1
|
Wu Y, Riehle A, Pollmeier B, Kadow S, Schumacher F, Drab M, Kleuser B, Gulbins E, Grassmé H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis (Edinb) 2024; 147:102493. [PMID: 38547568 DOI: 10.1016/j.tube.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 06/14/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.
Collapse
Affiliation(s)
- Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Riehle
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Pollmeier
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | - Marek Drab
- Unit of Nanostructural Biointeractions, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114, Wroclaw, Poland
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
2
|
Katariya MM, Snee M, Tunnicliffe RB, Kavanagh ME, Boshoff HIM, Amadi CN, Levy CW, Munro AW, Abell C, Leys D, Coyne AG, McLean KJ. Structure Based Discovery of Inhibitors of CYP125 and CYP142 from Mycobacterium tuberculosis. Chemistry 2023; 29:e202203868. [PMID: 36912255 PMCID: PMC10205683 DOI: 10.1002/chem.202203868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Mycobacterium tuberculosis (Mtb) was responsible for approximately 1.6 million deaths in 2021. With the emergence of extensive drug resistance, novel therapeutic agents are urgently needed, and continued drug discovery efforts required. Host-derived lipids such as cholesterol not only support Mtb growth, but are also suspected to function in immunomodulation, with links to persistence and immune evasion. Mtb cytochrome P450 (CYP) enzymes facilitate key steps in lipid catabolism and thus present potential targets for inhibition. Here we present a series of compounds based on an ethyl 5-(pyridin-4-yl)-1H-indole-2-carboxylate pharmacophore which bind strongly to both Mtb cholesterol oxidases CYP125 and CYP142. Using a structure-guided approach, combined with biophysical characterization, compounds with micromolar range in-cell activity against clinically relevant drug-resistant isolates were obtained. These will incite further development of much-needed additional treatment options and provide routes to probe the role of CYP125 and CYP142 in Mtb pathogenesis.
Collapse
Affiliation(s)
- Mona M. Katariya
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Matthew Snee
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Richard B. Tunnicliffe
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Madeline E. Kavanagh
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of ChemistryThe Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCA 92-37USA
| | - Helena I. M. Boshoff
- Tuberculosis Research SectionNational Institute of Allergy and Infectious DiseasesLaboratory of Clinical Immunology and MicrobiologyNational Institutes of HealthBethesdaMD 20892USA
| | - Cecilia N. Amadi
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Colin W. Levy
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Andrew W. Munro
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Chris Abell
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - David Leys
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Anthony G. Coyne
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Kirsty J. McLean
- Department of Biological and Geographical SciencesUniversity of HuddersfieldSchool of Applied SciencesQueensgateHuddersfieldHD1 3DHUK
| |
Collapse
|
3
|
Dadhich R, Kapoor S. Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. J Membr Biol 2020; 253:399-423. [PMID: 32833058 PMCID: PMC7443855 DOI: 10.1007/s00232-020-00135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Lipids form an integral, structural, and functional part of all life forms. They play a significant role in various cellular processes such as membrane fusion, fission, endocytosis, protein trafficking, and protein functions. Interestingly, recent studies have revealed their more impactful and critical involvement in infectious diseases, starting with the manipulation of the host membrane to facilitate pathogenic entry. Thereafter, pathogens recruit specific host lipids for the maintenance of favorable intracellular niche to augment their survival and proliferation. In this review, we showcase the lipid-mediated host pathogen interplay in context of life-threatening viral and bacterial diseases including the recent SARS-CoV-2 infection. We evaluate the emergent lipid-centric approaches adopted by these pathogens, while delineating the alterations in the composition and organization of the cell membrane within the host, as well as the pathogen. Lastly, crucial nexus points in their interaction landscape for therapeutic interventions are identified. Lipids act as critical determinants of bacterial and viral pathogenesis by altering the host cell membrane structure and functions.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
4
|
Anand PK. Lipids, inflammasomes, metabolism, and disease. Immunol Rev 2020; 297:108-122. [PMID: 32562313 DOI: 10.1111/imr.12891] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammasomes are multi-protein complexes that regulate the cleavage of cysteine protease caspase-1, secretion of inflammatory cytokines, and induction of inflammatory cell death, pyroptosis. Several members of the nod-like receptor family assemble inflammasome in response to specific ligands. An exception to this is the NLRP3 inflammasome which is activated by structurally diverse entities. Recent studies have suggested that NLRP3 might be a sensor of cellular homeostasis, and any perturbation in distinct metabolic pathways results in the activation of this inflammasome. Lipid metabolism is exceedingly important in maintaining cellular homeostasis, and it is recognized that cells and tissues undergo extensive lipid remodeling during activation and disease. Some lipids are involved in instigating chronic inflammatory diseases, and new studies have highlighted critical upstream roles for lipids, particularly cholesterol, in regulating inflammasome activation implying key functions for inflammasomes in diseases with defective lipid metabolism. The focus of this review is to highlight how lipids regulate inflammasome activation and how this leads to the progression of inflammatory diseases. The key roles of cholesterol metabolism in the activation of inflammasomes have been comprehensively discussed. Besides, the roles of oxysterols, fatty acids, phospholipids, and lipid second messengers are also summarized in the context of inflammasomes. The overriding theme is that lipid metabolism has numerous but complex functions in inflammasome activation. A detailed understanding of this area will help us develop therapeutic interventions for diseases where dysregulated lipid metabolism is the underlying cause.
Collapse
Affiliation(s)
- Paras K Anand
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
5
|
Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous Effects of Statin Therapy: A Review of Literature. Cureus 2020; 12:e7404. [PMID: 32337130 PMCID: PMC7182050 DOI: 10.7759/cureus.7404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a chronic infection caused by Mycobacterium tuberculosis (M. TB). It is transmitted through respiratory droplets. Increased cholesterol level is a predisposing factor for TB. M. TB uses cholesterol in the host macrophage membranes to bind and enter the macrophages. Statins are the drugs that are prescribed to hyperlipidemic patients to maintain their lipid levels in the normal range, thereby reducing the risk of stroke and cardiovascular events. Moreover, statins aid in reducing the levels of cholesterol in human macrophages. Therefore, a reduction in the membrane cholesterol minimizes the entry of TB pathogen inside macrophages. Furthermore, acting as vitamin D3 analogs and positively influencing pancreatic beta-cell function in a chronic diabetic state, statins minimize the occurrence of M. TB infection among diabetic population as well. This review aims to provide a comprehensive detail of all in vitro, in vivo, and retrospective studies that investigated the effects of statins in relation to the prevention or treatment of TB infection.
Collapse
Affiliation(s)
- Faryal Tahir
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Taha Bin Arif
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Jawad Ahmed
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Syed Raza Shah
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Muhammad Khalid
- Cardiology, Kansas City University of Medicine and Biosciences, Joplin, USA.,Cardiology, Ascension Via Christi Hospital, Pittsburg, USA
| |
Collapse
|
6
|
SHARMA SHALINI, SINGH SHOORVIR, GAUTAM AJAYKUMAR, MISHRA SUMITRANJAN, GUPTA SAURABH, CHAUBEY KUNDANKUMAR, SANGWAN NIRMAL. Assessment of lipid profile and acute phase protein in Mycobacterium avium subspecies paratuberculosis infected and healthy goats. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v89i12.96621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Present study is based on 24 goats that were located in goat herds endemically infected with Mycobacterium avium subspecies paratuberculosis (MAP) infection. Objective of the study was to access the variations in the lipid profile and acute phase proteins in the serum samples driven from non-infected (negative and physically healthy) and infected (positive and physically weak) goats with MAP infection, cause of incurable Johne’s disease (JD) in domestic livestock. Infected goats had significantly higher cholesterol and albumin levels and significantly ‘reduced level’ of high density lipoprotein (HDL) and ‘reduced level’ of the density of lipoproteins (LDL) in comparison to non-infected goats. Lipid profile and acute phase proteins could be further explored for their significance in pathogenesis and diagnosis of JD in domestic livestock including goats.
Collapse
|
7
|
Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 2019; 49:269-283. [PMID: 31228566 DOI: 10.1016/j.mito.2019.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial dynamics shape the mitochondrial network and contribute to mitochondrial function and quality control. Mitochondrial fusion and division are integrated into diverse cellular functions and respond to changes in cell physiology. Imbalanced mitochondrial dynamics are associated with a range of diseases that are broadly characterized by impaired mitochondrial function and increased cell death. In various disease models, modulating mitochondrial fusion and division with either small molecules or genetic approaches has improved function. Although additional mechanistic understanding of mitochondrial fusion and division will be critical to inform further therapeutic approaches, mitochondrial dynamics represent a powerful therapeutic target in a wide range of human diseases.
Collapse
|
8
|
Non-antibiotic adjunctive therapy: A promising approach to fight tuberculosis. Pharmacol Res 2019; 146:104289. [PMID: 31152788 DOI: 10.1016/j.phrs.2019.104289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is currently a clinical and public health problem. There is a concern about the emergence and development of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) species. Additionally, the lack of effective vaccines is another limitation to control the related infections. To overcome these problems various approaches have been pursued such as finding novel drug candidates with a new mechanism of action or repurposing conventional antibiotics. However, these strategies are still far from clinical application. Hence, the use of adjunctive therapy has been suggested for TB. In this paper, we review non-antibiotic adjunctive treatment options for TB. Natural products, vitamins, micronutrients, and trace elementals, as well as non-antibiotic drugs, are examples of agents which have been used as adjunctive therapies. The use of these adjunctive therapies has been shown to improve disease outcomes and reduce the adverse effects of antibiotic drugs. Employing these agents, either alone or in combination with antibiotics, might be considered as a promising approach to control TB infections and achieve better clinical outcomes. However, supportive evidence from randomized controlled trials is still scant and merits further investigations.
Collapse
|
9
|
Carranza C, Chavez-Galan L. Several Routes to the Same Destination: Inhibition of Phagosome-Lysosome Fusion by Mycobacterium tuberculosis. Am J Med Sci 2019; 357:184-194. [DOI: 10.1016/j.amjms.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
|
10
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
11
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
12
|
de la Roche M, Hamilton C, Mortensen R, Jeyaprakash AA, Ghosh S, Anand PK. Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation. J Cell Biol 2018; 217:3560-3576. [PMID: 30054450 PMCID: PMC6168277 DOI: 10.1083/jcb.201709057] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/19/2017] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Cellular lipid metabolism is being increasingly recognized to influence inflammatory responses. de la Roche et al. reveal that cellular sterol trafficking to the endoplasmic reticulum is required for the assembly and the activation of the NLRP3 inflammasome, thereby coupling lipid homeostasis to innate immune signaling. Cellular lipids determine membrane integrity and fluidity and are being increasingly recognized to influence immune responses. Cellular cholesterol requirements are fulfilled through biosynthesis and uptake programs. In an intricate pathway involving the lysosomal cholesterol transporter NPC1, the sterol gets unequally distributed across intracellular compartments. By using pharmacological and genetic approaches targeting NPC1, we reveal that blockade of cholesterol trafficking through the late endosome–lysosome pathway blunts NLRP3 inflammasome activation. Altered cholesterol localization at the plasma membrane (PM) in Npc1−/− cells abrogated AKT–mTOR signaling by TLR4. However, the inability to activate the NLRP3 inflammasome was traced to perturbed cholesterol trafficking to the ER but not the PM. Accordingly, acute cholesterol depletion in the ER membranes by statins abrogated casp-1 activation and IL-1β secretion and ablated NLRP3 inflammasome assembly. By contrast, assembly and activation of the AIM2 inflammasome progressed unrestricted. Together, this study reveals ER sterol levels as a metabolic rheostat for the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Marianne de la Roche
- Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - Claire Hamilton
- Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - Rebecca Mortensen
- Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Sanjay Ghosh
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paras K Anand
- Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
13
|
Lipid Profile in Tuberculosis Patients with and without Human Immunodeficiency Virus Infection. Int J Chronic Dis 2017; 2017:3843291. [PMID: 29226217 PMCID: PMC5687143 DOI: 10.1155/2017/3843291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background Understanding whether the preceding low lipid profile leads to active tuberculosis (TB) or active TB leads to low lipid profile is crucial. Methods Lipid profile concentrations were determined from 159 study participants composed of 93 active TB patients [44 HIV coinfected (HIV+TB+) and 49 HIV negative (HIV−TB+)], 41 tuberculin skin test (TST) positive cases [17 HIV coinfected (HIV+TST+) and 24 HIV negative (HIV−TST+)], and 25 healthy controls (HIV−TST−). Cobas Integra 400 Plus was used to determine lipid profiles concentration level. Results The concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in HIV−TB+ patients were significantly lower compared to HIV−TST+ and to HIV−TST− individuals. Similarly, the concentrations of the TC, LDL-C, and HDL-C in HIV+TB+ were significantly lower compared to HIV−TB+ patients. After the 6 months of anti-TB treatment (ATT), the concentration levels of TC, LDL-C, and HDL-C in HIV−TB+ patients were higher compared to the baseline concentration levels, while they were not significantly different compared to that of HIV−TST+ concentration. Conclusion The low concentration of lipid profiles in TB patients may be a consequence of the disease and significantly increased in TB patients after treatment.
Collapse
|
14
|
Asalla S, Mohareer K, Banerjee S. Small Molecule Mediated Restoration of Mitochondrial Function Augments Anti-Mycobacterial Activity of Human Macrophages Subjected to Cholesterol Induced Asymptomatic Dyslipidemia. Front Cell Infect Microbiol 2017; 7:439. [PMID: 29067283 PMCID: PMC5641336 DOI: 10.3389/fcimb.2017.00439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection manifests into tuberculosis (TB) in a small fraction of the infected population that comprises the TB susceptible group. Identifying the factors potentiating susceptibility to TB persistence is one of the prime agenda of TB control programs. Recently, WHO recognized diabetes as a risk factor for TB disease progression. The closely related pathological state of metabolic imbalance, dyslipidemia, is yet another emerging risk factor involving deregulation in host immune responses. While high cholesterol levels are clinically proven condition for perturbations in cardiac health, a significant fraction of population these days suffer from borderline risk cholesterol profiles. This apparently healthy population is susceptible to various health risks placing them in the "pre-disease" range. Our study focuses on determining the role of such asymptomatic dyslipidemia as a potential risk factor for susceptibility to TB persistence. Macrophages exposed to sub-pathological levels of cholesterol for chronic period, besides impaired release of TNF-α, could not clear intracellular pathogenic mycobacteria effectively as compared to the unexposed cells. These cells also allowed persistence of opportunistic mycobacterial infection by M. avium and M. bovis BCG, indicating highly compromised immune response. The cholesterol-treated macrophages developed a foamy phenotype with a significant increase in intracellular lipid-bodies prior to M.tb infection, potentially contributing to pre-disease state for tuberculosis infection. The foamy phenotype, known to support M.tb infection, increased several fold upon infection in these cells. Additionally, mitochondrial morphology and function were perturbed, more so during infection in cholesterol treated cells. Pharmacological supplementation with small molecule M1 that restored mitochondrial structural and functional integrity limited M.tb survival more effectively in cholesterol exposed macrophages. Mechanistically, M1 molecule promoted clearance of mycobacteria by reducing total cellular lipid content and restoring mitochondrial morphology and function to its steady state. We further supported our observations by infection assays in PBMC-derived macrophages from clinically healthy volunteers with borderline risk cholesterol profiles. With these observations, we propose that prolonged exposure to sub-pathological cholesterol can lead to asymptomatic susceptibility to M.tb persistence. Use of small molecules like M1 sets yet another strategy for host-directed therapy where re-functioning of mitochondria in cholesterol abused macrophages can improve M.tb clearance.
Collapse
Affiliation(s)
- Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
15
|
Statin Use Is Associated With a Lower Risk of TB. Chest 2017; 152:598-606. [PMID: 28479115 DOI: 10.1016/j.chest.2017.04.170] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/31/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Statins are widely used to lower cholesterol levels and cardiovascular risk. Further, studies have shown that statins may decrease the risks of infectious diseases and infection-related mortality; however, the association between statin use and active TB disease remains unclear. METHODS Using the Taiwan National Health Insurance Research Database, we conducted a nationwide population-based study. Patients taking statins between 2000 and 2013, without antecedent TB disease, were included. Data from 102,424 statin users and 202,718 age-, sex-, and enrollment date-matched subjects were analyzed. The two cohorts were monitored until December 31, 2013, for incident TB disease. The definition of TB disease was validated using the claims database of Taipei Veterans General Hospital. RESULTS The statin and matched cohorts were observed for 571,568 and 1,027,385 person-years, respectively. Of the total 305,142 subjects, 1,264 (0.41%) developed subsequent TB disease. Validation study confirmed the accuracy of the definition of TB disease (sensitivity, 96.3%), with excellent interobserver agreement (κ = 1.00). Multivariate analysis revealed a reduced risk of TB disease among the statin cohort (hazard ratio [HR], 0.53; 95% CI, 0.47-0.61; P < .001). Compared with the matched group, statin use showed a dose-response relationship with the incident TB disease risk (<180 cumulative defined daily doses [cDDDs]: HR, 1.06; 95% CI, 0.91-1.24; P = .477; 180 to 365 cDDDs: HR, 0.57; 95% CI, 0.45-0.72; P < .001; >365 cDDDs: HR, 0.27; 95% CI, 0.22-0.33; P < .001). CONCLUSIONS Statin use associates with a lower risk of incident TB disease.
Collapse
|
16
|
Meena PR, Monu, Meena LS. Fibronectin binding protein and Ca 2+ play an access key role to mediate pathogenesis in Mycobacterium tuberculosis: An overview. Biotechnol Appl Biochem 2017; 63:820-826. [PMID: 26275158 DOI: 10.1002/bab.1434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/09/2015] [Indexed: 12/31/2022]
Abstract
The anomalous distribution of adhesive proteins throughout on the cell surface of the Mycobacterium tuberculosis H37 Rv and their contribution in cell surface adhesion and host-pathogen interaction remain elusive. The completion of M. tuberculosis H37 Rv genome sequence analysis gives some interesting information about polymorphic GC-rich repetitive sequence (PGRS) subfamily of M. tuberculosis that encodes fibronectin binding proteins (FnBP), which have been extensively studied, but the function in the pathogenesis of most of these proteins remains unknown and unclear. This review addresses the M. tuberculosis entry mechanism in the host cell. In particular, an effort has been made to focus on several aspects, (a) association of FnBP encodes by PE_PGRS protein family of M. tuberculosis during host-pathogen interactions. (b) Effect of calcium ions in and outside of the host cell is overriding to maintenance of calcium trafficking in phagocytosis. Furthermore, FnBP may be a potential source of antigenic variation that participating in evoking immune response. M. tuberculosis entry mechanism does not have a major influence alone, involvement of calcium ions, perhaps shed light on host-pathogen interaction relationship, and could open up new avenues for development of novel drug by targeting M. tuberculosis FnBP and blockade of selective adhesions could be useful for therapeutics.
Collapse
Affiliation(s)
- Prem Raj Meena
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi, India
| | - Monu
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi, India
| |
Collapse
|
17
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
18
|
Soh AZ, Chee CBE, Wang YT, Yuan JM, Koh WP. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese. J Nutr 2016; 146:1093-100. [PMID: 27075903 PMCID: PMC4841926 DOI: 10.3945/jn.115.228049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental studies suggest that cholesterol enhances the intracellular survival of Mycobacterium tuberculosis, whereas marine ω-3 (n-3) and ω-6 (n-6) fatty acids (FAs) may modulate responses to M. tuberculosis in macrophage and animal models. However, there are no epidemiologic data from prospective studies of the relation between dietary cholesterol and FAs and the risk of developing active tuberculosis. OBJECTIVE We aimed to investigate the relation between dietary intake of cholesterol and FAs and the risk of active tuberculosis in a prospective cohort in Singapore. METHODS We analyzed data from the Singapore Chinese Health Study, a cohort of 63,257 Chinese men and women aged 45-74 y recruited between 1993 and 1998. Dietary intake of cholesterol and FAs was determined with the use of a validated food-frequency questionnaire. Incident cases of active tuberculosis were identified via linkage with the nationwide tuberculosis registry. Analysis was performed with the use of Cox proportional hazards models. RESULTS As of 31 December 2013, 1136 incident cases of active tuberculosis were identified. Dietary cholesterol was positively associated with an increased risk of active tuberculosis in a dose-dependent manner. Compared with the lowest intake quartile, the HR was 1.22 (95% CI: 1.00, 1.47) for the highest quartile (P-trend = 0.04). Conversely, dietary marine n-3 and n-6 FAs were associated with a reduced risk of active tuberculosis in a dose-dependent manner. Compared with the lowest quartile, the HR for the highest intake quartile was 0.77 (95% CI: 0.62, 0.95) for marine n-3 FAs (P-trend = 0.01) and 0.82 (95% CI: 0.68, 0.98) for n-6 FAs (P-trend = 0.03). There was no association with saturated, monounsaturated, or plant-based n-3 FA intake. CONCLUSION Dietary intake of cholesterol may increase the risk of active tuberculosis, whereas marine n-3 and n-6 FAs may reduce the risk of active tuberculosis in the Chinese population.
Collapse
Affiliation(s)
- Avril Z Soh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Cynthia BE Chee
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Yee-Tang Wang
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; and
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
19
|
Lai CC, Lee MTG, Lee SH, Hsu WT, Chang SS, Chen SC, Lee CC. Statin treatment is associated with a decreased risk of active tuberculosis: an analysis of a nationally representative cohort. Thorax 2016; 71:646-51. [DOI: 10.1136/thoraxjnl-2015-207052] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 02/03/2016] [Indexed: 01/17/2023]
|
20
|
George R, Cavalcante R, Jr CC, Marques E, Waugh JB, Unlap MT. Use of siRNA molecular beacons to detect and attenuate mycobacterial infection in macrophages. World J Exp Med 2015; 5:164-181. [PMID: 26309818 PMCID: PMC4543811 DOI: 10.5493/wjem.v5.i3.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis (MTB). Once the pathogen enters the body, it subverts the host immune defenses and thrives for extended periods of time within the host macrophages in the lung granulomas, a condition called latent tuberculosis (LTB). Persons with LTB are prone to reactivation of the disease when the body’s immunity is compromised. Currently there are no reliable and effective diagnosis and treatment options for LTB, which necessitates new research in this area. The mycobacterial proteins and genes mediating the adaptive responses inside the macrophage is largely yet to be determined. Recently, it has been shown that the mce operon genes are critical for host cell invasion by the mycobacterium and for establishing a persistent infection in both in vitro and in mouse models of tuberculosis. The YrbE and Mce proteins which are encoded by the MTB mce operons display high degrees of homology to the permeases and the surface binding protein of the ABC transports, respectively. Similarities in structure and cell surface location impute a role in cell invasion at cholesterol rich regions and immunomodulation. The mce4 operon is also thought to encode a cholesterol transport system that enables the mycobacterium to derive both energy and carbon from the host membrane lipids and possibly generating virulence mediating metabolites, thus enabling the bacteria in its long term survival within the granuloma. Various deletion mutation studies involving individual or whole mce operon genes have shown to be conferring varying degrees of attenuation of infectivity or at times hypervirulence to the host MTB, with the deletion of mce4A operon gene conferring the greatest degree of attenuation of virulence. Antisense technology using synthetic siRNAs has been used in knocking down genes in bacteria and over the years this has evolved into a powerful tool for elucidating the roles of various genes mediating infectivity and survival in mycobacteria. Molecular beacons are a newer class of antisense RNA tagged with a fluorophore/quencher pair and their use for in vivo detection and knockdown of mRNA is rapidly gaining popularity.
Collapse
|
21
|
Syal K, Chakraborty S, Bhattacharyya R, Banerjee D. Combined inhalation and oral supplementation of Vitamin A and Vitamin D: A possible prevention and therapy for tuberculosis. Med Hypotheses 2015; 84:199-203. [DOI: 10.1016/j.mehy.2014.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/26/2014] [Indexed: 11/25/2022]
|
22
|
Banerjee D, Bhattacharyya R. Statin therapy may prevent development of tuberculosis in diabetic state. Med Hypotheses 2014; 83:88-91. [PMID: 24767940 DOI: 10.1016/j.mehy.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 04/01/2014] [Indexed: 01/10/2023]
Abstract
Host cholesterol is widely getting recognized as an important factor in the pathogenesis of tuberculosis in multiple ways. Therefore it is logically expected that cholesterol reduction by statins is going to have a positive outcome in the context of tuberculosis management. But at the present moment statin therapy in non diabetic individuals is believed to pose a small risk for development of diabetes mellitus, a prevalent disease throughout the globe that is known to be associated with tuberculosis infection. Consequently, in diabetic individuals statins are commonly prescribed drugs for multiple positive outcomes. Therefore it seems that statin therapy in diabetes mellitus has the potential to prevent the increased occurrence of tuberculosis in diabetic state.
Collapse
Affiliation(s)
- Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Rajasri Bhattacharyya
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| |
Collapse
|
23
|
Abuhammad A, Fullam E, Lowe ED, Staunton D, Kawamura A, Westwood IM, Bhakta S, Garner AC, Wilson DL, Seden PT, Davies SG, Russell AJ, Garman EF, Sim E. Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages. PLoS One 2012; 7:e52790. [PMID: 23285185 PMCID: PMC3532304 DOI: 10.1371/journal.pone.0052790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Pharmacy, University of Jordan, Amman, Jordan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Staunton
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - David L. Wilson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Peter T. Seden
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen G. Davies
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Science, Engineering and Computing Kingston University, Kingston, United Kingdom
| |
Collapse
|
24
|
Uptake and persistence of Mycobacterium avium subsp. paratuberculosis in human monocytes. Infect Immun 2012; 80:3768-75. [PMID: 22890992 DOI: 10.1128/iai.00534-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is a bacterium sometimes found in human blood and tissue samples that may have a role in the etiology of Crohn's disease in humans. To date, however, there have been few studies examining the interactions of these bacteria with human cells. Using the THP-1 human monocytic cell line, this study shows that the uptake and trafficking of M. avium subsp. paratuberculosis in human cells are cholesterol dependent and that these bacteria localize to cholesterol-rich compartments that are slow to acidify. M. avium subsp. paratuberculosis bacteria containing phagosomes stain for the late endosomal marker Rab7, but recruitment of the Rab7-interacting lysosomal protein that regulates the fusion of bacterium-containing phagosomes with lysosomal compartments and facilitates subsequent bacterial clearance is significantly reduced. Disruption of phagosome acidification via this mechanism may contribute to M. avium subsp. paratuberculosis persistence in human cells, but there was no evidence that internalized M. avium subsp. paratuberculosis also affects the survival of bacteria taken up during a secondary phagocytic event.
Collapse
|
25
|
McMurray DN, Bonilla DL, Chapkin RS. n-3 Fatty acids uniquely affect anti-microbial resistance and immune cell plasma membrane organization. Chem Phys Lipids 2011; 164:626-35. [PMID: 21798252 DOI: 10.1016/j.chemphyslip.2011.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/20/2011] [Accepted: 07/11/2011] [Indexed: 12/18/2022]
Abstract
It is now well established that dietary lipids are incorporated into macrophage and T-cell membrane microdomains, altering their structure and function. Within cell membranes, there are specific detergent-resistant domains in which key signal transduction proteins are localized. These regions are classified as "lipid rafts". Rafts are composed mostly of cholesterol and sphingolipids and therefore do not integrate well into the fluid phospholipid bilayers causing them to form microdomains. Upon cell activation, rafts compartmentalize signal-transducing molecules, thus providing an environment conducive to signal transduction. In this review, we discuss recent novel data describing the effects of n-3 PUFA on alterations in the activation and functions of macrophages and T-cells. We believe that the modifications in these two disparate immune cell types are linked by fundamentally similar changes in membrane lipid composition and transmembrane signaling functions. We conclude that the outcomes of n-3 PUFA-mediated immune cell alterations may be beneficial (e.g., anti-inflammatory) or detrimental (e.g., loss of microbial immunity) depending upon the cell type interrogated.
Collapse
Affiliation(s)
- David N McMurray
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX 77843-1313, USA.
| | | | | |
Collapse
|
26
|
The Mycobacterium tuberculosis cytochromes P450: physiology, biochemistry & molecular intervention. Future Med Chem 2011; 2:1339-53. [PMID: 21426022 DOI: 10.4155/fmc.10.216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) encodes 20 cytochrome P450 (P450) enzymes. Gene essentiality for viability or host infection was demonstrated for Mtb P450s CYP128, CYP121 and CYP125. Structure/function studies on Mtb P450s revealed key roles contributing to bacterial virulence and persistence in the host. Various azole-class drugs bind with high affinity to the Mtb P450 heme and are potent Mtb antibiotics. This paper reviews the current understanding of the biochemistry of Mtb P450s, their interactions with azoles and their potential as novel Mtb drug targets. Mtb multidrug resistance is widespread and novel therapeutics are desperately needed. Simultaneous drug targeting of several Mtb P450s crucial to bacterial viability/persistence could offer a new route to effective antibiotics and minimize the development of drug resistance.
Collapse
|
27
|
Singh G, Singh G, Jadeja D, Kaur J. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system. Crit Rev Microbiol 2010; 36:259-69. [PMID: 20500016 DOI: 10.3109/1040841x.2010.482923] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review is focused on the virulent traits of lipolytic enzymes from bacteria with special emphasis on Mycobacterium tuberculosis. In vivo, triacylglycerols in the form of inclusion bodies are present in tubercle bacilli in the lungs. This pathogenic bacterium possesses a lipase gene (Lip) family, which is expressed and differentially regulated under a variety of in vitro conditions. Not much research work has been carried out on these lipolytic enzymes. A better understanding of lipolytic enzymes in mycobacteria would lead to develop new strategies for tuberculosis treatment. The present review highlights the recent work done in the field of mycobacterium lipolytic enzymes and their involvement in the virulence and pathogenicity.
Collapse
Affiliation(s)
- Gurdyal Singh
- Department of Biotechnology, Panjab University, Chandigarh-160014, India
| | | | | | | |
Collapse
|
28
|
Mortellaro A, Robinson L, Ricciardi-Castagnoli P. Spotlight on Mycobacteria and dendritic cells: will novel targets to fight tuberculosis emerge? EMBO Mol Med 2010; 1:19-29. [PMID: 20049700 PMCID: PMC3378112 DOI: 10.1002/emmm.200900008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Over thousands of years microbes and mammals have co-evolved, resulting in extraordinarily sophisticated molecular mechanisms permitting the organisms to survive together. Mycobacterium tuberculosis is one of the best examples of successful co-evolution, since the bacilli have infected one third of the human population, but in 90% of the cases without causing overt disease. Despite this, increasing incidence of Human Immunodeficiency Virus (HIV) infection and the emergence of drug-resistant strains means that tuberculosis is in fact an extremely serious emerging threat to global health. Decades of work have focused on the interaction of this pathogen with its established cellular host, the macrophage, but still novel therapeautics remain elusive. While the macrophage is clearly important, recent evidence suggests that understanding the role of dendritic cells, which are key regulators of immunity, may be a crucial step in identifying new means of controlling this disease. Novel technologies, in particular genome-wide transcriptome analyses, are advancing our ability to dissect the complex dynamic relationships between dendritic cells and mycobacteria, highlighting new areas for study that have not been previously explored.
Collapse
|
29
|
Hu Y, van der Geize R, Besra GS, Gurcha SS, Liu A, Rohde M, Singh M, Coates A. 3-Ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis ofMycobacterium tuberculosis. Mol Microbiol 2010; 75:107-21. [DOI: 10.1111/j.1365-2958.2009.06957.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Muñoz S, Rivas-Santiago B, Enciso JA. Mycobacterium tuberculosis entry into mast cells through cholesterol-rich membrane microdomains. Scand J Immunol 2009; 70:256-63. [PMID: 19703015 DOI: 10.1111/j.1365-3083.2009.02295.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholesterol-enriched membrane microdomains (lipid rafts) play a role in the uptake of many pathogens. Mycobacteria are one of the intracellular pathogens that utilize lipid rafts in order to invade both phagocytic and non-phagocytic cells. However, the mechanism of Mycobacterium tuberculosis uptake by mast cell is not known. To address this issue, we investigated the interaction of M. tuberculosis (H37Rv strain) with mast cells. Confocal microscopy showed that interaction of mycobacterium with mast cell resulted in changes in the mast cell surface, with formation of pseudopod-like structure and activation with visibly extruded granules. Moreover, infection of mast cells with Mycobacteria induced cholesterol accumulation at the site of bacterial entry and around intracellular mycobacteria. Disruption of mast cells lipid rafts by cholesterol depletion markedly inhibited the mycobacterium entry. Intracellular multiplication of M. tuberculosis within mast cells was also observed. Overall, our results indicate that M. tuberculosis employs a cholesterol-dependent pathway to infect mast cells, which leads to degranulation and mast cell morphological changes. These results suggest that although mast cells are capable to respond to M. tuberculosis infection, entry of mycobacterium through lipid rafts may allow replication within mast cells.
Collapse
Affiliation(s)
- S Muñoz
- Unidad de Investigación Médica de Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI (CMN-XII), Instituto Mexicano del Seguro Social (IMSS), Mexico City
| | | | | |
Collapse
|
31
|
Marquis JF, Lacourse R, Ryan L, North RJ, Gros P. Genetic and functional characterization of the mouse Trl3 locus in defense against tuberculosis. THE JOURNAL OF IMMUNOLOGY 2009; 182:3757-67. [PMID: 19265154 DOI: 10.4049/jimmunol.0802094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genetic control of susceptibility to tuberculosis in DBA/2J and C57BL/6J mice is complex and influenced by at least four tuberculosis resistance loci (Trl1-Trl4). To further study the Trl3 and Trl4 loci, we have created congenic mouse lines D2.B6-Chr7 and D2.B6-Chr19, in which resistant B6-derived portions of chromosome 7 (Chr.7) and chromosome 19 (Chr.19) overlapping Trl3 and Trl4, respectively, were independently introgressed onto susceptible D2 background. Transfer of B6-derived Trl3 chromosome 7 segment significantly increased resistance of D2 mice, as measured by reduced pulmonary microbial replication at day 70, and increased host survival following aerosol infection. However, transfer of B6-derived chromosome 19 (Trl4) onto D2 mice did not increase resistance by itself and does not improve on the protective effect of chromosome 7. Further study of the protective effect of Trl3 in D2.B6-Chr7 mice indicates that it does not involve modulation of timing or magnitude of Th1 response in the lung, as investigated by measuring the number of Ag-specific, IFN-gamma-producing CD4(+) and CD8(+) T cells. Rather, Trl3 appears to affect the intrinsic ability of activated macrophages to restrict intracellular mycobacterial replication in an NO synthase 2-independent fashion. Microarray experiments involving parental and congenic mouse lines identified a number of genes in the Trl3 interval on chromosome 7 the level of expression of which before infection or in response to Mycobacterium tuberculosis infection is differentially regulated in a parental haplotype-dependent fashion. This gene list represents a valuable entry point for the identification and prioritization of positional candidate genes for the Trl3 effect on chromosome 7.
Collapse
Affiliation(s)
- Jean-François Marquis
- Department of Biochemistry, Centre for the Study of Host Resistance, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
32
|
Xavier CP, Eichinger L, Fernandez MP, Morgan RO, Clemen CS. Evolutionary and functional diversity of coronin proteins. Subcell Biochem 2008; 48:98-109. [PMID: 18925374 DOI: 10.1007/978-0-387-09595-0_9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter discusses various aspects of coronin phylogeny, structure and function that are of specific interest. Two subfamilies of ancient coronins of unicellular pathogens such as Entamoeba, Trypanosoma, Leishmania and Acanthamoeba as well as of Plasmodium, Babesia, and Trichomonas are presented in the first two sections. Their coronins generally bind to F-actin and apparently are involved in proliferation, locomotion and phagocytosis. However, there are so far no studies addressing a putative role of coronin in the virulence of these pathogens. The following section delineates genetic anomalies like the chimeric coronin-fusion products with pelckstrin homology and gelsolin domains that are found in amoeba. Moreover, most nonvertebrate metazoa appear to encode CRN8, CRN9 and CRN7 representatives (for these coronin symbols see Chapter 2), but in e.g., Drosophila melanogaster and Caenorhabditis elegans a CRN9 is missing. The forth section deals with the evolutionary expansion of vertebrate coronins. Experimental data on the F-actin binding CRN2 of Xenopus (Xcoronin) including a Cdc42/Rac interactive binding (CRIB) motif that is also present in other members of the coronin protein family are discussed. Xenopus laevis represents a case for the expansion of the seven vertebrate coronins due to tetraploidization events. Other examples for a change in the number of coronin paralogs are zebrafish and birds, but (coronin) gene duplication events also occurred in unicellular protozoa. The fifth section of this chapter briefly summarizes three different cellular processes in which CRN4/CORO1A is involved, namely actin-binding, superoxide generation and Ca(2+)-signaling and refers to the largely unexplored mammalian coronins CRN5/CORO2A and CRN6/CORO2B, the latter binding to vinculin. The final section discusses how, by unveiling the aspects of coronin function in organisms reported so far, one can trace a remarkable evolution and diversity in their individual roles anticipating a rather complex and intricate involvement of coronins in a variety of cellular processes.
Collapse
Affiliation(s)
- Charles-Peter Xavier
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne, Germany
| | | | | | | | | |
Collapse
|
33
|
McLean KJ, Munro AW. Structural biology and biochemistry of cytochrome P450 systems in Mycobacterium tuberculosis. Drug Metab Rev 2008; 40:427-46. [PMID: 18642141 DOI: 10.1080/03602530802186389] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The global spread of tuberculosis (TB) has been fuelled by the development of strains of the causative bacterium (Mycobacterium tuberculosis, Mtb) that are resistant to all the leading drugs. New TB therapies are desperately needed, but recent genome sequence, genetic and protein characterization studies have helped identify novel Mtb drug targets and key biochemical pathways for strategic intervention. Of particular interest are the multiple cytochrome P450 (P450) enzymes encoded in the Mtb genome. Structural, biochemical and mechanistic studies on these systems have demonstrated their potential as antitubercular targets, as well as revealing novel aspects of P450 form and function.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, The University of Manchester, Faculty of Life Sciences, Manchester, M1, UK.
| | | |
Collapse
|
34
|
Abstract
The WD repeat containing family of coronin proteins is generally referred to as F-actin-interacting proteins. While in lower eukaryotes such as Dictyostelium discoideum, the single short coronin protein regulates several F-actin dependent processes such as motility, phagocytosis and macropinocytosis, the function of any of the seven coronin isoforms in mammals is far less understood. This chapter describes the current knowledge on mammalian coronin 1 (coronin 1A), the closest homologue to Dictyostelium short coronin that is exclusively expressed in leukocytes. Recent work based on biochemical, molecular biological and genetic analysis suggest that coronin 1 has evolved a function that is quite different from the F-actin regulatory function of Dictyostelium short coronin. Rather, mammalian coronin 1 is involved in the regulation of leukocyte specific signaling events.
Collapse
Affiliation(s)
- Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, Basel, Switzerland.
| |
Collapse
|
35
|
Naranjo V, Ayoubi P, Vicente J, Ruiz-Fons F, Gortazar C, Kocan KM, de la Fuente J. Characterization of selected genes upregulated in non-tuberculous European wild boar as possible correlates of resistance to Mycobacterium bovis infection. Vet Microbiol 2006; 116:224-31. [PMID: 16672181 DOI: 10.1016/j.vetmic.2006.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (Mycobacterium tuberculosis complex), is a zoonotic disease that affects cattle and wildlife worldwide. These animal hosts can serve as reservoirs of infection, thus increasing the risk of human exposure and infection. In this study we quantified by RNA macroarray fluorescent hybridization and real-time RT-PCR the mRNA levels of genes differentially expressed in oropharyngeal tonsils and mandibular lymph nodes of three and seven individual non-tuberculous and tuberculous wild boars naturally exposed to M. bovis, respectively. These results demonstrated upregulation of two genes, complement component 3 (C3) and methylmalonyl-CoA mutase (MUT), in the non-tuberculous wild boars. These upregulated genes may contribute to resistance of wild boars to bTB by modifying the innate immunity, which limits the ability of the mycobacterium to infect and persist within macrophages. The C3 and MUT genes, therefore, are likely to be good candidates to study as markers of bTB resistance using functional genomics in animal model systems. Identification of genes upregulated in wild animals resistant to bTB contributes to our understanding of the mechanisms of protective immunity and resistance to mycobacterial organisms.
Collapse
Affiliation(s)
- Victoria Naranjo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13003 Ciudad Real, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Anand PK, Kaul D. Downregulation of TACO gene transcription restricts mycobacterial entry/survival within human macrophages. FEMS Microbiol Lett 2005; 250:137-44. [PMID: 16040207 DOI: 10.1016/j.femsle.2005.06.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 06/23/2005] [Accepted: 06/29/2005] [Indexed: 11/22/2022] Open
Abstract
Recent reports have indicated that cholesterol-dependent association of tryptophan-aspartate containing coat protein (TACO) plays a crucial role in the entry/survival of Mycobacterium tuberculosis within human macrophages. Keeping this in view, the present study explored whether the molecules that have the ability to downregulate TACO gene transcription could also restrict entry/survival of mycobacteria within human macrophages. The study revealed that chenodeoxycholic acid (CDCA), either alone or in combination with retinoic acid (RA), had the inherent capacity to downregulate TACO gene transcription in a dose-dependent fashion. This result was in conformity with the existence of a functional FXR/RXR binding site analyzed in the regulatory region of the TACO gene. Furthermore, we demonstrate that the entry and intracellular survival of M. tuberculosis is significantly restricted in THP-1 macrophages exposed to CDCA/RA. On the basis of these findings, we propose that the CDCA/RA-dependent pathway may open a new possibility for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Paras K Anand
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, India
| | | |
Collapse
|
37
|
Li J, Zhu D, Yi Z, He Y, Chun Y, Liu Y, Li N. DNAzymes Targeting theiclGene Inhibit ICL Expression and DecreaseMycobacterium tuberculosisSurvival in Macrophages. Oligonucleotides 2005; 15:215-22. [PMID: 16201909 DOI: 10.1089/oli.2005.15.215] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Latent infection with Mycobacterium tuberculosis presents a big obstacle for tuberculosis therapy. In this study, we investigated the effects of sequence-specific DNAzymes targeting the mRNA of isocitrate lyase (ICL), an enzyme playing a pivotal role in the metabolism of M. tuberculosis in the latent state, on the expression of ICL and survival of M. tuberculosis. In vitro studies showed that four of five designed DNAzymes, DZ1, DZ3, DZ4, and DZ5 could cleave icl mRNA efficiently and specifically. Treatment of virulent M. tuberculosis with 5microM DZ4 plus a subinhibitory concentration of isoniazid (INH) decreased ICL expression and the survival of M. tuberculosis in macrophages but had no obvious influence on the growth of M. tuberculosis in vitro. This study demonstrates that using INH to soften the cell wall of M. tuberculosis and help the entry of biomolecules is an efficient method of improving the uptake of DNAzymes. Silencing the icl gene by DNAzyme is a promising method to combat latent infection of tuberculosis.
Collapse
Affiliation(s)
- Junming Li
- Department of Microbiology and Immunology, Chongqing University of Medical Sciences, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | | | | | | | | | | | | |
Collapse
|