1
|
Wang J, Rani N, Jakhar S, Redhu R, Kumar S, Kumar S, Kumar S, Devi B, Simal-Gandara J, Shen B, Singla RK. Opuntia ficus-indica (L.) Mill. - anticancer properties and phytochemicals: current trends and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1236123. [PMID: 37860248 PMCID: PMC10582960 DOI: 10.3389/fpls.2023.1236123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Cancer is a leading cause of mortality worldwide, and conventional cancer therapies such as chemotherapy and radiotherapy often result in undesirable and adverse effects. Natural products have emerged as a promising alternative for cancer treatment, with comparatively fewer side effects reported. Opuntia ficus-indica (L.) Mill., a member of the Cactaceae family, contains a diverse array of phytochemicals, including flavonoids, polyphenols, betalains, and tannins, which have been shown to exhibit potent anticancer properties. Various parts of the Opuntia plant, including the fruits, stems/cladodes, and roots, have demonstrated cytotoxic effects against malignant cell lines in numerous studies. This review comprehensively summarizes the anticancer attributes of the phytochemicals found in Opuntia ficus-indica (L.) Mill., highlighting their potential as natural cancer prevention and treatment agents. Bibliometric metric analysis of PubMed and Scopus-retrieved data using VOSviewer as well as QDA analysis provide further insights and niche to be explored. Most anticancer studies on Opuntia ficus-indica and its purified metabolites are related to colorectal/colon cancer, followed by melanoma and breast cancer. Very little attention has been paid to leukemia, thyroid, endometrial, liver, and prostate cancer, and it could be considered an opportunity for researchers to explore O. ficus-indica and its metabolites against these cancers. The most notable mechanisms expressed and validated in those studies are apoptosis, cell cycle arrest (G0/G1 and G2/M), Bcl-2 modulation, antiproliferative, oxidative stress-mediated mechanisms, and cytochrome c. We have also observed that cladodes and fruits of O. ficus-indica have been more studied than other plant parts, which again opens the opportunity for the researchers to explore. Further, cell line-based studies dominated, and very few studies were related to animal-based experiments. The Zebrafish model is another platform to explore. However, it seems like more in-depth studies are required to ascertain clinical utility of this biosustainable resource O. ficus-indica.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Neeraj Rani
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Seema Jakhar
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Rakesh Redhu
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sachin Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Bhagwati Devi
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Pathak S, Gokhroo A, Kumar Dubey A, Majumdar S, Gupta S, Almeida A, Mahajan GB, Kate A, Mishra P, Sharma R, Kumar S, Vishwakarma R, Balakrishnan A, Atreya H, Nandi D. 7-Hydroxy Frullanolide, a sesquiterpene lactone, increases intracellular calcium amounts, lowers CD4 + T cell and macrophage responses, and ameliorates DSS-induced colitis. Int Immunopharmacol 2021; 97:107655. [PMID: 33901737 DOI: 10.1016/j.intimp.2021.107655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Sesquiterpene lactones are a class of anti-inflammatory molecules obtained from plants belonging to the Asteraceae family. In this study, the effects of 7-hydroxy frullanolide (7HF), a sesquiterpene lactone, in inhibiting CD4+ T cell and peritoneal macrophage responses were investigated. 7HF, in a dose dependent manner, lowers CD69 upregulation, IL2 production and CD4+ T cell cycling upon activation with the combination of anti-CD3 and anti-CD28. Further mechanistic studies demonstrated that 7HF, at early time points, increases intracellular Ca2+ amounts, over and above the levels induced upon activation. The functional relevance of 7HF-induced Ca2+ increase was confirmed using sub-optimal amounts of BAPTA, an intracellular Ca2+ chelator, which lowers lactate and rescues CD4+ T cell cycling. In addition, 7HF lowers T cell cycling with the combination of PMA and Ionomycin. However, 7HF increases CD4+ T cell cycling with sub-optimal activating signals: only PMA or anti-CD3. Furthermore, LPS-induced nitrite and IL6 production by peritoneal macrophages is inhibited by 7HF in a Ca2+-dependent manner. Studies with Ca2+ channel inhibitors, Ruthenium Red and 2-Aminoethoxydiphenyl borate, lowers the inhibitory effects of 7HF on CD4+ T cell and macrophage responses. In silico studies demonstrated that 7HF binds to Ca2+ channels, TRPV1, IP3R and SERCA, which is mechanistically important. Finally, intraperitoneal administration of 7HF lowers serum inflammatory cytokines, IFNγ and IL6, and reduces the effects of DSS-induced colitis with respect to colon length and colon damage. Overall, this study sheds mechanistic light on the anti-inflammatory potential of 7HF, a natural plant compound, in lowering immune responses.
Collapse
Affiliation(s)
- Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Abhijeet Gokhroo
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashim Kumar Dubey
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Souradeep Gupta
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Asha Almeida
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Girish B Mahajan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Abhijeet Kate
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Prabhu Mishra
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Rajiv Sharma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Sanjay Kumar
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Ram Vishwakarma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Arun Balakrishnan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Hanudatta Atreya
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021; 13:nu13030728. [PMID: 33668814 PMCID: PMC7996139 DOI: 10.3390/nu13030728] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Functional and nutraceutical foods provide an alternative way to improve immune function to aid in the management of various diseases. Traditionally, many medicinal products have been derived from natural compounds with healing properties. With the development of research into nutraceuticals, it is becoming apparent that many of the beneficial properties of these compounds are at least partly due to the presence of polyphenols. There is evidence that dietary polyphenols can influence dendritic cells, have an immunomodulatory effect on macrophages, increase proliferation of B cells, T cells and suppress Type 1 T helper (Th1), Th2, Th17 and Th9 cells. Polyphenols reduce inflammation by suppressing the pro-inflammatory cytokines in inflammatory bowel disease by inducing Treg cells in the intestine, inhibition of tumor necrosis factor-alpha (TNF-α) and induction of apoptosis, decreasing DNA damage. Polyphenols have a potential role in prevention/treatment of auto-immune diseases like type 1 diabetes, rheumatoid arthritis and multiple sclerosis by regulating signaling pathways, suppressing inflammation and limiting demyelination. In addition, polyphenols cause immunomodulatory effects against allergic reaction and autoimmune disease by inhibition of autoimmune T cell proliferation and downregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-1, interferon-γ (IFN-γ)). Herein, we summarize the immunomodulatory effects of polyphenols and the underlying mechanisms involved in the stimulation of immune responses.
Collapse
|
4
|
Nani A, Belarbi M, Murtaza B, Benammar C, Merghoub T, Rialland M, Akhtar Khan N, Hichami A. Polyphenols from Pennisetum glaucum grains induce MAP kinase phosphorylation and cell cycle arrest in human osteosarcoma cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Gouws CA, D’Cunha NM, Georgousopoulou EN, Mellor DD, Naumovski N. The effect of different drying techniques on phytochemical content and in vitro antioxidant properties of Australian‐grown prickly pears (
Opuntia ficus indica
). J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Caroline A. Gouws
- Faculty of Health, Discipline of Nutrition and Dietetics University of Canberra Canberra Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) group University of Canberra Canberra Australia
| | - Nathan M. D’Cunha
- Faculty of Health, Discipline of Nutrition and Dietetics University of Canberra Canberra Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) group University of Canberra Canberra Australia
| | - Ekavi N. Georgousopoulou
- Faculty of Health, Discipline of Nutrition and Dietetics University of Canberra Canberra Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) group University of Canberra Canberra Australia
- Faculty of Health Science and Education, Department of Nutrition‐Dietetics Harokopio University Athens Greece
| | - Duane D. Mellor
- Faculty of Health, Discipline of Nutrition and Dietetics University of Canberra Canberra Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) group University of Canberra Canberra Australia
- Faculty of Health and Life Sciences, School of Life Sciences Coventry University Coventry UK
| | - Nenad Naumovski
- Faculty of Health, Discipline of Nutrition and Dietetics University of Canberra Canberra Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) group University of Canberra Canberra Australia
| |
Collapse
|
6
|
Aruwa CE, Amoo SO, Kudanga T. Opuntia (Cactaceae) plant compounds, biological activities and prospects - A comprehensive review. Food Res Int 2018; 112:328-344. [PMID: 30131144 DOI: 10.1016/j.foodres.2018.06.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
Abstract
Opuntia species are utilized as local medicinal interventions for chronic diseases and as food sources mainly because they possess nutritional properties and biological activities. The Opuntia plant is distributed worldwide and has great economic potential. Differences in Opuntia species phytochemical composition exist between wild and domesticated species, and within species. Opuntia aerial and underground parts exhibit beneficial properties due to their phenolic content, other antioxidants (for example ascorbate), pigments (carotenoids, betalains), and other unidentified components. This work comprehensively reviews the phytochemical composition of the different aerial and underground plant parts of Opuntia species. The applications of Opuntia compounds and their biological activities are also discussed. Other topical aspects covered include Opuntia spp. taurine composition, Opuntia side effects, Opuntia by-products valorisation and the role of Opuntia spp. in tackling antimicrobial resistance. Although biological activities have been extensively researched, much less information is available on reaction mechanisms, herbal mixtures toxicology and commercialisation prospects - aspects which should be considered for future research in this area.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Stephen O Amoo
- Agricultural Research Council, Roodeplaat Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
7
|
Attakpa ES, Bertin GA, Chabi NW, Ategbo JM, Seri B, Khan NA. Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats. Physiol Res 2017; 66:753-767. [PMID: 28406707 DOI: 10.33549/physiolres.933397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Moringa oleifera is a plant whose fruits, roots and leaves have been advocated for traditional medicinal uses. The physicochemical analysis shows that Moringa oleifera contains more dietary polyunsaturated fatty acids (PUFA) than saturated fatty acids (SFA). The consumption of an experimental diet enriched with Moringa oleifera extracts lowered blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats as compared to rats fed an unsupplemented control diet. Anti-CD3-stimulated T cell proliferation was diminished in both strains of rats fed the Moringa oleifera. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. Studies of platelets from patients with primary hypertension and from SHR support the notion that the concentration of intracellular free calcium [Ca(2+)](i) is modified in both clinical and experimental hypertension. We observed that the basal, [Ca(2+)](i) was lower in T cells of SHR than in those of WKY rats fed the control diet. Feeding the diet with Moringa oleifera extracts to WKY rats did not alter basal [Ca(2+)](i) in T cells but increased basal [Ca(2+)](i) in SHR. Our study clearly demonstrated that Moringa oleifera exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T cell calcium signaling in hypertensive rats.
Collapse
Affiliation(s)
- E S Attakpa
- Laboratoire de Physiopathologie Moléculaire et Toxicologie, Département de Physiologie Animale, Faculté des Sciences et Techniques, Université d'Abomey Calavi, Cotonou, Republic of Benin.
| | | | | | | | | | | |
Collapse
|
8
|
Zeriouh W, Nani A, Belarbi M, Dumont A, de Rosny C, Aboura I, Ghanemi FZ, Murtaza B, Patoli D, Thomas C, Apetoh L, Rébé C, Delmas D, Khan NA, Ghiringhelli F, Rialland M, Hichami A. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. PLoS One 2017; 12:e0170823. [PMID: 28212423 PMCID: PMC5315385 DOI: 10.1371/journal.pone.0170823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
Dietary polyphenols, derived from natural products, have received a great interest for their chemopreventive properties against cancer. In this study, we investigated the effects of phenolic extract of the oleaster leaves (PEOL) on tumor growth in mouse model and on cell death in colon cancer cell lines. We assessed the effect of oleaster leaf infusion on HCT116 (human colon cancer cell line) xenograft growth in athymic nude mice. We observed that oleaster leaf polyphenol-rich infusion limited HCT116 tumor growth in vivo. Investigations of PEOL on two human CRC cell lines showed that PEOL induced apoptosis in HCT116 and HCT8 cells. We demonstrated an activation of caspase-3, -7 and -9 by PEOL and that pre-treatment with the pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), prevented PEOL-induced cell death. We observed an involvement of the mitochondrial pathway in PEOL-induced apoptosis evidenced by reactive oxygen species (ROS) production, a decrease of mitochondrial membrane potential, and cytochrome c release. Increase in intracellular Ca2+ concentration induced by PEOL represents the early event involved in mitochondrial dysfunction, ROS-induced endoplasmic reticulum (ER) stress and apoptosis induced by PEOL, as ruthenium red, an inhibitor of mitochondrial calcium uptake inhibited apoptotic effect of PEOL, BAPTA/AM inhibited PEOL-induced ROS generation and finally, N-acetyl-L-cysteine reversed ER stress and apoptotic effect of PEOL. These results demonstrate that polyphenols from oleaster leaves might have a strong potential as chemopreventive agent in colorectal cancer.
Collapse
Affiliation(s)
- Wafa Zeriouh
- Laboratory of Natural Products, Aboubekr Belkaid University, Tlemcen, Algeria
| | - Abdelhafid Nani
- Laboratory of Natural Products, Aboubekr Belkaid University, Tlemcen, Algeria.,Department of Natural and Life Sciences, African University Ahmed Draia, Adrar, Algeria.,INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Meriem Belarbi
- Laboratory of Natural Products, Aboubekr Belkaid University, Tlemcen, Algeria
| | - Adélie Dumont
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Ikram Aboura
- Laboratory of Natural Products, Aboubekr Belkaid University, Tlemcen, Algeria.,INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Fatima Zahra Ghanemi
- Laboratory of Natural Products, Aboubekr Belkaid University, Tlemcen, Algeria.,INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Babar Murtaza
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Danish Patoli
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Lionel Apetoh
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Cédric Rébé
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Dominique Delmas
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Naim Akhtar Khan
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Mickael Rialland
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Aziz Hichami
- INSERM U1231, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
9
|
Nani A, Belarbi M, Ksouri-Megdiche W, Abdoul-Azize S, Benammar C, Ghiringhelli F, Hichami A, Khan NA. Effects of polyphenols and lipids from Pennisetum glaucum grains on T-cell activation: modulation of Ca(2+) and ERK1/ERK2 signaling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:426. [PMID: 26627682 PMCID: PMC4667445 DOI: 10.1186/s12906-015-0946-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pearl millet (PM), i.e., Pennisetum glaucum, is widely grown in Africa and known for its anti-oxidant and anti-hyperlipidemic properties. METHODS The P. glaucum grains were obtained from the region of Ouled Aïssa (South of Algeria). We assessed the effects of phenolic compounds and lipids, extracted from seeds of P. glaucum, on rat lymphocyte proliferation, activated by phorbol 12-myristate 13-acetate and ionomycin. In order to explore signaling pathway, triggered by these compounds, we assessed interleukin-2 (IL-2) mRNA expression and extracellular signal-regulated kinase-1/2 (ERK1/ERK2) phosphorylation. Finally, we determined increases in free intracellular Ca(2+) concentrations, [Ca(2+)]i, by employing Fura-2/AM in rat lymphocytes. RESULTS The composition of P. glaucum grains in polyphenols was estimated to be 1660 µg gallic acid equivalents (GAE)/g. Lipids represented 4.5 %, and more than 72% of the fatty acids belonged to unsaturated family. Our investigation showed that both lipid and phenolic compounds inhibited mitogen-induced T-cell proliferation. Compared with phenolic compounds, lipids exerted weaker effects on ERK-1/ERK2 phosphorylation and Ca(2+) signaling in mitogen-activated T-cells. CONCLUSION We conclude that the immunomodulatory effects of P. glaucum could be contributed by its phenolic and lipid contents.
Collapse
Affiliation(s)
- Abdelhafid Nani
- University of Adrar, National Road n°06, Adrar, 01000, Algeria
- Laboratory of Natural Products, Abou-bekr Belkaid University, Tlemcen, 13000, Algeria
- INSERM U866, Université de Bourgogne, 21000, Dijon, France
| | - Meriem Belarbi
- Laboratory of Natural Products, Abou-bekr Belkaid University, Tlemcen, 13000, Algeria
| | - Wided Ksouri-Megdiche
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, Hammam-lif, 2050, Tunisia
| | | | - Chahid Benammar
- Laboratory of Natural Products, Abou-bekr Belkaid University, Tlemcen, 13000, Algeria
| | | | - Aziz Hichami
- INSERM U866, Université de Bourgogne, 21000, Dijon, France
| | | |
Collapse
|
10
|
Yeddes N, Chérif JK, Trabelsi Ayadi M. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of peel and pulp of three Tunisian Opuntia forms. Pak J Biol Sci 2014; 17:650-658. [PMID: 26030997 DOI: 10.3923/pjbs.2014.650.658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The antioxidant activity and the chemical composition of methanol extracts from peel and pulp belonging to two species of Tunisian prickly pears Opuntia ficus indica (spiny and thornless forms) and Opuntia stricta has been studied. The antioxidant capacity was measured by DPPH radical scavenging activity. The Total Phenolic Compound (TPC) and the total flavonoid content were determined by the Folin-Ciocalteu method and colorimetric method, respectively. The phenolic compounds were identified and quantified by High Performance Liquid Chromatography (HPLC) coupled with an electrospray ionization mass spectrometry (ESI-MS). The results showed that O. stricta fruits present the best antioxidant activities than the two forms of O. ficus indica while the TPC was more important in O. ficus indica than in the O. stricta fruits. The peels have higher flavonoids than pulps and the thornless has more flavonoid than the spiny. The RP-HPLC and ESI-MS analysis detected two classes of phenolic compounds and betalain pigments. Isorhamnetin derivatives are the dominant flavonol glycoside identified in O. ficus indica (spiny: 65.25 μg g(-1); thornless: 77.03 μg g(-1)) and O. stricta peels (19.22 μg g(-1)).
Collapse
|
11
|
Yeddes N, Chérif JK, Guyot S, Baron A, Trabelsi-Ayadi M. Phenolic Profile of TunisianOpuntia Ficus IndicaThornless form Flowers via Chromatographic and Spectral Analysis by Reversed Phase-High Performance Liquid Chromatography-UV-Photodiode Array and Electrospray Ionization-Mass Spectrometer. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2012.665404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants (Basel) 2013; 2:37-51. [PMID: 26787622 PMCID: PMC4665405 DOI: 10.3390/antiox2020037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022] Open
Abstract
The antioxidant activity and the chemical composition of methanol extracts from peel and pulp belonging to two species of Tunisian prickly pears Opuntia ficus indica (spiny and thornless forms) and Opuntia stricta have been studied. The antioxidant capacity was measured by DPPH radical scavenging activity. The total phenolic compound (TPC) and the total flavonoid content were determined by the Folin–Ciocalteu method and colorimetric method, respectively. The phenolic compounds were identified and quantified by high-performance liquid chromatography (HPLC) coupled with an electrospray ionization mass spectrometry (ESI-MS). The results showed that O. stricta fruits present the best antioxidant activities than the two forms of O. ficus indica, while the TPC was more important in O. ficus indica than in the O. stricta fruits. The peels have higher flavonoids than pulp, and the thornless variety has more flavonoid than the spiny. The RP-HPLC and ESI-MS analysis detected two classes of phenolic compounds and betalain pigments. Isorhamnetin derivatives are the dominant flavonol glycoside identified in O. ficus indica (spiny: 65.25 μg·g−1; thornless: 77.03 μg·g−1) and O. stricta peels (19.22 μg·g−1).
Collapse
|
13
|
Abdoul-Azize S, Bendahmane M, Hichami A, Dramane G, Simonin AM, Benammar C, Sadou H, Akpona S, El Boustani ES, Khan NA. Effects of Zizyphus lotus L. (Desf.) polyphenols on Jurkat cell signaling and proliferation. Int Immunopharmacol 2012; 15:364-71. [PMID: 23219580 DOI: 10.1016/j.intimp.2012.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
We assessed the effects of Zizyphus lotus L. (Desf.) polyphenols (ZLP) on T-cell signaling and proliferation. Our results showed that ZLP exerted no effect on the increases in intracellular free calcium concentrations, [Ca(2+)]i, in human Jurkat T-cells. However, ZLP modulated the thapsigargin-induced increases in [Ca(2+)]i in these cells. ZLP treatment was found to decrease the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, ZLP induced a rapid (t1/2=33s) and dose-dependent decrease in intracellular pH (pHi) in human Jurkat T-cells. Furthermore, ZLP significantly curtailed T-cell proliferation by diminishing their progression from S to G2/M phase of cell cycle, and the expression of interleukin-2 (IL-2) mRNA. Taken together, the results of the present study demonstrate that ZLP modulate cell signaling and exert immunosuppressive effects in human T-cells.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- INSERM U866, Physiologie de la Nutrition & Toxicologie (NuTox), Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 2011; 41:1346-59. [DOI: 10.1111/j.1365-2222.2011.03773.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Benammar C, Hichami A, Yessoufou A, Simonin AM, Belarbi M, Allali H, Khan NA. Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation. Altern Ther Health Med 2010; 10:54. [PMID: 20868496 PMCID: PMC2955679 DOI: 10.1186/1472-6882-10-54] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 09/24/2010] [Indexed: 01/28/2023]
Abstract
Background Zizyphus lotus L. (Desf.) also known as Jujube, is a deciduous shrub which belongs to Rhamnaceae family. This plant is used in Algerian traditional medicine for its anti-diabetic, sedative, analgesic, anti-inflammatory and hypoglycaemic activities. In the present study, we determined the concentrations of different vitamins (vitamin A, C and E) and fatty acids in root, stem, leaves, fruit pulp and seed of Zizyphus lotus L. (Desf.) and assessed the effects of their aqueous extracts on antioxidant status and human T-cell proliferation. Methods Aqueous filtrates from different parts, i.e, root, leaf, stem, fruit pulp and seed, of Zizyphus lotus L. (Desf.) were prepared. Vitamin C levels were determined by precipitating with 10% trichloroacetic acid and vitamin A and E were assessed by HPLC. Lipid composition of these extracts was determined by gas-liquid chromatography. Anti-oxidant capacity was evaluated by using anti-radical resistance kit [Kit Radicaux Libres (KRL@; Kirial International SA, Couternon, France)]. T-cell blastogenesis was assessed by the incorporation of 3H-thymidine. IL-2 gene expression was evaluated by RT-qPCR. Results Our results show that fruit pulp contained higher vitamin A and C contents than other parts of the plant. Furthermore, the fruit pulp was the richest source of linoleic acid (18:2n-6), a precursor of n-6 fatty acids. Fruit seeds possessed higher vitamin C levels than leaves, roots and stem. The leaves were the richest source of vitamin E and linolenic acid (18:3n-3), a precursor of n-3 fatty acids. The antioxidant capacity of the different extracts, measured by KRL@ test, was as follows: pulp < seed<leaf<root < stem. As far as T-cell proliferation is concerned, we observed that the different extracts of Zizyphus lotus L. (Desf.) exerted immunosuppressive effects. Conclusion Seed extracts exerted the most potent immunosuppressive effects on T cell proliferation and IL-2 mRNA expression. The results of the present study are discussed in the light of their use to modulate the immune-mediated diseases.
Collapse
|
16
|
Guo RW, Huang L. New insights into the activation mechanism of store-operated calcium channels: roles of STIM and Orai. J Zhejiang Univ Sci B 2009; 9:591-601. [PMID: 18763308 DOI: 10.1631/jzus.b0820042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activation of Ca2+ entry through store-operated channels by agonists that deplete Ca2+ from the endoplasmic reticulum (ER) is a ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past two decades. Store-operated Ca2+-release-activated Ca2+ (CRAC) channels constitute the sole pathway for Ca2+ entry following antigen-receptor engagement. In a set of breakthrough studies over the past two years, stromal interaction molecule 1 (STIM1, the ER Ca2+ sensor) and Orai1 (a pore-forming subunit of the CRAC channel) have been identified. Here we review these recent studies and the insights they provide into the mechanism of store-operated Ca2+ channels (SOCCs).
Collapse
Affiliation(s)
- Rui-wei Guo
- Department of Cardiovascular, Xinqiao Hospital, University of the Third Military Medical, Chongqing 400037, China.
| | | |
Collapse
|
17
|
Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008; 22:1026-34. [PMID: 18256683 DOI: 10.1038/leu.2008.9] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a potent, histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 with >200-fold selectivity over the other HDAC isoforms. PCI-34051 induces caspase-dependent apoptosis in cell lines derived from T-cell lymphomas or leukemias, but not in other hematopoietic or solid tumor lines. Unlike broad-spectrum HDAC inhibitors, PCI-34051 does not cause detectable histone or tubulin acetylation. Cells defective in T-cell receptor signaling were still sensitive to PCI-34051-induced apoptosis, whereas a phospholipase C-gamma1 (PLCgamma1)-defective line was resistant. Jurkat cells showed a dose-dependent decrease in PCI-34051-induced apoptosis upon treatment with a PLC inhibitor U73122, but not with an inactive analog. We found that rapid intracellular calcium mobilization from endoplasmic reticulum (ER) and later cytochrome c release from mitochondria are essential for the apoptotic mechanism. The rapid Ca(2+) flux was dependent on PCI-34051 concentration, and was blocked by the PLC inhibitor U73122. Further, apoptosis was blocked by Ca(2+) chelators (BAPTA) and enhanced by Ca(2+) effectors (thapsigargin), supporting this model. These studies show that HDAC8-selective inhibitors have a unique mechanism of action involving PLCgamma1 activation and calcium-induced apoptosis, and could offer benefits including a greater therapeutic index for treating T-cell malignancies.
Collapse
Affiliation(s)
- S Balasubramanian
- Department of Cancer Biology, Pharmacyclics Inc., Sunnyvale, CA 94085, USA.
| | | | | | | | | | | |
Collapse
|