1
|
Goodarzi Z, Khavanin A, Karami E, Rashidy-Pour A, Belji Kangarlou M, Kiani M, Razmjouei J. Otoprotective Effects of Quercetin Against Oxidative Damage in the Rat's Cochlea Induced by Noise and Silver Nanoparticles. Neuroscience 2023; 531:99-116. [PMID: 37714258 DOI: 10.1016/j.neuroscience.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The aim of this study was to investigate the otoprotective effects of Quercetin (Que) against both noise-induced hearing loss (NIHL) and the ototoxicity of silver nanoparticles (SNPs) in rats. Forty-two male Wistar rats were divided into seven groups (n = 6): control, SNPs, Que (100 mg/kg) plus SNPs (100 mg/kg), noise (104 dB), Que plus noise, noise plus SNPs, and noise plus Que plus SNPs. In the weight change results, there was no significant difference between the groups exposed to noise plus SNPs and SNPs compared to the control group. However, animals had significant changes in DPOAE amplitude at 1 and 3 days post-exposure when compared to baseline. Additionally, the DPOAE value of rats administered with Que plus SNPs was higher than in all other groups. Que also decreased the levels of TACT, MDA, IL-6, TNF-α, and NOX3 in the groups exposed to noise and SNPs and increased the SOD level and expression of myosin heavy chain VII (MYH7) and β-tubulin III (TUBB3) proteins. Furthermore, Que decreased structural changes in the animals' cochlea. Our findings indicate that pretreatment with Que efficiently counteracted the adverse effects of noise and SNPs on inner hair cell, outer hair cell, and nerve cells, which are responsible for high-frequency perception.
Collapse
Affiliation(s)
- Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Marzieh Belji Kangarlou
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Jaleh Razmjouei
- Masters of Health, Safety & Environment (HSE), Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| |
Collapse
|
2
|
Heuermann ML, Matos S, Hamilton D, Cox BC. Regenerated hair cells in the neonatal cochlea are innervated and the majority co-express markers of both inner and outer hair cells. Front Cell Neurosci 2022; 16:841864. [PMID: 36187289 PMCID: PMC9524252 DOI: 10.3389/fncel.2022.841864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
After a damaging insult, hair cells can spontaneously regenerate from cochlear supporting cells within the first week of life. While the regenerated cells express several markers of immature hair cells and have stereocilia bundles, their capacity to differentiate into inner or outer hair cells, and ability to form new synaptic connections has not been well-described. In addition, while multiple supporting cell subtypes have been implicated as the source of the regenerated hair cells, it is unclear if certain subtypes have a greater propensity to form one hair cell type over another. To investigate this, we used two CreER mouse models to fate-map either the supporting cells located near the inner hair cells (inner phalangeal and border cells) or outer hair cells (Deiters’, inner pillar, and outer pillar cells) along with immunostaining for markers that specify the two hair cell types. We found that supporting cells fate-mapped by both CreER lines responded early to hair cell damage by expressing Atoh1, and are capable of producing regenerated hair cells that express terminal differentiation markers of both inner and outer hair cells. The majority of regenerated hair cells were innervated by neuronal fibers and contained synapses. Unexpectedly, we also found that the majority of the laterally positioned regenerated hair cells aberrantly expressed both the outer hair cell gene, oncomodulin, and the inner hair cell gene, vesicular glutamate transporter 3 (VGlut3). While this work demonstrates that regenerated cells can express markers of both inner and outer hair cells after damage, VGlut3 expression appears to lack the tight control present during embryogenesis, which leads to its inappropriate expression in regenerated cells.
Collapse
Affiliation(s)
- Mitchell L. Heuermann
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sophia Matos
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Deborah Hamilton
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Brandon C. Cox
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Brandon C. Cox,
| |
Collapse
|
3
|
MicroRNA Signature and Cellular Characterization of Undifferentiated and Differentiated House Ear Institute-Organ of Corti 1 (HEI-OC1) Cells. J Assoc Res Otolaryngol 2022; 23:467-489. [PMID: 35546217 PMCID: PMC9094604 DOI: 10.1007/s10162-022-00850-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expressions and control a wide variety of cellular functions. House Ear Institute-Organ of Corti 1 (HEI-OC1) cells are widely used to screen ototoxic drugs and to investigate cellular and genetic alterations in response to various conditions. HEI-OC1 cells are almost exclusively studied under permissive conditions that promote cell replication at the expense of differentiation. Many researchers suggest that permissive culture condition findings are relevant to understanding human hearing disorders. The mature human cochlea however consists of differentiated cells and lacks proliferative capacity. This study therefore aimed to compare the miRNA profiles and cellular characteristics of HEI-OC1 cells cultured under permissive (P-HEI-OC1) and non-permissive (NP-HEI-OC1) conditions. A significant increase in the level of expression of tubulin β1 class VI (Tubb1), e-cadherin (Cdh1), espin (Espn), and SRY (sex determining region Y)-box2 (Sox2) mRNAs was identified in non-permissive cells compared with permissive cells (P < 0.05, Kruskal–Wallis H test, 2-sided). miR-200 family, miR-34b/c, and miR-449a/b functionally related cluster miRNAs, rodent-specific maternally imprinted gene Sfmbt2 intron 10th cluster miRNAs (-466a/ -467a), and miR-17 family were significantly (P < 0.05, Welch’s t-test, 2-tailed) differentially expressed in non-permissive cells when compared with permissive cells. Putative target genes were significantly predominantly enriched in mitogen-activated protein kinase (MAPK), epidermal growth factor family of receptor tyrosine kinases (ErbB), and Ras signaling pathways in non-permissive cells compared with permissive cells. This distinct miRNA signature of differentiated HEI-OC1 cells could help in understanding miRNA-mediated cellular responses in the adult cochlea.
Collapse
|
4
|
Bieniussa L, Jain I, Bosch Grau M, Juergens L, Hagen R, Janke C, Rak K. Microtubule and auditory function - an underestimated connection. Semin Cell Dev Biol 2022; 137:74-86. [PMID: 35144861 DOI: 10.1016/j.semcdb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
The organ of Corti, located in the cochlea within the inner ear is the receptor organ for hearing. It converts auditory signals into neuronal action potentials that are transmitted to the brain for further processing. The mature organ of Corti consists of a variety of highly differentiated sensory cells that fulfil unique tasks in the processing of auditory signals. The actin and microtubule cytoskeleton play essential function in hearing, however so far, more attention has been paid to the role of actin. Microtubules play important roles in maintaining cellular structure and intracellular transport in virtually all eukaryotic cells. Their functions are controlled by interactions with a large variety of microtubule-associated proteins (MAPs) and molecular motors. Current advances show that tubulin posttranslational modifications, as well as tubulin isotypes could play key roles in modulating microtubule properties and functions in cells. These mechanisms could have various effects on the stability and functions of microtubules in the highly specialised cells of the cochlea. Here, we review the current understanding of the role of microtubule-regulating mechanisms in the function of the cochlea and their implications for hearing, which highlights the importance of microtubules in the field of hearing research.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Ipsa Jain
- Institute of Stem cell Biology and Regenerative Medicine, Bangalore, India
| | - Montserrat Bosch Grau
- Genetics and Physiology of Hearing Laboratory, Institute Pasteur, 75015 Paris, France
| | - Lukas Juergens
- Department of Ophthalmology, University of Duesseldorf, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany.
| |
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2020; 154:597-607. [PMID: 33277679 DOI: 10.1007/s00418-020-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
6
|
Juergens L, Bieniussa L, Voelker J, Hagen R, Rak K. Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice. Histochem Cell Biol 2020; 154:671-681. [PMID: 32712744 PMCID: PMC7723944 DOI: 10.1007/s00418-020-01905-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.
Collapse
Affiliation(s)
- Lukas Juergens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
- Department of Ophthalmology, University of Duesseldorf, Duesseldorf, Germany
| | - Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
7
|
Berekméri E, Szepesy J, Köles L, Zelles T. Purinergic signaling in the organ of Corti: Potential therapeutic targets of sensorineural hearing losses. Brain Res Bull 2019; 151:109-118. [PMID: 30721767 DOI: 10.1016/j.brainresbull.2019.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
Purinergic signaling is deeply involved in the development, functions and protective mechanisms of the cochlea. Release of ATP and activation of purinergic receptors on sensory and supporting/epithelial cells play a substantial role in cochlear (patho)physiology. Both the ionotropic P2X and the metabotropic P2Y receptors are widely distributed on the inner and outer hair cells as well as on the different supporting cells in the organ of Corti and on other epithelial cells in the scala media. Among others, they are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics acting on outer hair cells and supporting cells. Cochlear blood flow is also regulated by purines. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy. Decreasing hearing sensitivity and increasing cochlear blood supply by pharmacological targeting of purinergic signaling in the cochlea are potential new therapeutic approaches in these hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
8
|
Chen S, Xie L, Xu K, Cao HY, Wu X, Xu XX, Sun Y, Kong WJ. Developmental abnormalities in supporting cell phalangeal processes and cytoskeleton in the Gjb2 knockdown mouse model. Dis Model Mech 2018; 11:dmm.033019. [PMID: 29361521 PMCID: PMC5894950 DOI: 10.1242/dmm.033019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022] Open
Abstract
Mutations in the GJB2 gene [which encodes connexin 26 (Cx26)] are the most common causes of hereditary hearing loss in humans, and previous studies showed postnatal development arrest of the organ of Corti in different Cx26-null mouse models. To explore the pathological changes and the mechanism behind the cochlear abnormalities in these mice further, we established transgenic mouse models by conditional knockdown of cochlear Cx26 at postnatal day (P) 0 and P8. Auditory brainstem responses were recorded and the morphological features in the organ of Corti were analyzed 18 days after Cx26 knockdown. Mice in the P0 knockdown group displayed severe hearing loss at all frequencies, whereas mice in the P8 knockdown group showed nearly normal hearing. In the P8 knockdown group, the organ of Corti displayed normal architecture, and no ultrastructural changes were observed. In the P0 knockdown group, the phalangeal processes of Deiter's cells did not develop into finger-like structures, and the formation of microtubules in the pillar cells was significantly reduced; moreover, the amount of acetylated α-tubulin was reduced in pillar cells. Our results indicate that Gjb2 participates in postnatal development of the cytoskeleton in pillar cells during structural maturation of the organ of Corti. In P0 knockdown mice, the reduction in microtubules in pillar cells might be responsible for the failure of the tunnel of Corti to open, and the malformed phalangeal processes might negatively affect the supporting framework of the organ of Corti, which would be a new mechanism of Gjb2-related hearing loss. Summary: A reduction in connexin 26 before opening of the tunnel of Corti impedes microtubule formation in supporting cells, and this may lead to cochlear developmental abnormalities and deafness in the Gjb2 knockdown mouse model.
Collapse
Affiliation(s)
- Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hai-Yan Cao
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Xiang Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China .,Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China .,Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Liu W, Löwenheim H, Santi PA, Glueckert R, Schrott-Fischer A, Rask-Andersen H. Expression of trans-membrane serine protease 3 (TMPRSS3) in the human organ of Corti. Cell Tissue Res 2018; 372:445-456. [PMID: 29460002 PMCID: PMC5949142 DOI: 10.1007/s00441-018-2793-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/12/2018] [Indexed: 11/15/2022]
Abstract
TMPRSS3 (Trans-membrane Serine Protease 3) is a type II trans-membrane serine protease that has proteolytic activity essential for hearing. Mutations in the gene cause non-syndromic autosomal recessive deafness (DFNB8/10) in humans. Knowledge about its cellular distribution in the human inner ear may increase our understanding of its physiological role and involvement in deafness, ultimately leading to therapeutic interventions. In this study, we used super-resolution structured illumination microscopy for the first time together with transmission electron microscopy to localize the TMPRSS3 protein in the human organ of Corti. Archival human cochleae were dissected out during petroclival meningioma surgery. Microscopy with Zeiss LSM710 microscope achieved a lateral resolution of approximately 80 nm. TMPRSS3 was found to be associated with actin in both inner and outer hair cells. TMPRSS3 was located in cell surface-associated cytoskeletal bodies (surfoskelosomes) in inner and outer pillar cells and Deiters cells and in subcuticular organelles in outer hair cells. Our results suggest that TMPRSS3 proteolysis is linked to hair cell sterociliary mechanics and to the actin/microtubule networks that support cell motility and integrity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden.
| | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Peter A Santi
- Department of Otolaryngology, University of Minnesota, 121 Lions Research Building, 2001 Sixth Street SE, Minneapolis, MN 55455, USA
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A 6020, Innsbruck, Austria
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A 6020, Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
10
|
Liu P, Yang ZX, Chen XM, Chen H. Full-length cloning, sequence analysis and expression detection of the β-tubulin gene from the Chinese gall aphid (Schlechtendalia chinensis). Sci Rep 2017; 7:6459. [PMID: 28743930 PMCID: PMC5526861 DOI: 10.1038/s41598-017-06806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/16/2017] [Indexed: 11/09/2022] Open
Abstract
Some insect galls are formed on sumac plants by certain aphid species and have been used for medicinal and chemical purposes as they are rich in tannins. The most prominent species among gall aphids in China is Schlechtendalia chinensis, which formed horn-shaped galls on the winged rachis of Rhus chinensis. S. chinensis has a complex life cycle, with a switch of hosts between R. chinensis and certain mosses, and a switch of sexual and asexual reproduction (cyclical parthenogenesis). We have cloned a full-length cDNA of the β-tubulin gene from S. chinensis, using qPCR and RACE. This cDNA has 1606 base pairs with a 251 bp 5'-untranslated region (5'-UTR) and a 15 bp 3'-untranslated region (3'-UTR). The gene encodes a protein with 376 amino acids residues. The expression levels of the β-tubulin gene in S. chinensis were investigated among fundatrigeniae and overwintering larvae rearing under either natural conditions, or at 7.5 °C and 18 °C. No significant differences (P > 0.01) in gene expression levels were found in insects under these conditions. It is indicates that the β-tubulin gene is highly conserved and then it may be used as a reference for further research in gene expression and reproduction determination in this important aphid.
Collapse
Affiliation(s)
- Ping Liu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Kunming, Yunnan, China.,Yunnan Forestry Technological College, Kunming, Yunnan, China
| | - Zi-Xiang Yang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Kunming, Yunnan, China.
| | - Xiao-Ming Chen
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Kunming, Yunnan, China
| | - Hang Chen
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Breeding and Utilization of Resource Insects of State Forestry Administration, Kunming, Yunnan, China
| |
Collapse
|
11
|
Remodeling of the Inner Hair Cell Microtubule Meshwork in a Mouse Model of Auditory Neuropathy AUNA1. eNeuro 2016; 3:eN-NWR-0295-16. [PMID: 28058271 PMCID: PMC5197407 DOI: 10.1523/eneuro.0295-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022] Open
Abstract
Auditory neuropathy 1 (AUNA1) is a form of human deafness resulting from a point mutation in the 5′ untranslated region of the Diaphanous homolog 3 (DIAPH3) gene. Notably, the DIAPH3 mutation leads to the overexpression of the DIAPH3 protein, a formin family member involved in cytoskeleton dynamics. Through study of diap3-overexpressing transgenic (Tg) mice, we examine in further detail the anatomical, functional, and molecular mechanisms underlying AUNA1. We identify diap3 as a component of the hair cells apical pole in wild-type mice. In the diap3-overexpressing Tg mice, which show a progressive threshold shift associated with a defect in inner hair cells (IHCs), the neurotransmitter release and potassium conductances are not affected. Strikingly, the overexpression of diap3 results in a selective and early-onset alteration of the IHC cuticular plate. Molecular dissection of the apical components revealed that the microtubule meshwork first undergoes aberrant targeting into the cuticular plate of Tg IHCs, followed by collapse of the stereociliary bundle, with eventual loss of the IHC capacity to transmit incoming auditory stimuli.
Collapse
|
12
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
13
|
Renauld J, Johnen N, Thelen N, Cloes M, Thiry M. Spatio-temporal dynamics of β-tubulin isotypes during the development of the sensory auditory organ in rat. Histochem Cell Biol 2015. [DOI: 10.1007/s00418-015-1350-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Gonçalves J, Tavares A, Carvalhal S, Soares H. Revisiting the tubulin folding pathway: new roles in centrosomes and cilia. Biomol Concepts 2015; 1:423-34. [PMID: 25962015 DOI: 10.1515/bmc.2010.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosomes and cilia are critical eukaryotic organelles which have been in the spotlight in recent years given their implication in a myriad of cellular and developmental processes. Despite their recognized importance and intense study, there are still many open questions about their biogenesis and function. In the present article, we review the existing data concerning members of the tubulin folding pathway and related proteins, which have been identified at centrosomes and cilia and were shown to have unexpected roles in these structures.
Collapse
|
15
|
Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear. Sci Rep 2014; 4:6885. [PMID: 25363458 PMCID: PMC4217099 DOI: 10.1038/srep06885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/13/2014] [Indexed: 11/09/2022] Open
Abstract
Atoh1 is a basic helix-loop-helix transcription factor that controls differentiation of hair cells (HCs) in the inner ear and its enhancer region has been used to create several HC-specific mouse lines. We generated a transgenic tetracycline-inducible mouse line (called Atoh1-rtTA) using the Atoh1 enhancer to drive expression of the reverse tetracycline transactivator (rtTA) protein and human placental alkaline phosphatase. Presence of the transgene was confirmed by alkaline phosphatase staining and rtTA activity was measured using two tetracycline operator (TetO) reporter alleles with doxycycline administered between postnatal days 0–3. This characterization of five founder lines demonstrated that Atoh1-rtTA is expressed in the majority of cochlear and utricular HCs. Although the tetracycline-inducible system is thought to produce transient changes in gene expression, reporter positive HCs were still observed at 6 weeks of age. To confirm that Atoh1-rtTA activity was specific to Atoh1-expressing cells, we also analyzed the cerebellum and found rtTA-driven reporter expression in cerebellar granule neuron precursor cells. The Atoh1-rtTA mouse line provides a powerful tool for the field and can be used in combination with other existing Cre recombinase mouse lines to manipulate expression of multiple genes at different times in the same animal.
Collapse
|
16
|
Dong Y, Ding D, Jiang H, Shi JR, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicol Appl Pharmacol 2014; 280:526-33. [DOI: 10.1016/j.taap.2014.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 01/21/2023]
|
17
|
Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 2014; 11:173. [PMID: 25311735 PMCID: PMC4198756 DOI: 10.1186/s12974-014-0173-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The cochlea is the sensory organ of hearing. In the cochlea, the organ of Corti houses sensory cells that are susceptible to pathological insults. While the organ of Corti lacks immune cells, it does have the capacity for immune activity. We hypothesized that resident cells in the organ of Corti were responsible for the stress-induced immune response of the organ of Corti. This study profiled the molecular composition of the immune system in the organ of Corti and examined the immune response of non-immune epithelial cells to acoustic overstimulation. METHODS Using high-throughput RNA-sequencing and qRT-PCR arrays, we identified immune- and inflammation-related genes in both the cochlear sensory epithelium and the organ of Corti. Using bioinformatics analyses, we cataloged the immune genes expressed. We then examined the response of these genes to acoustic overstimulation and determined how changes in immune gene expression were related to sensory cell damage. RESULTS The RNA-sequencing analysis reveals robust expression of immune-related genes in the cochlear sensory epithelium. The qRT-PCR array analysis confirms that many of these genes are constitutively expressed in the resident cells of the organ of Corti. Bioinformatics analyses reveal that the genes expressed are linked to the Toll-like receptor signaling pathway. We demonstrate that expression of Toll-like receptor signaling genes is predominantly from the supporting cells in the organ of Corti cells. Importantly, our data demonstrate that these Toll-like receptor pathway genes are able to respond to acoustic trauma and that their expression changes are associated with sensory cell damage. CONCLUSION The cochlear resident cells in the organ of Corti have immune capacity and participate in the cochlear immune response to acoustic overstimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo 14214, NY, USA.
| |
Collapse
|
18
|
Maruyama Y, Arahara K, Kinoshita E, Arai K. AP-1-mediated expression of brain-specific class IVa β-tubulin in P19 embryonal carcinoma cells. J Vet Med Sci 2014; 76:1609-15. [PMID: 25649943 PMCID: PMC4300376 DOI: 10.1292/jvms.14-0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of brain-specific
phenotypes increased in all trans retinoic acid (ATRA)-induced neural
differentiation of mouse P19 embryonal carcinoma cells. Among these phenotypes, expression
of class IVa β-tubulin isotype (TUBB4a) was particularly enhanced in neural
differentiation. Transient transfection assays employing a reporter construct found that
ATRA-mediated regulatory region of the TUBB4a gene lay in the region from −83 nt to +137
nt relative to the +1 transcription start site. Site-directed mutagenesis in the AP-1
binding site at −29/−17 suggested that the AP-1 binding site was a critical region for
ATRA-mediated TUBB4a expression. Chromatin immunoprecipitation experiments suggested
participation of JunD and activating transcription factor-2 (ATF2) in TUBB4a expression.
Additionally, exogenous induction of the dominant-negative (dn) type of JunD canceled
ATRA-induced upregulation of TUBB4a, and the dn type of ATF2 suppressed even the basal
activity. Further immunoblot study revealed an ATRA-mediated increase in JunD protein,
while a significant amount of ATF2 protein was constantly produced. These results suggest
that differentiation-mediated activation of JunD results in enhanced TUBB4a
expression.
Collapse
Affiliation(s)
- Yuka Maruyama
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
19
|
Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Rubel EW, Cheng AG, Zuo J. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 2014; 141:816-29. [PMID: 24496619 DOI: 10.1242/dev.103036] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Loss of cochlear hair cells in mammals is currently believed to be permanent, resulting in hearing impairment that affects more than 10% of the population. Here, we developed two genetic strategies to ablate neonatal mouse cochlear hair cells in vivo. Both Pou4f3(DTR/+) and Atoh1-CreER™; ROSA26(DTA/+) alleles allowed selective and inducible hair cell ablation. After hair cell loss was induced at birth, we observed spontaneous regeneration of hair cells. Fate-mapping experiments demonstrated that neighboring supporting cells acquired a hair cell fate, which increased in a basal to apical gradient, averaging over 120 regenerated hair cells per cochlea. The normally mitotically quiescent supporting cells proliferated after hair cell ablation. Concurrent fate mapping and labeling with mitotic tracers showed that regenerated hair cells were derived by both mitotic regeneration and direct transdifferentiation. Over time, regenerated hair cells followed a similar pattern of maturation to normal hair cell development, including the expression of prestin, a terminal differentiation marker of outer hair cells, although many new hair cells eventually died. Hair cell regeneration did not occur when ablation was induced at one week of age. Our findings demonstrate that the neonatal mouse cochlea is capable of spontaneous hair cell regeneration after damage in vivo. Thus, future studies on the neonatal cochlea might shed light on the competence of supporting cells to regenerate hair cells and on the factors that promote the survival of newly regenerated hair cells.
Collapse
Affiliation(s)
- Brandon C Cox
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Szarama KB, Stepanyan R, Petralia RS, Gavara N, Frolenkov GI, Kelley MW, Chadwick RS. Fibroblast growth factor receptor 3 regulates microtubule formation and cell surface mechanical properties in the developing organ of Corti. BIOARCHITECTURE 2014; 2:214-9. [PMID: 23267415 PMCID: PMC3527316 DOI: 10.4161/bioa.22332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibroblast Growth Factor (Fgf) signaling is involved in the exquisite cellular patterning of the developing cochlea, and is necessary for proper hearing function. Our previous data indicate that Fgf signaling disrupts actin, which impacts the surface stiffness of sensory outer hair cells (OHCs) and non-sensory supporting pillar cells (PCs) in the organ of Corti. Here, we used Atomic Force Microscopy (AFM) to measure the impact of loss of function of Fgf-receptor 3, on cytoskeletal formation and cell surface mechanical properties. We find a 50% decrease in both OHC and PC surface stiffness, and a substantial disruption in microtubule formation in PCs. Moreover, we find no change in OHC electromotility of Fgfr3-deficient mice. To further understand the regulation by Fgf-signaling on microtubule formation, we treated wild-type cochlear explants with Fgf-receptor agonist Fgf2, or antagonist SU5402, and find that both treatments lead to a significant reduction in β-Tubulin isotypes I&II. To identify downstream transcriptional targets of Fgf-signaling, we used QPCR arrays to probe 84 cytoskeletal regulators. Of the 5 genes significantly upregulated following treatment, Clasp2, Mapre2 and Mark2 impact microtubule formation. We conclude that microtubule formation is a major downstream effector of Fgf-receptor 3, and suggest this pathway impacts the formation of fluid spaces in the organ of Corti.
Collapse
Affiliation(s)
- Katherine B Szarama
- Auditory Mechanics Section, Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Rak K, Frenz S, Radeloff A, Groh J, Jablonka S, Martini R, Hagen R, Mlynski R. Mutation of the TBCE gene causes disturbance of microtubules in the auditory nerve and cochlear outer hair cell degeneration accompanied by progressive hearing loss in the pmn/pmn mouse. Exp Neurol 2013; 250:333-40. [PMID: 24120439 DOI: 10.1016/j.expneurol.2013.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
The progressive motor neuronopathy (pmn/pmn) mouse, an animal model for a fast developing human motor neuron disorder, is additionally characterized by simultaneous progressive sensorineural hearing loss. The gene defect in the pmn/pmn mouse is localized to a missense mutation in the tubulin-specific chaperone E (TBCE) gene on mouse chromosome 13, which is one of the five tubulin-specific chaperons involved in tubulin folding and dimerization. The missense mutation leads to a disturbance of tubulin structures in the auditory nerve and a progressive outer hair cell loss due to apoptosis, which is accompanied by highly elevated ABR-thresholds and loss of DPOAEs. In addition the TBCE protein is selectively expressed in the outer hair cells and the transcellular processes of the inner pillar cells in the cochlea of control and pmn/pmn mouse. We conclude from our study that the mutation of the TBCE gene affects the auditory nerve and the cochlear hair cells simultaneously, leading to progressive hearing loss. This animal model will give the chance to test possible therapeutic strategies in special forms of hearing loss, in which the auditory nerve and the cochlear hair cells are simultaneously affected.
Collapse
Affiliation(s)
- Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Germany; Comprehensive Hearing Center, University of Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng J, Furness D, Duan C, Miller KK, Edge RM, Chen J, Homma K, Hackney CM, Dallos P, Cheatham MA. Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti. Biol Open 2013; 2:1192-202. [PMID: 24244856 PMCID: PMC3828766 DOI: 10.1242/bio.20135603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/01/2013] [Indexed: 12/30/2022] Open
Abstract
Dramatic structural changes in microtubules (MT) and the assembly of complicated intercellular connections are seen during the development of the cellular matrix of the sense organ for hearing, the organ of Corti. This report examines the expression of marshalin, a minus-end binding protein, during this process of cochlear development. We discovered that marshalin is abundantly expressed in both sensory hair cells and supporting cells. In the adult, prominent marshalin expression is observed in the cuticular plates of hair cells and in the noncentrosomal MT organization centers (MTOC) of Deiters' and pillar cells. Based upon differences in marshalin expression patterns seen in the organ of Corti, we identified eight isoforms ranging from 863 to 1280 amino acids. mRNAs/proteins associated with marshalin's isoforms are detected at different times during development. These isoforms carry various protein-protein interacting domains, including coiled-coil (CC), calponin homology (CH), proline-rich (PR), and MT-binding domains, referred to as CKK. We, therefore, examined membranous organelles and structural changes in the cytoskeleton induced by expressing two of these marshalin isoforms in vitro. Long forms containing CC and PR domains induce thick, spindle-shaped bundles, whereas short isoforms lacking CC and PR induce more slender variants that develop into densely woven networks. Together, these data suggest that marshalin is closely associated with noncentrosomal MTOCs, and may be involved in MT bundle formation in supporting cells. As a scaffolding protein with multiple isoforms, marshalin is capable of modifying cytoskeletal networks, and consequently organelle positioning, through interactions with various protein partners present in different cells.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL 60611 , USA ; Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University , Evanston, IL 60208 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
The distribution of β-tubulin isotypes in cultured neurons from embryonic, newborn, and adult mouse brains. Brain Res 2011; 1420:8-18. [DOI: 10.1016/j.brainres.2011.08.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022]
|
25
|
Banerjee A, Jensen-Smith H, Lazzell A, Prasad V, Elguezabal G, Hallworth R, Ludueña RF. Localization of betav tubulin in the cochlea and cultured cells with a novel monoclonal antibody. ACTA ACUST UNITED AC 2008; 65:505-14. [PMID: 18412253 DOI: 10.1002/cm.20280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubulin, the dimeric structural protein of microtubules, is a heterodimer of alpha and beta subunits; both alpha and beta exist as numerous isotypes encoded by different genes. In vertebrates the sequence differences among the beta(I), beta(II), beta(III), beta(IV) and beta(V) isotypes are highly conserved in evolution, implying that the isotypes may have functional significance. Isotype-specific monoclonal antibodies have been useful in determining the cellular and sub-cellular distributions and possible functions of the beta(I), beta(II), beta(III), and beta(IV) isotypes; however, little is known about the beta(V) isotype. We here report the creation and purification of a monoclonal antibody (SHM.12G11) specific for beta(V). The antibody was designed to be specific for the C-terminal sequence EEEINE, which is unique to rodent and chicken beta(V). The antibody was found to bind specifically to the C-terminal peptide EEEINE, and does not cross-react with the carboxy-termini of either alpha-tubulin or the other beta-tubulin isotypes. However, the antibody also binds to the peptide EEEVNE, but not to the peptide EEEIDG, corresponding respectively to the C-terminal peptides of bovine and human beta(V). Immunofluorescence analysis indicates that beta(V) is found in microtubules of both the interphase network and the mitotic spindle. In gerbils, beta(V) also occurs in the cochlea where it is found largely in the specialized cells that are unique in containing bundled microtubules with 15 protofilaments.
Collapse
Affiliation(s)
- Asok Banerjee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Qian D, Radde-Gallwitz K, Kelly M, Tyrberg B, Kim J, Gao WQ, Chen P. Basic helix-loop-helix gene Hes6 delineates the sensory hair cell lineage in the inner ear. Dev Dyn 2007; 235:1689-700. [PMID: 16534784 PMCID: PMC2810659 DOI: 10.1002/dvdy.20736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The basic helix-loop-helix (bHLH) gene Hes6 is known to promote neural differentiation in vitro. Here, we report the expression and functional studies of Hes6 in the inner ear. The expression of Hes6 appears to be parallel to that of Math1 (also known as Atoh1), a bHLH gene necessary and sufficient for hair cell differentiation. Hes6 is expressed initially in the presumptive hair cell precursors in the cochlea. Subsequently, the expression of Hes6 is restricted to morphologically differentiated hair cells. Similarly, the expression of Hes6 in the vestibule is in the hair cell lineage. Hes6 is dispensable for hair cell differentiation, and its expression in inner ear hair cells is abolished in the Math1-null animals. Furthermore, the introduction of Hes6 into the cochlea in vitro is not sufficient to promote sensory or neuronal differentiation. Therefore, Hes6 is downstream of Math1 and its expression in the inner ear delineates the sensory lineage. However, the role of Hes6 in the inner ear remains elusive.
Collapse
Affiliation(s)
- Dong Qian
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Michael Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Jaesang Kim
- Division of Molecular Life Sciences, Ewha Womans University, Seoul, Korea
| | - Wei-Qiang Gao
- Department of Molecular Biology Genentech South San Francisco, CA 94080
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Author for correspondence: , 404 727-1808 (Tel), 404 727-6256 (Fax)
| |
Collapse
|
27
|
Jensen-Smith H, Hallworth R. Lateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset. ACTA ACUST UNITED AC 2007; 64:705-17. [PMID: 17615570 PMCID: PMC1992524 DOI: 10.1002/cm.20217] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Specialized outer hair cells (OHCs) housed within the mammalian cochlea exhibit active, nonlinear, mechanical responses to auditory stimulation termed electromotility. The extraordinary frequency resolution capacity of the cochlea requires an exquisitely equilibrated mechanical system of sensory and supporting cells. OHC electromotile length change, stiffness, and force generation are responsible for a 100-fold increase in hearing sensitivity by augmenting vibrational input to non-motile sensory inner hair cells. Characterization of OHC mechanics is crucial for understanding and ultimately preventing permanent functional deficits due to overstimulation or as a consequence of various cochlear pathologies. The OHCs' major structural assembly is a highly-specialized lateral wall. The lateral wall consists of three structures; a plasma membrane highly-enriched with the motor-protein prestin, an actin-spectrin cortical lattice, and one or more layers of subsurface cisternae. Technical difficulties in independently manipulating each lateral wall constituent have constrained previous attempts to analyze the determinants of OHCs' mechanical properties. Temporal separations in the accumulation of each lateral wall constituent during postnatal development permit associations between lateral wall structure and OHC mechanics. We compared developing and adult gerbil OHC axial stiffness using calibrated glass fibers. Alterations in each lateral wall component and OHC stiffness were correlated as a function of age. Reduced F-actin labeling was correlated with reduced OHC stiffness before hearing onset. Prestin incorporation into the PM was correlated with increased OHC stiffness at hearing onset. Our data indicate lateral wall F-actin and prestin are the primary determinants of OHC mechanical properties before and after hearing onset, respectively.
Collapse
Affiliation(s)
- Heather Jensen-Smith
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA.
| | | |
Collapse
|
28
|
Sekiya T, Holley MC, Kojima K, Matsumoto M, Helyer R, Ito J. Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve. Eur J Neurosci 2007; 25:2307-18. [PMID: 17445229 DOI: 10.1111/j.1460-9568.2007.05478.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell transplantation is a realistic potential therapy for replacement of auditory sensory neurons and could benefit patients with cochlear implants or acoustic neuropathies. The procedure involves many experimental variables, including the nature and conditioning of donor cells, surgical technique and degree of degeneration in the host tissue. It is essential to control these variables in order to develop cell transplantation techniques effectively. We have characterized a conditionally immortal, mouse cell line suitable for transplantation to the auditory nerve. Structural and physiological markers defined the cells as early auditory neuroblasts that lacked neuronal, voltage-gated sodium or calcium currents and had an undifferentiated morphology. When transplanted into the auditory nerves of rats in vivo, the cells migrated peripherally and centrally and aggregated to form coherent, ectopic 'ganglia'. After 7 days they expressed beta 3-tubulin and adopted a similar morphology to native spiral ganglion neurons. They also developed bipolar projections aligned with the host nerves. There was no evidence for uncontrolled proliferation in vivo and cells survived for at least 63 days. If cells were transplanted with the appropriate surgical technique then the auditory brainstem responses were preserved. We have shown that immortal cell lines can potentially be used in the mammalian ear, that it is possible to differentiate significant numbers of cells within the auditory nerve tract and that surgery and cell injection can be achieved with no damage to the cochlea and with minimal degradation of the auditory brainstem response.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Kyoto University Graduate School of Medicine, Sakyou-ku, Kyoto, 606-8507 Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, Cotanche DA. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 2007; 232:29-43. [PMID: 17659854 PMCID: PMC2032013 DOI: 10.1016/j.heares.2007.06.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 06/06/2007] [Accepted: 06/08/2007] [Indexed: 11/27/2022]
Abstract
Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion, and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, they suggest that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea.
Collapse
Affiliation(s)
- Mark A Parker
- Department of Communication Sciences and Disorders, Emerson College, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Fritzsch B, Pauley S, Beisel KW. Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 2006; 1091:151-71. [PMID: 16643865 PMCID: PMC3904743 DOI: 10.1016/j.brainres.2006.02.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 01/19/2023]
Abstract
The development and evolution of mechanosensory cells and the vertebrate ear is reviewed with an emphasis on delineating the cellular, molecular and developmental basis of these changes. Outgroup comparisons suggests that mechanosensory cells are ancient features of multicellular organisms. Molecular evidence suggests that key genes involved in mechanosensory cell function and development are also conserved among metazoans. The divergent morphology of mechanosensory cells across phyla is interpreted here as 'deep molecular homology' that was in parallel shaped into different forms in each lineage. The vertebrate mechanosensory hair cell and its associated neuron are interpreted as uniquely derived features of vertebrates. It is proposed that the vertebrate otic placode presents a unique embryonic adaptation in which the diffusely distributed ancestral mechanosensory cells became concentrated to generate a large neurosensory precursor population. Morphogenesis of the inner ear is reviewed and shown to depend on genes expressed in and around the hindbrain that interact with the otic placode to define boundaries and polarities. These patterning genes affect downstream genes needed to maintain proliferation and to execute ear morphogenesis. We propose that fibroblast growth factors (FGFs) and their receptors (FGFRs) are a crucial central node to translate patterning into the complex morphology of the vertebrate ear. Unfortunately, the FGF and FGFR genes have not been fully analyzed in the many mutants with morphogenetic ear defects described thus far. Likewise, little information exists on the ear histogenesis and neurogenesis in many mutants. Nevertheless, a molecular mechanism is now emerging for the formation of the horizontal canal, an evolutionary novelty of the gnathostome ear. The existing general module mediating vertical canal growth and morphogenesis was modified by two sets of new genes: one set responsible for horizontal canal morphogenesis and another set for neurosensory formation of the horizontal crista and associated sensory neurons. The dramatic progress in deciphering the molecular basis of ear morphogenesis offers grounds for optimism for translational research toward intervention in human morphogenetic defects of the ear.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
31
|
Arai K, Matsumoto Y, Nagashima Y, Yagasaki K. Regulation of Class II β-Tubulin Expression by Tumor Suppressor p53 Protein in Mouse Melanoma Cells in Response toVincaAlkaloid. Mol Cancer Res 2006; 4:247-55. [PMID: 16603638 DOI: 10.1158/1541-7786.mcr-05-0183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The continuous exposure of antimicrotubule drugs to tumors often results in the emergence of drug-resistant tumor cells with altered expression of several beta-tubulin isotypes. We found that Vinca alkaloid enhanced expression of class II beta-tubulin isotype (mTUBB2) in mouse B16F10 melanoma cells via alteration of the tumor suppressor p53 protein. Vincristine treatment stimulated an increase in mTUBB2 mRNA expression and promoted accumulation of this isotype around the nuclei. Transient transfection assays employing a reporter construct, together with site-directed mutagenesis studies, suggested that the p53-binding site found in the first intron was a critical region for mTUBB2 expression. Electrophoretic mobility shift assay and associated antibody supershift experiments showed that vincristine promoted release of p53 protein from the binding site. In addition, exogenous induction of TAp63gamma (p51A), a homologue of p53, canceled the effect of vincristine on mTUBB2 expression. These results suggest that p53 protein may function as a suppressor of mTUBB2 expression and vincristine-mediated inhibition of p53 binding results in enhanced mTUBB2 expression. This phenomenon could be related with the emergence of drug-resistant tumor cells induced by Vinca alkaloid and may participate in determining the fate of these cells.
Collapse
Affiliation(s)
- Katsuhiko Arai
- Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | |
Collapse
|