1
|
Ryan KM, Boyle NT, Harkin A, Connor TJ. Dexamethasone attenuates inflammatory-mediated suppression of β 2-adrenoceptor expression in rat primary mixed glia. J Neuroimmunol 2019; 338:577082. [PMID: 31707103 DOI: 10.1016/j.jneuroim.2019.577082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022]
Abstract
β2-adrenoceptors are G-protein coupled receptors expressed on both astrocytes and microglia that play a key role in mediating the anti-inflammatory actions of noradrenaline in the CNS. Here the effect of an inflammatory stimulus (LPS + IFN-γ) was examined on glial β2-adrenoceptor expression and function. Exposure of glia to LPS + IFN-γ decreased β2-adrenoceptor mRNA and agonist-stimulated production of the intracellular second messenger cAMP. Pre-treatment with the synthetic glucocorticoid and potent anti-inflammatory agent dexamethasone prevented the LPS + IFN-γ-induced suppression of β2-adrenoceptor mRNA expression. These results raise the possibility that inflammation-mediated β2-adrenoceptor downregulation in glia may dampen the innate anti-inflammatory properties of noradrenaline in the CNS.
Collapse
Affiliation(s)
- Karen M Ryan
- Neuroimmunology Research Group, Department of Physiology, Trinity College Institute of Neuroscience & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Noreen T Boyle
- Neuroimmunology Research Group, Department of Physiology, Trinity College Institute of Neuroscience & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, Trinity College Institute of Neuroscience, School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland.
| | - Thomas J Connor
- Neuroimmunology Research Group, Department of Physiology, Trinity College Institute of Neuroscience & School of Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
2
|
Missan DS, Mitchell K, Subbaram S, DiPersio CM. Integrin α3β1 signaling through MEK/ERK determines alternative polyadenylation of the MMP-9 mRNA transcript in immortalized mouse keratinocytes. PLoS One 2015; 10:e0119539. [PMID: 25751421 PMCID: PMC4353714 DOI: 10.1371/journal.pone.0119539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Abstract
Integrin α3β1 is highly expressed in both normal and tumorigenic epidermal keratinocytes where it regulates genes that control cellular function and extracellular matrix remodeling during normal and pathological tissue remodeling processes, including wound healing and development of squamous cell carcinoma (SCC). Previous studies identified a role for α3β1 in immortalized and transformed keratinocytes in the regulation of genes that promote tumorigenesis, invasion, and pro-angiogenic crosstalk to endothelial cells. One such gene, matrix metalloproteinase-9 (MMP-9), is induced by α3β1 through a post-transcriptional mechanism of enhanced mRNA stability. In the current study, we sought to investigate the mechanism through which α3β1 controls MMP-9 mRNA stability. First, we utilized a luciferase reporter assay to show that AU-rich elements (AREs) residing within the 3’-untranslated region (3’-UTR) of the MMP-9 mRNA renders the transcript unstable in a manner that is independent of α3β1. Next, we cloned a truncated variant of the MMP-9 mRNA which is generated through usage of an alternative, upstream polyadenylation signal and lacks the 3’-UTR region containing the destabilizing AREs. Using an RNase protection assay to distinguish “long” (full-length 3’-UTR) and “short” (truncated 3’-UTR) MMP-9 mRNA variants, we demonstrated that the shorter, more stable mRNA that lacks 3’-UTR AREs was preferentially generated in α3β1-expressing keratinocytes compared with α3β1-deficient (i.e., α3-null) keratinocytes. Moreover, we determined that α3β1-dependent alternative polyadenylation was acquired by immortalized keratinocytes, as primary neonatal keratinocytes did not display α3β1-dependent differences in the long and short transcripts. Finally, pharmacological inhibition of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway in α3β1-expressing keratinocytes caused a shift towards long variant expression, while Raf-1-mediated activation of ERK in α3-null keratinocytes dramatically enhanced short variant expression, indicating a role for ERK/MAPK signaling in α3β1-mediated selection of the proximal polyadenylation site. These findings identify a novel mode of integrin α3β1-mediated gene regulation through alternative polyadenylation.
Collapse
Affiliation(s)
- Dara S. Missan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Kara Mitchell
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - C. Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Tilley DG, Rockman HA. Role of β-adrenergic receptor signaling and desensitization in heart failure: new concepts and prospects for treatment. Expert Rev Cardiovasc Ther 2014; 4:417-32. [PMID: 16716102 DOI: 10.1586/14779072.4.3.417] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of beta-blockers to antagonize beta-adrenergic receptor signaling in the heart has become a standard method of treatment for heart failure, resulting in positive clinical outcomes alone and in conjunction with other modulators of cardiomyocyte contractility. However, an entire explanation for improved cardiac function in patients using beta-blockers is unknown, and in fact may be quite complicated, considering the numerous intracellular signaling pathways associated with beta-adrenergic receptors. Stimulation of beta-adrenergic receptors during both normal conditions and during heart failure activate several distinct signaling cascades, which influence cardiomyocyte contraction, hypertrophy and apoptosis. This review explores the signaling cascades induced by beta-adrenergic receptor activation in normal and desensitized states to provide new insight into the effective treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Medicine Duke University Medical Center Durham, NC 27710, USA.
| | | |
Collapse
|
4
|
Damgaard CK, Lykke-Andersen J. Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer. Cancer Treat Res 2013; 158:153-80. [PMID: 24222358 DOI: 10.1007/978-3-642-31659-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3' UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly regulate their stability can therefore lead to uncontrolled expression of factors associated with cell proliferation and has been implicated in several human cancers. A number of transfactors that recognize AREs and regulate the translation and degradation of ARE-mRNAs have been identified. These transfactors are regulated by signal transduction pathways, which are often misregulated in cancers. This chapter focuses on the function of ARE-binding proteins with an emphasis on their regulation by signaling pathways and the implications for human cancer.
Collapse
|
5
|
Spasojevic N, Jovanovic P, Dronjak S. Maprotiline treatment differentially influences cardiac β-adrenoreceptors expression under normal and stress conditions. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alterations in cardiac function were observed in antidepressants treated patients and published in several clinical reports. These detected changes could be either a consequence of the treatment or of depression itself, which has already been proved to be a risk factor in heart diseases. In order to determine a possible influence of chronic treatment with norepinephrinergic reuptake inhibitor, maprotiline, on the heart, we investigated gene expression of cardiac β-adrenoceptors both in controls and in animals with signs of depression. The rats were divided into two groups, unstressed controls and those exposed to chronic unpredictable mild stress (CUMS). The groups were further divided into two subgroups, one receiving daily intraperitoneal injections of vehicle (sterile water) and another one maprotiline (10 mg/kg) for four weeks. Tissue samples were collected after the last application. Gene expression of cardiac β1- and β2-adrenoceptor was determined using Real-time RT-PCR analysis. Our results show that in control animals expression of both adrenoreceptors was decreased in the right atria after 4 weeks of maprotiline application. Contrary, the same treatment led to a significant increase in expression of cardiac β1-adrenoceptor in the stressed rats, with no change in the characteristics of β2-adrenoceptor. Our findings might reflect the that molecular mechanisms are underlying factors involved in the development of cardiovascular diseases linked with antidepressant treatment.
Collapse
|
6
|
Menon B, Franzo-Romain M, Damanpour S, Menon KMJ. Luteinizing hormone receptor mRNA down-regulation is mediated through ERK-dependent induction of RNA binding protein. Mol Endocrinol 2010; 25:282-90. [PMID: 21147848 DOI: 10.1210/me.2010-0366] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ligand-induced down-regulation of LH receptor (LHR) expression in the ovaries, at least in part, is regulated by a posttranscriptional process mediated by a specific LH receptor mRNA binding protein (LRBP). The LH-mediated signaling pathways involved in this process were examined in primary cultures of human granulosa cells. Treatment with 10 IU human chorionic gonadotropin (hCG) for 12 h resulted in the down-regulation of LHR mRNA expression while producing an increase in LHR mRNA binding to LRBP as well as a 2-fold increase in LRBP levels. The activation of ERK1/2 pathway in LH-mediated LHR mRNA down-regulation was also established by demonstrating the translocation of ERK1/2 from the cytosol to the nucleus using confocal microcopy. Inhibition of protein kinase A using H-89 or ERK1/2 by U0126 abolished the LH-induced LHR mRNA down-regulation. These treatments also abrogated both the increases in LRBP levels as well as the LHR mRNA binding activity. The abolishment of the hCG-induced increase in LRBP levels and LHR mRNA binding activity was further confirmed by transfecting granulosa cells with ERK1/2 specific small interfering RNA. This treatment also reversed the hCG-induced down-regulation of LHR mRNA. These data show that LH-regulated ERK1/2 signaling is required for the LRBP-mediated down-regulation of LHR mRNA.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0617, USA.
| | | | | | | |
Collapse
|
7
|
David Gerecht PS, Taylor MA, Port JD. Intracellular localization and interaction of mRNA binding proteins as detected by FRET. BMC Cell Biol 2010; 11:69. [PMID: 20843363 PMCID: PMC2949623 DOI: 10.1186/1471-2121-11-69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/15/2010] [Indexed: 02/10/2023] Open
Abstract
Background A number of RNA binding proteins (BPs) bind to A+U rich elements (AREs), commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. Results All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general), or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Conclusions Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as demonstrated herein, colocalization of proteins and proteins and RNA is not always indicative of interaction. To this point, using FRET and immuno-FRET, we have demonstrated that RNA-BPs can visually colocalize without producing a FRET signal. In contrast, proteins that appear to be delimited to one or another intracellular compartment can be shown to interact when those compartments are juxtaposed.
Collapse
Affiliation(s)
- Pamela S David Gerecht
- Department of Medicine/Cardiology and Pharmacology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
8
|
Ufer C, Germack R. Cross-regulation between beta 1- and beta 3-adrenoceptors following chronic beta-adrenergic stimulation in neonatal rat cardiomyocytes. Br J Pharmacol 2010; 158:300-13. [PMID: 19719783 DOI: 10.1111/j.1476-5381.2009.00328.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that beta-adrenoceptors continuously stimulated with noradrenaline induces an increase in beta(3)-adrenoceptors (G alpha(i)PCRs) and a decrease in beta(1)-adrenoceptors (G alpha(s)PCRs) at functional, genomic and protein levels. This compensatory modification induced by noradrenaline is probably one of the consequences of cardiac depression observed in heart disease. Therefore, we investigated further the interaction between beta(1)- and beta(3)-adrenoceptors in neonatal rat cardiomyocytes. EXPERIMENTAL APPROACH Functional studies were performed by cyclic adenosine monophosphate (cAMP) accumulation assays in cells untreated or treated with dobutamine and ICI 118551 (beta(1)-adrenoceptor) or CL-3162436243 (beta(3)-adrenoceptor) for 24 h in the presence or absence of protein kinase inhibitors. Beta-adrenoceptor and protein kinase expression was monitored by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by Western blotting, respectively. KEY RESULTS Chronic beta(1)- or beta(3)-adrenoceptor stimulation reduced beta(1)-adrenoceptor-mediated cAMP accumulation in association with a decrease in beta(1)-adrenoceptor mRNA and protein levels through protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and p38 mitogen-activated protein kinase (p38MAPK) activation. In contrast, both treatments induced an increase in beta(3)-adrenoceptor expression and beta(3)-adrenoceptor-inhibited forskolin response through PKC, extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and p38MAPK phosphorylation, although no beta(3)-adrenoceptor response was observed in untreated cells. ERK1/2 and p38MAPK were activated by both treatments. The modulation of beta(1)- or beta(3)-adrenoceptor function did not require stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) although chronic beta(1)-adrenoceptor stimulation activated SAPK/JNK. Beta(3)-adrenoceptor treatment activated Akt although PI3K was not involved in beta(3)-adrenoceptor up-regulation. CONCLUSION AND IMPLICATIONS We show for the first time that chronic beta(1)- or beta(3)-adrenoceptor stimulation leads to the modulation of beta(1)- and beta(3)-adrenoceptors by a cross-regulation involving PKC, PI3K p38MAPK and MEK/ERK1/2 pathway, and through protein kinase A when beta(1)-adrenoceptors are chronically activated.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medecine Berlin-Charité, Berlin, Germany; Biomedical Research Centre, School of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham, UK
| | | |
Collapse
|
9
|
Meisner NC, Filipowicz W. Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 700:106-23. [PMID: 21627034 DOI: 10.1007/978-1-4419-7823-3_10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression in eukaryotes is subject to extensive regulation at posttranscriptional levels. One of the most important sites of control involves mRNA 3' untranslated regions (3'UTRs), which are recognized by RNA-binding proteins (RBPs) and microRNAs (miRNAs). These factors greatly influence translational efficiency and stability of target mRNAs and often also determine their cellular localization. HuR, a ubiquitously expressed member of the ELAV family of RBPs, has been implicated in regulation of stability and translation of over one hundred mRNAs in mammalian cells. Recent data indicate that some of the effects of HuR can be explained by its interplay with miRNAs. Binding of HuR may suppress the inhibitory effect of miRNAs interacting with the 3'UTR and redirect the repressed mRNA to polysomes for active translation. However, HuR can also synergize with miRNAs. The finding that HuR is able to disengage miRNAs from the repressed mRNA, or render them inactive, provides evidence that miRNA regulation is much more dynamic then originally anticipated. In this chapter we review properties of HuR and describe examples of the cross-talk between the protein and miRNAs, with emphasis on response of the regulation to cellular stress.
Collapse
|
10
|
Farooq F, Balabanian S, Liu X, Holcik M, MacKenzie A. p38 Mitogen-activated protein kinase stabilizes SMN mRNA through RNA binding protein HuR. Hum Mol Genet 2009; 18:4035-45. [DOI: 10.1093/hmg/ddp352] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Vargas NB, Brewer BY, Rogers TB, Wilson GM. Protein kinase C activation stabilizes LDL receptor mRNA via the JNK pathway in HepG2 cells. J Lipid Res 2009; 50:386-397. [PMID: 18936517 PMCID: PMC2638102 DOI: 10.1194/jlr.m800316-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/30/2008] [Indexed: 01/20/2023] Open
Abstract
LDL is the most abundant cholesterol transport vehicle in plasma and a major prognostic indicator of atherosclerosis. Hepatic LDL receptors limit circulating LDL levels, since cholesterol internalized by the liver can be excreted. As such, mechanisms regulating LDL receptor expression in liver cells are appealing targets for cholesterol-lowering therapeutic strategies. Activation of HepG2 cells with phorbol esters enhances LDL receptor mRNA levels through transcriptional and posttranscriptional mechanisms. Here, we show that 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced stabilization of receptor mRNA requires the activity of protein kinase C and is accompanied by activation of the major mitogen activated protein kinase pathways. Inhibitor studies demonstrated that receptor mRNA stabilization is independent of the extracellular signal-regulated kinase or p38(MAPK), but requires activation of the c-Jun N-terminal kinase (JNK). An essential role for JNK in stabilizing receptor mRNA was further confirmed through small interfering RNA (siRNA) experiments and by activating JNK through two protein kinase C-independent mechanisms. Finally, prolonged JNK activation increased steady-state levels of receptor mRNA and protein, and significantly enhanced cellular LDL-binding activity. These data suggest that JNK may play an important role in posttranscriptional control of LDL receptor expression, thus constituting a novel mechanism to enhance plasma LDL clearance by liver cells.
Collapse
Affiliation(s)
- Noelle B Vargas
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Brandy Y Brewer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Terry B Rogers
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201.
| |
Collapse
|
12
|
David PS, Tanveer R, Port JD. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. RNA (NEW YORK, N.Y.) 2007; 13:1453-68. [PMID: 17626845 PMCID: PMC1950754 DOI: 10.1261/rna.501707] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3' UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein-protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover.
Collapse
Affiliation(s)
- Pamela S David
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
13
|
Eberhardt W, Doller A, Akool ES, Pfeilschifter J. Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther 2007; 114:56-73. [PMID: 17320967 DOI: 10.1016/j.pharmthera.2007.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 12/21/2022]
Abstract
During the last decade evidence has accumulated that modulation of mRNA stability plays a central role in cellular homeostasis, including cell differentiation, proliferation and adaptation to external stimuli. The functional relevance of posttranscriptional gene regulation is highlighted by many pathologies, wherein occurrence tightly correlates with a dysregulation in mRNA stability, including chronic inflammation, cardiovascular diseases and cancer. Most commonly, the cis-regulatory elements of mRNA decay are represented by the adenylate- and uridylate (AU)-rich elements (ARE) which are specifically bound by trans-acting RNA binding proteins, which finally determine whether mRNA decay is delayed or facilitated. Regulation of mRNA decay by RNA stabilizing and RNA destabilizing factors is furthermore controlled by different intrinsic and environmental stimuli. The modulation of mRNA binding proteins, therefore, illuminates a promising approach for the pharmacotherapy of those key pathologies mentioned above and characterized by a posttranscriptional dysregulation. Most promisingly, intracellular trafficking of many of the mRNA stability regulating factors is, in turn, regulated by some major signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade, the AMP-activated kinase (AMPK) and the protein kinase (PK) C (PKC) family. In this review, we present timely examples of genes regulated by mRNA stability with a special focus on signaling pathways involved in the ARE-dependent mRNA decay. A better understanding of these processes may form the basis for the development of novel therapeutics to treat major human diseases.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
14
|
Steinle JJ, Lashbrook BL. Cervical sympathectomy regulates expression of key angiogenic factors in the rat choroid. Exp Eye Res 2006; 83:16-23. [PMID: 16487969 DOI: 10.1016/j.exer.2005.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/01/2005] [Accepted: 11/14/2005] [Indexed: 12/11/2022]
Abstract
Age-related macular degeneration is the leading cause of blindness in people over the age of 55. In addition to an increased risk of vision loss due to macular degeneration, aging results in a substantial loss of sympathetic nerve activity. We have previously shown that loss of sympathetic nerve activity to the eye causes significant remodeling of the choroidal vasculature. The hypothesis of the present study was that the choroidal remodeling noted after sympathectomy was due to alterations in key angiogenic growth factors. To test this hypothesis, female Sprague-Dawley rats underwent superior cervical ganglionectomy, which eliminates all sympathetic innervation to the eye. Six weeks after surgery, eyes were removed, and the choroidal tissue was processed for real-time PCR to measure gene expression and western blot analysis to assess protein expression. Gene and protein expression were significantly increased for vascular endothelial growth factor (VEGF) and pigment epithelial-derived growth factor (PEDF) in the sympathectomized eye, as compared to the contralateral eye (P < 0.05). Protein expression was increased 4-fold for angiopoietin1, with no change in steady-state gene expression. For both p53 and placental growth factor, steady-state mRNA levels were significantly decreased, while protein expression was significantly increased. Protein expression for Flt-1 was decreased significantly, with reduced gene expression. These results suggest that the vascular remodeling noted in the choroidal blood vessels after sympathectomy is a complex process involving numerous growth factor families. Therefore, modulation of sympathetic nerve activity may be a suitable mechanism to prevent the vascular growth associated with macular degeneration.
Collapse
Affiliation(s)
- Jena J Steinle
- Department of Physiology, Southern Illinois University School of Medicine, 1135 Lincoln Drive, LSIII, Room 2071, Carbondale, IL, USA.
| | | |
Collapse
|
15
|
Yamaguchi K, Lee SH, Eling TE, Baek SJ. A novel peroxisome proliferator–activated receptor γ ligand, MCC-555, induces apoptosis via posttranscriptional regulation of NAG-1 in colorectal cancer cells. Mol Cancer Ther 2006; 5:1352-61. [PMID: 16731769 DOI: 10.1158/1535-7163.mct-05-0528] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis and/or differentiation induction caused by the peroxisome proliferator-activated receptor gamma (PPARgamma) ligand is a promising approach to cancer therapy. The thiazolidinedione derivative MCC-555 has an apoptotic activity in human colorectal cancer cells, accompanied by up-regulation of a proapoptotic nonsteroidal anti-inflammatory drug-activated gene (NAG-1) in a PPARgamma-independent manner. Treatment with MCC-555 resulted in the induction of NAG-1 expression and apoptosis in HCT-116 cells. Down-regulation of NAG-1 by small interfering RNA suppressed MCC-555-induced apoptosis. MCC-555 was found to affect NAG-1 mRNA stability. To further define the underlying mechanism of RNA stability affected by MCC-555, we cloned the 3'-untranslated region (3'UTR) of human NAG-1 mRNA, which contains four copies of an AU-rich element (ARE), downstream from the luciferase gene. The reporter activity was reduced to approximately 70% by inserting the 3'UTR. In addition, deletion of ARE sequences in the 3'UTR or MCC-555 treatment substantially restored activity. This effect of MCC-555 on the ARE-mediated mRNA degradation was inhibited by extracellular signal-regulated kinase (ERK) pathway inhibitors. Subsequently, rapid phosphorylation of ERK1/2 by MCC-555 treatment was detected. Moreover, ERK small interfering RNA suppressed MCC-555-induced NAG-1 expression. These results suggest that ARE sequences in the 3'UTR of the NAG-1 gene contribute to mRNA degradation and ERK1/2 phosphorylation is responsible for the stabilization of NAG-1 mRNA. These findings may provide a novel explanation for the antitumorigenic and/or proapoptotic action of MCC-555 in human colorectal cancer and the ability of pharmacologic approaches to be used against diseases caused by alterations of RNA stability.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
16
|
Martinez JM, Sali T, Okazaki R, Anna C, Hollingshead M, Hose C, Monks A, Walker NJ, Baek SJ, Eling TE. Drug-induced expression of nonsteroidal anti-inflammatory drug-activated gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor, inhibits tumor growth. J Pharmacol Exp Ther 2006; 318:899-906. [PMID: 16714403 DOI: 10.1124/jpet.105.100081] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A common in vitro response for many chemopreventive and antitumor agents, including some cyclooxygenase inhibitors, is the increased expression of nonsteroidal anti-inflammatory drug-activated gene (NAG)-1/macrophage inhibitory cytokine (MIC)-1/prostate-derived factor (PDF). The experimental anticancer drug 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F203) was a potent inducer of NAG-1 expression, and in MCF-7 cells, it inhibited cell growth and induced apoptosis. NAG-1 small interfering RNA blocked NAG-1 expression and 5F203-induced apoptosis in MCF-7 cells, indicating that NAG-1 may mediate the apoptosis and anticancer activity. One mechanism by which 5F203 increases NAG-1 expression is by increasing the stability of NAG-1 mRNA, dependent of de novo protein synthesis. Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was increased by 5F203, and inhibition of ERK1/2 phosphorylation abolished the induction of NAG-1 protein expression and increased the stability of NAG-1 mRNA. Thus, 5F203 regulates NAG-1 expression by a unique mechanism compared with other drugs. A mouse orthotopic mammary tumor model was used to determine whether 5F203 increased NAG-1 expression in vivo and suppressed tumor growth. Treatment of the mice with Phortress, the prodrug of 5F203, increased the in vivo expression of NAG-1 as measured by real-time reverse transcription-polymerase chain reaction from RNA obtained by needle biopsy, and the expression correlated with a reduction of tumor volume. These results confirm that NAG-1 suppresses tumor growth, and its in vivo expression can be controlled by treating mice with anticancer drugs, such as Phortress. Drugs that target NAG-1 could lead to a unique strategy for the development of chemotherapeutic and chemopreventive agents.
Collapse
Affiliation(s)
- Jeanelle M Martinez
- Laboratories of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kwon HM, Choi YJ, Jeong YJ, Kang SW, Kang IJ, Lim SS, Kang YH. Anti-inflammatory inhibition of endothelial cell adhesion molecule expression by flavone derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:5150-7. [PMID: 15969490 DOI: 10.1021/jf047854d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Endothelial expression of cell adhesion molecules (CAM) including VCAM-1, E-selectin, and PECAM-1 plays a leading role in atherosclerosis. Phenolic flavones have been shown to have an anti-inflammatory property. This study examines whether 3',4'-dimethoxy-7-hydroxyflavone (methoxyflavone) and 2',3',7-trihydroxyflavone (hydroxyflavone) inhibited monocyte adhesion to TNF-alpha-activated endothelium via reduction of CAM expression in human umbilical vein endothelial cells (HUVEC). In stimulated HUVEC the expression of VCAM-1 and E-selectin was enhanced with increasing mRNA levels. Methoxyflavone markedly interfered with the THP-1 monocyte adhesion to TNF-alpha-stimulated HUVEC. At concentrations of > or =25 microM, methoxyflavone blocked the induction of VCAM-1 but not that of E-selectin on the activated HUVEC. Immunocytochemical staining showed that methoxyflavone modestly inhibited PECAM-1 expression induced by TNF-alpha. In contrast, hydroxyflavone minimally inhibited TNF-alpha-stimulated E-selectin expression without affecting VCAM-1 level. The inhibitory effect of methoxyflavone on THP-1 adhesion to HUVEC appears to be greater than that of hydroxyflavone, most likely due to a greater inhibition of CAM expression. Thus, some flavone derivatives containing methoxy groups may have therapeutic potential attenuating inflammatory response-related atherosclerosis.
Collapse
Affiliation(s)
- Hyang-Mi Kwon
- Department of Food and Nutrition and Silver Biotechnology Research Center, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Baudouin-Legros M, Hinzpeter A, Jaulmes A, Brouillard F, Costes B, Fanen P, Edelman A. Cell-specific posttranscriptional regulation of CFTR gene expression via influence of MAPK cascades on 3'UTR part of transcripts. Am J Physiol Cell Physiol 2005; 289:C1240-50. [PMID: 15944206 DOI: 10.1152/ajpcell.00595.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, which contains the mutations responsible for CF, is regulated by cytokines (TNF-alpha and IL-1beta) in a cell-specific manner. TNF-alpha decreases CFTR mRNA in human colon cell lines (HT-29), but not in pulmonary cell lines (Calu-3), and IL-1beta increases it only in Calu-3 cells. We looked for the cytokine-induced posttranscriptional regulation of CFTR gene expression and studied the modulation of CFTR mRNA stability linked to its 3' untranslated sequence (3'UTR) in HT-29 and Calu-3 cells. The stability of CFTR mRNA was analyzed by Northern blot after in vitro incubation of total RNAs from CFTR-expressing cells with cytosolic proteins extracted from control or cytokine-treated HT-29 and Calu-3 cells. CFTR mRNA was degraded only by extracts of TNF-alpha-treated HT-29 cells and not by cytosolic proteins from untreated or IL-1beta-treated HT-29 cells. In contrast, extracts of untreated Calu-3 cells enhanced CFTR mRNA degradation, and IL-1beta treatment inhibited this; TNF-alpha had no significant effect. The 3'UTR part of CFTR mRNA was found to be required for this posttranscriptional regulation. The 5' part of the 3'UTR (the 217 first bases), which contains two AUUUA sequences, was implicated in CFTR mRNA destabilization and the following 136 bases, containing several C-repeats in U-rich environment, in its protection. The proteins, which reacted with the U- and C-repeats of CFTR mRNA 3'UTR, were mainly controlled by stimulation of the p42/p44 and p38 MAP kinase cascades with interaction between these pathways. This posttranscriptional control of gene expression is a common feature of CFTR and many proteins of inflammation.
Collapse
Affiliation(s)
- Maryvonne Baudouin-Legros
- Institut National de la Santé et de la Recherche Médicale U467, Faculté de Médecine Necker, 156 rue de Vaugirard, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|