. Thus, adults with ASD demonstrate alternative neural mechanisms for successful false-belief reasoning.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| | - Evdokia Anagnostou
- Department of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Neymotin SA, Daniels DS, Caldwell B, McDougal RA, Carnevale NT, Jas M, Moore CI, Hines ML, Hämäläinen M, Jones SR. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife 2020; 9:e51214. [PMID: 31967544 PMCID: PMC7018509 DOI: 10.7554/elife.51214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.
Collapse
Affiliation(s)
- Samuel A Neymotin
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Biomedical Imaging and NeuromodulationNathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Dylan S Daniels
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Blake Caldwell
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Robert A McDougal
- Department NeuroscienceYale UniversityNew HavenUnited States
- Department of BiostatisticsYale UniversityNew HavenUnited States
| | | | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Christopher I Moore
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Michael L Hines
- Department NeuroscienceYale UniversityNew HavenUnited States
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Stephanie R Jones
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Neurorestoration and NeurotechnologyProvidence VAMCProvidenceUnited States
| |
Collapse
|
20
|
Seedat ZA, Quinn AJ, Vidaurre D, Liuzzi L, Gascoyne LE, Hunt BAE, O'Neill GC, Pakenham DO, Mullinger KJ, Morris PG, Woolrich MW, Brookes MJ. The role of transient spectral 'bursts' in functional connectivity: A magnetoencephalography study. Neuroimage 2020; 209:116537. [PMID: 31935517 DOI: 10.1016/j.neuroimage.2020.116537] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Neural oscillations dominate electrophysiological measures of macroscopic brain activity and fluctuations in these rhythms offer an insightful window on cortical excitation, inhibition, and connectivity. However, in recent years the 'classical' picture of smoothly varying oscillations has been challenged by the idea that many 'oscillations' may actually be formed from the recurrence of punctate high-amplitude bursts in activity, whose spectral composition intersects the traditionally defined frequency ranges (e.g. alpha/beta band). This finding offers a new interpretation of measurable brain activity, however neither the methodological means to detect bursts, nor their link to other findings (e.g. connectivity) have been settled. Here, we use a new approach to detect bursts in magnetoencephalography (MEG) data. We show that a time-delay embedded Hidden Markov Model (HMM) can be used to delineate single-region bursts which are in agreement with existing techniques. However, unlike existing techniques, the HMM looks for specific spectral patterns in timecourse data. We characterise the distribution of burst duration, frequency of occurrence and amplitude across the cortex in resting state MEG data. During a motor task we show how the movement related beta decrease and post movement beta rebound are driven by changes in burst occurrence. Finally, we show that the beta band functional connectome can be derived using a simple measure of burst overlap, and that coincident bursts in separate regions correspond to a period of heightened coherence. In summary, this paper offers a new methodology for burst identification and connectivity analysis which will be important for future investigations of neural oscillations.
Collapse
Affiliation(s)
- Zelekha A Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; Department of Clinical Medicine, Palle Juul-Jensens Boulevard 82, Building 2, Incuba/Skejby, 8200 Aarhus N, Denmark
| | - Lucrezia Liuzzi
- Mood Brain and Development Unit, Emotion and Development Branch, NIH/NIMH, Bethesda, MD 20892, USA
| | - Lauren E Gascoyne
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Benjamin A E Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Daisie O Pakenham
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
21
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Popescu M, Popescu EA, DeGraba TJ, Hughes JD. Altered modulation of beta band oscillations during memory encoding is predictive of lower subsequent recognition performance in post-traumatic stress disorder. Neuroimage Clin 2019; 25:102154. [PMID: 31951934 PMCID: PMC6965746 DOI: 10.1016/j.nicl.2019.102154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/25/2019] [Accepted: 12/26/2019] [Indexed: 11/23/2022]
Abstract
We studied the relationship between electrophysiological markers of memory encoding, subsequent recognition performance, and severity of PTSD symptoms in service members with combat exposure (n = 40, age: 41.2 ± 7.2 years) and various levels of PTSD symptom severity assessed using the PTSD Check List for DSM V version (PCL-5). Brain activity was recorded using magnetoencephalography during a serial presentation of 86 images of outdoor scenes that were studied by participants for an upcoming recognition test. In a second session, the original images were shown intermixed with an equal number of novel images while participants performed the recognition task. Participants recognized 76.0% ± 12.1% of the original images and correctly categorized as novel 89.9% ± 7.0% of the novel images. A negative correlation was present between PCL-5 scores and discrimination performance (Spearman rs = -0.38, p = 0.016). PCL-5 scores were also negatively correlated with the recognition accuracy for original images (rs = -0.37, p = 0.02). Increases in theta and gamma power and decreases in alpha and beta power were observed over distributed brain networks during memory encoding. Higher PCL-5 scores were associated with less suppression of beta band power in bilateral ventral and medial temporal regions and in the left orbitofrontal cortex. These regions also showed positive correlations between the magnitude of suppression of beta power during encoding and subsequent recognition accuracy. These findings indicate that the lower recognition performance in participants with greater PTSD symptom severity may be due in part to ineffective encoding reflected in altered modulation of beta band oscillatory activity.
Collapse
Affiliation(s)
- Mihai Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Elena-Anda Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Thomas J DeGraba
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - John D Hughes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States; Behavioral Biology Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, United States.
| |
Collapse
|
23
|
Tewarie P, Liuzzi L, O'Neill GC, Quinn AJ, Griffa A, Woolrich MW, Stam CJ, Hillebrand A, Brookes MJ. Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity. Neuroimage 2019; 200:38-50. [DOI: 10.1016/j.neuroimage.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/12/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022] Open
|
24
|
Marzetti L, Basti A, Chella F, D'Andrea A, Syrjälä J, Pizzella V. Brain Functional Connectivity Through Phase Coupling of Neuronal Oscillations: A Perspective From Magnetoencephalography. Front Neurosci 2019; 13:964. [PMID: 31572116 PMCID: PMC6751382 DOI: 10.3389/fnins.2019.00964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 12/01/2022] Open
Abstract
Magnetoencephalography has gained an increasing importance in systems neuroscience thanks to the possibility it offers of unraveling brain networks at time-scales relevant to behavior, i.e., frequencies in the 1-100 Hz range, with sufficient spatial resolution. In the first part of this review, we describe, in a unified mathematical framework, a large set of metrics used to estimate MEG functional connectivity at the same or at different frequencies. The different metrics are presented according to their characteristics: same-frequency or cross-frequency, univariate or multivariate, directed or undirected. We focus on phase coupling metrics given that phase coupling of neuronal oscillations is a putative mechanism for inter-areal communication, and that MEG is an ideal tool to non-invasively detect such coupling. In the second part of this review, we present examples of the use of specific phase methods on real MEG data in the context of resting state, visuospatial attention and working memory. Overall, the results of the studies provide evidence for frequency specific and/or cross-frequency brain circuits which partially overlap with brain networks as identified by hemodynamic-based imaging techniques, such as functional Magnetic Resonance (fMRI). Additionally, the relation of these functional brain circuits to anatomy and to behavior highlights the usefulness of MEG phase coupling in systems neuroscience studies. In conclusion, we believe that the field of MEG functional connectivity has made substantial steps forward in the recent years and is now ready for bringing the study of brain networks to a more mechanistic understanding.
Collapse
Affiliation(s)
- Laura Marzetti
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Alessio Basti
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Federico Chella
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Antea D'Andrea
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Jaakko Syrjälä
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Vittorio Pizzella
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Liuzzi L, Quinn AJ, O’Neill GC, Woolrich MW, Brookes MJ, Hillebrand A, Tewarie P. How Sensitive Are Conventional MEG Functional Connectivity Metrics With Sliding Windows to Detect Genuine Fluctuations in Dynamic Functional Connectivity? Front Neurosci 2019; 13:797. [PMID: 31427920 PMCID: PMC6688728 DOI: 10.3389/fnins.2019.00797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
Despite advances in the field of dynamic connectivity, fixed sliding window approaches for the detection of fluctuations in functional connectivity are still widely used. The use of conventional connectivity metrics in conjunction with a fixed sliding window comes with the arbitrariness of the chosen window lengths. In this paper we use multivariate autoregressive and neural mass models with a priori defined ground truths to systematically analyze the sensitivity of conventional metrics in combination with different window lengths to detect genuine fluctuations in connectivity for various underlying state durations. Metrics of interest are the coherence, imaginary coherence, phase lag index, phase locking value and the amplitude envelope correlation. We performed analysis for two nodes and at the network level. We demonstrate that these metrics show indeed higher variability for genuine temporal fluctuations in connectivity compared to a static connectivity state superimposed by noise. Overall, the error of the connectivity estimates themselves decreases for longer state durations (order of seconds), while correlations of the connectivity fluctuations with the ground truth was higher for longer state durations. In general, metrics, in combination with a sliding window, perform poorly for very short state durations. Increasing the SNR of the system only leads to a moderate improvement. In addition, at the network level, only longer window widths were sufficient to detect plausible resting state networks that matched the underlying ground truth, especially for the phase locking value, amplitude envelope correlation and coherence. The length of these longer window widths did not necessarily correspond to the underlying state durations. For short window widths resting state network connectivity patterns could not be retrieved. We conclude that fixed sliding window approaches for connectivity can detect modulations of connectivity, but mostly if the underlying dynamics operate on moderate to slow timescales. In practice, this can be a drawback, as state durations can vary significantly in empirical data.
Collapse
Affiliation(s)
- Lucrezia Liuzzi
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - George C. O’Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Centre for Functional MRI of the Brain, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
O'Neill GC, Tewarie P, Vidaurre D, Liuzzi L, Woolrich MW, Brookes MJ. Dynamics of large-scale electrophysiological networks: A technical review. Neuroimage 2018; 180:559-576. [PMID: 28988134 DOI: 10.1016/j.neuroimage.2017.10.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
For several years it has been argued that neural synchronisation is crucial for cognition. The idea that synchronised temporal patterns between different neural groups carries information above and beyond the isolated activity of these groups has inspired a shift in focus in the field of functional neuroimaging. Specifically, investigation into the activation elicited within certain regions by some stimulus or task has, in part, given way to analysis of patterns of co-activation or functional connectivity between distal regions. Recently, the functional connectivity community has been looking beyond the assumptions of stationarity that earlier work was based on, and has introduced methods to incorporate temporal dynamics into the analysis of connectivity. In particular, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)), which provides direct measurement of whole-brain activity and rich temporal information, offers an exceptional window into such (potentially fast) brain dynamics. In this review, we discuss challenges, solutions, and a collection of analysis tools that have been developed in recent years to facilitate the investigation of dynamic functional connectivity using these imaging modalities. Further, we discuss the applications of these approaches in the study of cognition and neuropsychiatric disorders. Finally, we review some existing developments that, by using realistic computational models, pursue a deeper understanding of the underlying causes of non-stationary connectivity.
Collapse
Affiliation(s)
- George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lucrezia Liuzzi
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
27
|
Heitmann S, Breakspear M. Putting the "dynamic" back into dynamic functional connectivity. Netw Neurosci 2018; 2:150-174. [PMID: 30215031 PMCID: PMC6130444 DOI: 10.1162/netn_a_00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/30/2017] [Indexed: 01/17/2023] Open
Abstract
The study of fluctuations in time-resolved functional connectivity is a topic of substantial current interest. As the term "dynamic functional connectivity" implies, such fluctuations are believed to arise from dynamics in the neuronal systems generating these signals. While considerable activity currently attends to methodological and statistical issues regarding dynamic functional connectivity, less attention has been paid toward its candidate causes. Here, we review candidate scenarios for dynamic (functional) connectivity that arise in dynamical systems with two or more subsystems; generalized synchronization, itinerancy (a form of metastability), and multistability. Each of these scenarios arises under different configurations of local dynamics and intersystem coupling: We show how they generate time series data with nonlinear and/or nonstationary multivariate statistics. The key issue is that time series generated by coupled nonlinear systems contain a richer temporal structure than matched multivariate (linear) stochastic processes. In turn, this temporal structure yields many of the phenomena proposed as important to large-scale communication and computation in the brain, such as phase-amplitude coupling, complexity, and flexibility. The code for simulating these dynamics is available in a freeware software platform, the Brain Dynamics Toolbox.
Collapse
|
28
|
Dynamic models of large-scale brain activity. Nat Neurosci 2017; 20:340-352. [PMID: 28230845 DOI: 10.1038/nn.4497] [Citation(s) in RCA: 488] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
|
29
|
Yuniati A, Mai TL, Chen CM. Synchronization and Inter-Layer Interactions of Noise-Driven Neural Networks. Front Comput Neurosci 2017; 11:2. [PMID: 28197088 PMCID: PMC5281552 DOI: 10.3389/fncom.2017.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
In this study, we used the Hodgkin-Huxley (HH) model of neurons to investigate the phase diagram of a developing single-layer neural network and that of a network consisting of two weakly coupled neural layers. These networks are noise driven and learn through the spike-timing-dependent plasticity (STDP) or the inverse STDP rules. We described how these networks transited from a non-synchronous background activity state (BAS) to a synchronous firing state (SFS) by varying the network connectivity and the learning efficacy. In particular, we studied the interaction between a SFS layer and a BAS layer, and investigated how synchronous firing dynamics was induced in the BAS layer. We further investigated the effect of the inter-layer interaction on a BAS to SFS repair mechanism by considering three types of neuron positioning (random, grid, and lognormal distributions) and two types of inter-layer connections (random and preferential connections). Among these scenarios, we concluded that the repair mechanism has the largest effect for a network with the lognormal neuron positioning and the preferential inter-layer connections.
Collapse
Affiliation(s)
- Anis Yuniati
- Department of Physics, National Taiwan Normal University Taipei, Taiwan
| | - Te-Lun Mai
- Department of Physics, National Taiwan Normal University Taipei, Taiwan
| | - Chi-Ming Chen
- Department of Physics, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
30
|
Abstract
Human perception fluctuates with the phase of neural oscillations in the presence of environmental rhythmic structure by which neural oscillations become entrained. However, in the absence of predictability afforded by rhythmic structure, we hypothesize that the neural dynamical states associated with optimal psychophysical performance are more complex than what has been described previously for rhythmic stimuli. The current electroencephalography study characterized the brain dynamics associated with optimal detection of gaps embedded in narrow-band acoustic noise stimuli lacking low-frequency rhythmic structure. Optimal gap detection was associated with three spectrotemporally distinct delta-governed neural microstates. Individual microstates were characterized by unique instantaneous combinations of neural phase in the delta, theta, and alpha frequency bands. Critically, gap detection was not predictable from local fluctuations in stimulus acoustics. The current results suggest that, in the absence of rhythmic structure to entrain neural oscillations, good performance hinges on complex neural states that vary from moment to moment. Significance statement: Our ability to hear faint sounds fluctuates together with slow brain activity that synchronizes with environmental rhythms. However, it is so far not known how brain activity at different time scales might interact to influence perception when there is no rhythm with which brain activity can synchronize. Here, we used electroencephalography to measure brain activity while participants listened for short silences that interrupted ongoing noise. We examined brain activity in three different frequency bands: delta, theta, and alpha. Participants' ability to detect gaps depended on different numbers of frequency bands--sometimes one, sometimes two, and sometimes three--at different times. Changes in the number of frequency bands that predict perception are a hallmark of a complex neural system.
Collapse
|
31
|
Hyett MP, Parker GB, Guo CC, Zalesky A, Nguyen VT, Yuen T, Breakspear M. Scene unseen: Disrupted neuronal adaptation in melancholia during emotional film viewing. NEUROIMAGE-CLINICAL 2015; 9:660-7. [PMID: 26740919 PMCID: PMC4660155 DOI: 10.1016/j.nicl.2015.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 10/26/2022]
Abstract
Impairments in attention and concentration are distinctive features of melancholic depression, and may diminish the ability to shift focus away from internal dysphoric states. Disrupted brain networks may underlie the inability to effectively disengage from interoceptive signals in this disorder. This study investigates changes in effective connectivity between cortical systems supporting attention, interoception, and perception in those with melancholic depression when shifting attention from rest to viewing dynamic film stimuli. We hypothesised that those with melancholia would show impaired attentional shifting from rest to emotional film viewing, captured in neuronal states that differed little across conditions. Functional magnetic resonance imaging (fMRI) data were acquired from 48 participants (16 melancholic depressed, 16 non-melancholic depressed, and 16 healthy controls) at rest and whilst viewing emotionally salient movies. Using independent component analysis, we identified 8 cortical modes (default mode, executive control, left/right frontoparietal attention, left/right insula, visual and auditory) and studied their dynamics using dynamic causal modelling. Engagement with dynamic emotional material diminished in melancholia and was associated with network-wide increases in effective connectivity. Melancholia was also characterised by an increase in effective connectivity amongst cortical regions involved in attention and interoception when shifting from rest to negative film viewing, with the converse pattern in control participants. The observed involvement of attention- and insula-based cortical systems highlights a potential neurobiological mechanism for disrupted attentional resource allocation, particularly in switching between interoceptive and exteroceptive signals, in melancholia.
Collapse
Affiliation(s)
- Matthew P Hyett
- School of Psychiatry, University of New South Wales, Black Dog Institute Building, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Gordon B Parker
- School of Psychiatry, University of New South Wales, Black Dog Institute Building, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Christine C Guo
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Faculty of Medicine, Dentistry and Health Science & Melbourne School of Engineering, University of Melbourne, VIC 3010, Australia
| | - Vinh T Nguyen
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Tamara Yuen
- School of Psychiatry, University of New South Wales, Black Dog Institute Building, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; The Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4006, Australia
| |
Collapse
|
32
|
Mehrkanoon S, Breakspear M, Britz J, Boonstra TW. Intrinsic coupling modes in source-reconstructed electroencephalography. Brain Connect 2015; 4:812-25. [PMID: 25230358 DOI: 10.1089/brain.2014.0280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Intrinsic coupling of neuronal assemblies constitutes a key feature of ongoing brain activity, yielding the rich spatiotemporal patterns observed in neuroimaging data and putatively supporting cognitive processes. Intrinsic coupling has been investigated in electrophysiological recordings using two types of functional connectivity measures: amplitude and phase coupling. These two coupling modes differ in their likely causes and functions, and have been proposed to provide complementary insights into intrinsic neuronal interactions. Here, we investigate the relationship between amplitude and phase coupling in source-reconstructed electroencephalography (EEG). Volume conduction is a key obstacle for connectivity analysis in EEG-we therefore also test the envelope correlation of orthogonalized signals and the phase lag index. Functional connectivity between six seed source regions (bilateral visual, sensorimotor, and auditory cortices) and all other cortical voxels was computed. For all four measures, coupling between homologous sensory areas in both hemispheres was significantly higher than with other voxels at the same physical distance. The frequency of significant coupling differed between sensory areas: 10 Hz for visual, 30 Hz for auditory, and 40 Hz for sensorimotor cortices. By contrasting envelope correlations and phase locking values, we observed two distinct clusters of voxels showing a different relationship between amplitude and phase coupling. Large clusters contiguous to the seed regions showed an identity (1:1) relationship between amplitude and phase coupling, whereas a cluster located around the contralateral homologous regions showed higher phase than amplitude coupling. These results show a relationship between intrinsic coupling modes that is distinct from the effect of volume conduction.
Collapse
Affiliation(s)
- Saeid Mehrkanoon
- 1 School of Psychiatry, University of New South Wales , Sydney, Australia
| | | | | | | |
Collapse
|
33
|
Gollo LL, Breakspear M. The frustrated brain: from dynamics on motifs to communities and networks. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0532. [PMID: 25180310 DOI: 10.1098/rstb.2013.0532] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cognitive function depends on an adaptive balance between flexible dynamics and integrative processes in distributed cortical networks. Patterns of zero-lag synchrony likely underpin numerous perceptual and cognitive functions. Synchronization fulfils integration by reducing entropy, while adaptive function mandates that a broad variety of stable states be readily accessible. Here, we elucidate two complementary influences on patterns of zero-lag synchrony that derive from basic properties of brain networks. First, mutually coupled pairs of neuronal subsystems-resonance pairs-promote stable zero-lag synchrony among the small motifs in which they are embedded, and whose effects can propagate along connected chains. Second, frustrated closed-loop motifs disrupt synchronous dynamics, enabling metastable configurations of zero-lag synchrony to coexist. We document these two complementary influences in small motifs and illustrate how these effects underpin stable versus metastable phase-synchronization patterns in prototypical modular networks and in large-scale cortical networks of the macaque (CoCoMac). We find that the variability of synchronization patterns depends on the inter-node time delay, increases with the network size and is maximized for intermediate coupling strengths. We hypothesize that the dialectic influences of resonance versus frustration may form a dynamic substrate for flexible neuronal integration, an essential platform across diverse cognitive processes.
Collapse
Affiliation(s)
- Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michael Breakspear
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia School of Psychiatry, University of New South Wales and The Black Dog Institute, Sydney, New South Wales, Australia The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci 2015; 9:11. [PMID: 25698950 PMCID: PMC4316720 DOI: 10.3389/fnhum.2015.00011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/07/2015] [Indexed: 11/20/2022] Open
Abstract
Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
Collapse
Affiliation(s)
- Paul E. Rapp
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | - David O. Keyser
- Uniformed Services University of the Health Sciences School of Medicine, Bethesda, MD, USA
| | | | - Rene Hernandez
- US Navy Bureau of Medicine and Surgery, Frederick, MD, USA
| | | | | | - W. David Hairston
- U. S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | | | | | | |
Collapse
|
35
|
Marshall WJ, Lackner CL, Marriott P, Santesso DL, Segalowitz SJ. Using Phase Shift Granger Causality to Measure Directed Connectivity in EEG Recordings. Brain Connect 2014; 4:826-41. [DOI: 10.1089/brain.2014.0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- William J. Marshall
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
| | | | - Paul Marriott
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
| | | | | |
Collapse
|
36
|
Lackner CL, Marshall WJ, Santesso DL, Dywan J, Wade T, Segalowitz SJ. Adolescent anxiety and aggression can be differentially predicted by electrocortical phase reset variables. Brain Cogn 2014; 89:90-8. [DOI: 10.1016/j.bandc.2013.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/20/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
|
37
|
Abstract
Neuronal dynamics display a complex spatiotemporal structure involving the precise, context-dependent coordination of activation patterns across a large number of spatially distributed regions. Functional magnetic resonance imaging (fMRI) has played a central role in demonstrating the nontrivial spatial and topological structure of these interactions, but thus far has been limited in its capacity to study their temporal evolution. Here, using high-resolution resting-state fMRI data obtained from the Human Connectome Project, we mapped time-resolved functional connectivity across the entire brain at a subsecond resolution with the aim of understanding how nonstationary fluctuations in pairwise interactions between regions relate to large-scale topological properties of the human brain. We report evidence for a consistent set of functional connections that show pronounced fluctuations in their strength over time. The most dynamic connections are intermodular, linking elements from topologically separable subsystems, and localize to known hubs of default mode and fronto-parietal systems. We found that spatially distributed regions spontaneously increased, for brief intervals, the efficiency with which they can transfer information, producing temporary, globally efficient network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time, possibly achieving a balance between efficient information-processing and metabolic expenditure.
Collapse
|
38
|
Brookes MJ, O'Neill GC, Hall EL, Woolrich MW, Baker A, Palazzo Corner S, Robson SE, Morris PG, Barnes GR. Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity. Neuroimage 2014; 91:282-99. [PMID: 24418505 DOI: 10.1016/j.neuroimage.2013.12.066] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 11/16/2022] Open
Affiliation(s)
- Matthew J Brookes
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK.
| | - George C O'Neill
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Emma L Hall
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Centre for Functional MRI of the Brain, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Adam Baker
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sofia Palazzo Corner
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Siân E Robson
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Peter G Morris
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Gareth R Barnes
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| |
Collapse
|
39
|
Neural regulatory mechanism of desire for food: Revealed by magnetoencephalography. Brain Res 2014; 1543:120-7. [DOI: 10.1016/j.brainres.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/26/2013] [Accepted: 11/04/2013] [Indexed: 12/24/2022]
|
40
|
Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 2013; 80:426-44. [PMID: 23643999 DOI: 10.1016/j.neuroimage.2013.04.087] [Citation(s) in RCA: 508] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022] Open
Abstract
The human brain is a complex, interconnected network par excellence. Accurate and informative mapping of this human connectome has become a central goal of neuroscience. At the heart of this endeavor is the notion that brain connectivity can be abstracted to a graph of nodes, representing neural elements (e.g., neurons, brain regions), linked by edges, representing some measure of structural, functional or causal interaction between nodes. Such a representation brings connectomic data into the realm of graph theory, affording a rich repertoire of mathematical tools and concepts that can be used to characterize diverse anatomical and dynamical properties of brain networks. Although this approach has tremendous potential - and has seen rapid uptake in the neuroimaging community - it also has a number of pitfalls and unresolved challenges which can, if not approached with due caution, undermine the explanatory potential of the endeavor. We review these pitfalls, the prevailing solutions to overcome them, and the challenges at the forefront of the field.
Collapse
Affiliation(s)
- Alex Fornito
- Monash Clinical and Imaging Neuroscience, School of Psychology and Psychiatry and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
41
|
On the Quantization of Time-Varying Phase Synchrony Patterns into Distinct Functional Connectivity Microstates (FCμstates) in a Multi-trial Visual ERP Paradigm. Brain Topogr 2013; 26:397-409. [DOI: 10.1007/s10548-013-0276-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 02/08/2013] [Indexed: 11/26/2022]
|
42
|
Thatcher RW. Latest Developments in LiveZ-Score Training: Symptom Check List, Phase Reset, and LoretaZ-Score Biofeedback. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/10874208.2013.759032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
You Y, Bai L, Dai R, Zhong C, Xue T, Wang H, Liu Z, Wei W, Tian J. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings. PLoS One 2012; 7:e49250. [PMID: 23152881 PMCID: PMC3494681 DOI: 10.1371/journal.pone.0049250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36) and a nearby non-meridian point (NAP) would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP) followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz), beta (13-30 Hz) and gamma (30-48 Hz) bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend support for the specificity of neural expression underlying acupuncture.
Collapse
Affiliation(s)
- Youbo You
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lijun Bai
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ruwei Dai
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chongguang Zhong
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ting Xue
- Life Science Research Center, School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Hu Wang
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Liu
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Wei
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Intelligent Medical Research Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Life Science Research Center, School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
44
|
Betzel RF, Erickson MA, Abell M, O'Donnell BF, Hetrick WP, Sporns O. Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Front Comput Neurosci 2012; 6:74. [PMID: 23060785 PMCID: PMC3460532 DOI: 10.3389/fncom.2012.00074] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/07/2012] [Indexed: 11/13/2022] Open
Abstract
Intrinsically driven neural activity generated at rest exhibits complex spatiotemporal dynamics characterized by patterns of synchronization across distant brain regions. Mounting evidence suggests that these patterns exhibit fluctuations and nonstationarity at multiple time scales. Resting-state electroencephalographic (EEG) recordings were examined in 12 young adults for changes in synchronization patterns on a fast time scale in the range of tens to hundreds of milliseconds. Results revealed that EEG dynamics continuously underwent rapid transitions between intermittently stable states. Numerous approximate recurrences of states were observed within single recording epochs, across different epochs separated by longer times, and between participants. For broadband (4-30 Hz) data, a majority of states could be grouped into three families, suggesting the existence of a limited repertoire of core states that is continually revisited and shared across participants. Our results document the existence of fast synchronization dynamics iterating amongst a small set of core networks in the resting brain, complementing earlier findings of nonstationary dynamics in electromagnetic recordings and transient EEG microstates.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | | | | | | | | | | |
Collapse
|
45
|
Plankar M, Brežan S, Jerman I. The principle of coherence in multi-level brain information processing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 111:8-29. [PMID: 22986048 DOI: 10.1016/j.pbiomolbio.2012.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/02/2012] [Indexed: 02/03/2023]
Abstract
Synchronisation has become one of the major scientific tools to explain biological order at many levels of organisation. In systems neuroscience, synchronised subthreshold and suprathreshold oscillatory neuronal activity within and between distributed neuronal assemblies is acknowledged as a fundamental mode of neuronal information processing. Coherent neuronal oscillations correlate with all basic cognitive functions, mediate local and long-range neuronal communication and affect synaptic plasticity. However, it remains unclear how the very fast and complex changes of functional neuronal connectivity necessary for cognition, as mediated by dynamic patterns of neuronal synchrony, could be explained exclusively based on the well-established synaptic mechanisms. A growing body of research indicates that the intraneuronal matrix, composed of cytoskeletal elements and their binding proteins, structurally and functionally connects the synapses within a neuron, modulates neurotransmission and memory consolidation, and is hypothesised to be involved in signal integration via electric signalling due to its charged surface. Theoretical modelling, as well as emerging experimental evidence indicate that neuronal cytoskeleton supports highly cooperative energy transport and information processing based on molecular coherence. We suggest that long-range coherent dynamics within the intra- and extracellular filamentous matrices could establish dynamic ordered states, capable of rapid modulations of functional neuronal connectivity via their interactions with neuronal membranes and synapses. Coherence may thus represent a common denominator of neurophysiological and biophysical approaches to brain information processing, operating at multiple levels of neuronal organisation, from which cognition may emerge as its cardinal manifestation.
Collapse
Affiliation(s)
- Matej Plankar
- BION Institute, Stegne 21, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
46
|
Stam C, van Straaten E. The organization of physiological brain networks. Clin Neurophysiol 2012; 123:1067-87. [PMID: 22356937 DOI: 10.1016/j.clinph.2012.01.011] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 01/08/2023]
|
47
|
|
48
|
Zanin M, Papo D, Sendiña-Nadal I, Boccaletti S. Computation as an emergent feature of adaptive synchronization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:060102. [PMID: 22304028 DOI: 10.1103/physreve.84.060102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/20/2011] [Indexed: 05/31/2023]
Abstract
We report on the spontaneous emergence of computation from adaptive synchronization of networked dynamical systems. The fundamentals are nonlinear elements, interacting in a directed graph via a coupling that adapts itself to the synchronization level between two input signals. These units can emulate different Boolean logics, and perform any computational task in a Turing sense, each specific operation being associated with a given network's motif. The resilience of the computation against noise is proven, and the general applicability is demonstrated with regard to periodic and chaotic oscillators, and excitable systems mimicking neural dynamics.
Collapse
Affiliation(s)
- M Zanin
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | | | | |
Collapse
|
49
|
Zanin M, Del Pozo F, Boccaletti S. Computation emerges from adaptive synchronization of networking neurons. PLoS One 2011; 6:e26467. [PMID: 22073167 PMCID: PMC3208543 DOI: 10.1371/journal.pone.0026467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress) of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Madrid, Spain.
| | | | | |
Collapse
|
50
|
Hindriks R, Bijma F, van Dijk BW, Stam CJ, van der Werf YY, van Someren EJW, de Munck JC, van der Vaart AW. Data-driven modeling of phase interactions between spontaneous MEG oscillations. Hum Brain Mapp 2011; 32:1161-78. [PMID: 21225630 PMCID: PMC6869992 DOI: 10.1002/hbm.21099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/12/2010] [Accepted: 04/23/2010] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase-interaction dynamics. METHODS We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived. RESULTS The methodology is tested using simulations and is applied to ongoing occipital-frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital-frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms. CONCLUSION When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|