1
|
Szwalec M, Bujnowicz Ł, Sarewicz M, Osyczka A. Unexpected Heme Redox Potential Values Implicate an Uphill Step in Cytochrome b6f. J Phys Chem B 2022; 126:9771-9780. [PMID: 36399615 PMCID: PMC9720722 DOI: 10.1021/acs.jpcb.2c05729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytochromes bc, key enzymes of respiration and photosynthesis, contain a highly conserved two-heme motif supporting cross-membrane electron transport (ET) that connects the two catalytic quinone-binding sites (Qn and Qp). Typically, this ET occurs from the low- to high-potential heme b, but in photosynthetic cytochrome b6f, the redox midpoint potentials (Ems) of these hemes remain uncertain. Our systematic redox titration analysis based on three independent and comprehensive low-temperature spectroscopies (continuous wave and pulse electron paramagnetic resonance (EPR) and optical spectroscopies) allowed for unambiguous assignment of spectral components of hemes in cytochrome b6f and revealed that Em of heme bn is unexpectedly low. Consequently, the cross-membrane ET occurs from the high- to low-potential heme introducing an uphill step in the energy landscape for the catalytic reaction. This slows down the ET through a low-potential chain, which can influence the mechanisms of reactions taking place at both Qp and Qn sites and modulate the efficiency of cyclic and linear ET in photosynthesis.
Collapse
|
2
|
Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. Comparison of proton transfer paths to the Q A and Q B sites of the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2022; 152:153-165. [PMID: 35344134 DOI: 10.1007/s11120-022-00906-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Modularity of membrane-bound charge-translocating protein complexes. Biochem Soc Trans 2021; 49:2669-2685. [PMID: 34854900 DOI: 10.1042/bst20210462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
Energy transduction is the conversion of one form of energy into another; this makes life possible as we know it. Organisms have developed different systems for acquiring energy and storing it in useable forms: the so-called energy currencies. A universal energy currency is the transmembrane difference of electrochemical potential (Δμ~). This results from the translocation of charges across a membrane, powered by exergonic reactions. Different reactions may be coupled to charge-translocation and, in the majority of cases, these reactions are catalyzed by modular enzymes that always include a transmembrane subunit. The modular arrangement of these enzymes allows for different catalytic and charge-translocating modules to be combined. Thus, a transmembrane charge-translocating module can be associated with different catalytic subunits to form an energy-transducing complex. Likewise, the same catalytic subunit may be combined with a different membrane charge-translocating module. In this work, we analyze the modular arrangement of energy-transducing membrane complexes and discuss their different combinations, focusing on the charge-translocating module.
Collapse
|
4
|
Sarewicz M, Pintscher S, Bujnowicz Ł, Wolska M, Artur Osyczka. The High-Spin Heme b L Mutant Exposes Dominant Reaction Leading to the Formation of the Semiquinone Spin-Coupled to the [2Fe-2S] + Cluster at the Q o Site of Rhodobacter capsulatus Cytochrome bc 1. Front Chem 2021; 9:658877. [PMID: 34026724 PMCID: PMC8138165 DOI: 10.3389/fchem.2021.658877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome bc 1 (mitochondrial complex III) catalyzes electron transfer from quinols to cytochrome c and couples this reaction with proton translocation across lipid membrane; thus, it contributes to the generation of protonmotive force used for the synthesis of ATP. The energetic efficiency of the enzyme relies on a bifurcation reaction taking place at the Qo site which upon oxidation of ubiquinol directs one electron to the Rieske 2Fe2S cluster and the other to heme b L. The molecular mechanism of this reaction remains unclear. A semiquinone spin-coupled to the reduced 2Fe2S cluster (SQo-2Fe2S) was identified as a state associated with the operation of the Qo site. To get insights into the mechanism of the formation of this state, we first constructed a mutant in which one of the histidine ligands of the iron ion of heme b L Rhodobacter capsulatus cytochrome bc 1 was replaced by asparagine (H198N). This converted the low-spin, low-potential heme into the high-spin, high-potential species which is unable to support enzymatic turnover. We performed a comparative analysis of redox titrations of antimycin-supplemented bacterial photosynthetic membranes containing native enzyme and the mutant. The titrations revealed that H198N failed to generate detectable amounts of SQo-2Fe2S under neither equilibrium (in dark) nor nonequilibrium (in light), whereas the native enzyme generated clearly detectable SQo-2Fe2S in light. This provided further support for the mechanism in which the back electron transfer from heme b L to a ubiquinone bound at the Qo site is mainly responsible for the formation of semiquinone trapped in the SQo-2Fe2S state in R. capusulatus cytochrome bc 1.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Pintscher
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Łukasz Bujnowicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Wolska
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
7
|
Francia F, Khalfaoui-Hassani B, Lanciano P, Musiani F, Noodleman L, Venturoli G, Daldal F. The cytochrome b lysine 329 residue is critical for ubihydroquinone oxidation and proton release at the Q o site of bacterial cytochrome bc 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:167-179. [PMID: 30550726 DOI: 10.1016/j.bbabio.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022]
Abstract
The ubihydroquinone:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important enzyme for photosynthesis and respiration. In bacteria like Rhodobacter capsulatus, this membrane complex has three subunits, the iron‑sulfur protein (ISP) with its Fe2S2 cluster, cyt c1 and cyt b, forming two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the electron transfer pathways originating from QH2 oxidation are known, but their associated proton release routes are less well defined. Earlier, we demonstrated that the His291 of cyt b is important for this latter process. In this work, using the bacterial cyt bc1 and site directed mutagenesis, we show that Lys329 of cyt b is also critical for electron and proton transfer at the Qo site. Of the mutants examined, Lys329Arg was photosynthesis proficient and had quasi-wild type cyt bc1 activity. In contrast, the Lys329Ala and Lys329Asp were photosynthesis-impaired and contained defective but assembled cyt bc1. In particular, the bifurcated electron transfer and associated proton(s) release reactions occurring during QH2 oxidation were drastically impaired in Lys329Asp mutant. Furthermore, in silico docking studies showed that in this mutant the location and the H-bonding network around the Fe2S2 cluster of ISP on cyt b surface was different than the wild type enzyme. Based on these experimental findings and theoretical considerations, we propose that the presence of a positive charge at position 329 of cyt b is critical for efficient electron transfer and proton release for QH2 oxidation at the Qo site of cyt bc1.
Collapse
Affiliation(s)
- Francesco Francia
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | | | - Pascal Lanciano
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Musiani
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Louis Noodleman
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA
| | - Giovanni Venturoli
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Generation of semiquinone-[2Fe-2S]+ spin-coupled center at the Qo site of cytochrome bc1 in redox-poised, illuminated photosynthetic membranes from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:145-153. [DOI: 10.1016/j.bbabio.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
|
9
|
Letts JA, Sazanov LA. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 2017; 24:800-808. [PMID: 28981073 DOI: 10.1038/nsmb.3460] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII2 and CIV (SC I+III2+IV, known as the respirasome), as well as with CIII2 alone (SC I+III2). CIII2 forms a supercomplex with CIV (SC III2+IV) and CV forms dimers (CV2). Recent cryo-EM studies have revealed the structures of SC I+III2+IV and SC I+III2. Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.
Collapse
Affiliation(s)
- James A Letts
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
10
|
Wang C, Glenn KC, Kessenich C, Bell E, Burzio LA, Koch MS, Li B, Silvanovich A. Safety assessment of dicamba mono-oxygenases that confer dicamba tolerance to various crops. Regul Toxicol Pharmacol 2016; 81:171-182. [PMID: 27575686 DOI: 10.1016/j.yrtph.2016.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Dicamba tolerant (DT) soybean, cotton and maize were developed through constitutive expression of dicamba mono-oxygenase (DMO) in chloroplasts. DMO expressed in three DT crops exhibit 91.6-97.1% amino acid sequence identity to wild type DMO. All DMO forms maintain the characteristics of Rieske oxygenases that have a history of safe use. Additionally, they are all functionally similar in vivo since the three DT crops are all tolerant to dicamba treatment. None of these DMO sequences were found to have similarity to any known allergens or toxins. Herein, to further understand the safety of these DMO variants, a weight of evidence approach was employed. Each purified DMO protein was found to be completely deactivated in vitro by heating at temperatures 55 °C and above, and all were completely digested within 30 s or 5 min by pepsin and pancreatin, respectively. Mice orally dosed with each of these DMO proteins showed no adverse effects as evidenced by analysis of body weight gain, food consumption and clinical observations. Therefore, the weight of evidence from all these protein safety studies support the conclusion that the various forms of DMO proteins introduced into DT soybean, cotton and maize are safe for food and feed consumption, and the small amino acid sequence differences outside the active site of DMO do not raise any additional safety concerns.
Collapse
MESH Headings
- Administration, Oral
- Amino Acid Sequence
- Animals
- Computational Biology
- Consumer Product Safety
- Crops, Agricultural/enzymology
- Crops, Agricultural/genetics
- Crops, Agricultural/toxicity
- Databases, Protein
- Dicamba/pharmacology
- Drug Resistance/genetics
- Enzyme Stability
- Female
- Food Safety
- Food, Genetically Modified/parasitology
- Food, Genetically Modified/toxicity
- Gene Expression Regulation, Plant
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/toxicity
- Herbicides/pharmacology
- Humans
- Male
- Mice
- Mixed Function Oxygenases/administration & dosage
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Mixed Function Oxygenases/toxicity
- Oxidoreductases, O-Demethylating/toxicity
- Pancreatin/metabolism
- Pepsin A/metabolism
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/toxicity
- Protein Denaturation
- Proteolysis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/toxicity
- Risk Assessment
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/toxicity
- Stenotrophomonas maltophilia/enzymology
- Stenotrophomonas maltophilia/genetics
- Temperature
- Toxicity Tests, Acute
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/toxicity
Collapse
Affiliation(s)
- Cunxi Wang
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA.
| | - Kevin C Glenn
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Colton Kessenich
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Erin Bell
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Luis A Burzio
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Michael S Koch
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Bin Li
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Andre Silvanovich
- Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| |
Collapse
|
11
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
12
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Fu H, Jin M, Ju L, Mao Y, Gao H. Evidence for function overlapping of CymA and the cytochrome bc1 complex in the Shewanella oneidensis nitrate and nitrite respiration. Environ Microbiol 2014; 16:3181-95. [PMID: 24650148 DOI: 10.1111/1462-2920.12457] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/23/2014] [Accepted: 03/16/2014] [Indexed: 11/29/2022]
Abstract
Shewanella oneidensis is an important model organism for its versatility of anaerobic respiration. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, plays a central role in anaerobic respiration by transferring electrons from the quinone pool to a variety of terminal reductases. Although loss of CymA results in defect in respiration of many electron acceptors (EAs), a significant share of the capacity remains in general. In this study, we adopted a transposon random mutagenesis method in a cymA null mutant to identify substituent(s) of CymA with respect to nitrite and nitrate respiration. A total of 87 insertion mutants, whose ability to reduce nitrite was further impaired, were obtained. Among the interrupted genes, the petABC operon appeared to be the most likely candidate given the involvement of the cytochrome bc1 complex that it encodes in electron transport. Subsequent analyses not only confirmed that the complex and CymA were indeed functionally overlapping in nitrate/nitrite respiration but also revealed that both proteins were able to draw electrons from ubiquinone and menaquinone. Furthermore, we found that expression of the bc1 complex was affected by oxygen but not nitrate or nitrite and by global regulators ArcA and Crp in an indirect manner.
Collapse
Affiliation(s)
- Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
14
|
Cooley JW. Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1340-5. [PMID: 23876289 DOI: 10.1016/j.bbabio.2013.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/23/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
Early structures of the cytochrome bc1 complex revealed heterogeneity in the position of the soluble portion of the Rieske iron sulfur protein subunit, implicating a movement of this domain during function. Subsequent biochemical and biophysical works have firmly established that the motion of this subunit acts in the capacity of a conformationally assisted electron transfer step during the already complicated catalytic mechanism described within the modified version of Peter Mitchells Q cycle. How the movement of this subunit is initiated or how the frequency of its motion is controlled as a function of other steps during the catalysis remain topics of debate within the active research communities. This review addresses the historical aspects of the discovery and description of this movement, while attempting to provide a context for the involvement of conformational motion in the catalysis and efficiency of the enzyme. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Jason W Cooley
- Department of Chemistry, University of Missouri, Columbia, MO 65211-7600, USA.
| |
Collapse
|
15
|
Hasan SS, Stofleth JT, Yamashita E, Cramer WA. Lipid-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 2013; 52:2649-54. [PMID: 23514009 DOI: 10.1021/bi301638h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome b6f catalyzes quinone redox reactions within photosynthetic membranes to generate a transmembrane proton electrochemical gradient for ATP synthesis. A key step involves the transfer of an electron from the [2Fe-2S] cluster of the iron-sulfur protein (ISP) extrinsic domain to the cytochrome f heme across a distance of 26 Å, which is too large for competent electron transfer but could be bridged by translation-rotation of the ISP. Here we report the first crystallographic evidence of significant motion of the ISP extrinsic domain. It is inferred that extensive crystallographic disorder of the ISP extrinsic domain indicates conformational flexibility. The ISP disorder observed in this structure, in contrast to the largely ordered ISP structure observed in the b6f complex supplemented with neutral lipids, is attributed to electrostatic interactions arising from anionic lipids.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
16
|
Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1295-308. [PMID: 23507619 DOI: 10.1016/j.bbabio.2013.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 12/30/2022]
Abstract
Structure-function properties of the cytochrome b6f complex are sufficiently unique compared to those of the cytochrome bc1 complex that b6f should not be considered a trivially modified bc1 complex. A unique property of the dimeric b6f complex is its involvement in transmembrane signaling associated with the p-side oxidation of plastoquinol. Structure analysis of lipid binding sites in the cyanobacterial b6f complex prepared by hydrophobic chromatography shows that the space occupied by the H transmembrane helix in the cytochrome b subunit of the bc1 complex is mostly filled by a lipid in the b6f crystal structure. It is suggested that this space can be filled by the domain of a transmembrane signaling protein. The identification of lipid sites and likely function defines the intra-membrane conserved central core of the b6f complex, consisting of the seven trans-membrane helices of the cytochrome b and subunit IV polypeptides. The other six TM helices, contributed by cytochrome f, the iron-sulfur protein, and the four peripheral single span subunits, define a peripheral less conserved domain of the complex. The distribution of conserved and non-conserved domains of each monomer of the complex, and the position and inferred function of a number of the lipids, suggests a model for the sequential assembly in the membrane of the eight subunits of the b6f complex, in which the assembly is initiated by formation of the cytochrome b6-subunit IV core sub-complex in a monomer unit. Two conformations of the unique lipidic chlorophyll a, defined in crystal structures, are described, and functions of the outlying β-carotene, a possible 'latch' in supercomplex formation, are discussed. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
|
17
|
Fusing proteins as an approach to study bioenergetic enzymes and processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1847-51. [PMID: 22484274 DOI: 10.1016/j.bbabio.2012.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Fusing proteins is an attractive genetic tool used in several biochemical and biophysical investigations. Within a group of redox proteins, certain fusion constructs appear to provide valuable templates for spectroscopy with which specific bioenergetic questions can be addressed. Here we briefly summarize three different cases of fusions reported for bacterial cytochrome bc(1) (prokaryotic equivalent of mitochondrial respiratory complex III), a common component of electron transport chains. These fusions were used to study supramolecular organization of enzymatic complexes in bioenergetic membrane, influence of the accessory subunits on the activity and stability of the complex, and molecular mechanism of operation of the enzyme in the context of its dimeric structure. Besides direct connotation to molecular bioenergetics, these fusions also appeared interesting from the protein design, biogenesis, and assembly points of view. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
18
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Czapla M, Borek A, Sarewicz M, Osyczka A. Fusing two cytochromes b of Rhodobacter capsulatus cytochrome bc1 using various linkers defines a set of protein templates for asymmetric mutagenesis. Protein Eng Des Sel 2011; 25:15-25. [PMID: 22119789 PMCID: PMC3276305 DOI: 10.1093/protein/gzr055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytochrome bc1 (mitochondrial complex III), one of the key enzymes of biological energy conversion, is a functional homodimer in which each monomer contains three catalytic subunits: cytochrome c1, the iron–sulfur subunit and cytochrome b. The latter is composed of eight transmembrane α-helices which, in duplicate, form a hydrophobic core of a dimer. We show that two cytochromes b can be fused into one 16-helical subunit using a number of different peptide linkers that vary in length but all connect the C-terminus of one cytochrome with the N-terminus of the other. The fusion proteins replace two cytochromes b in the dimer defining a set of available protein templates for introducing mutations that allow breaking symmetry of a dimer. A more detailed comparison of the form with the shortest, 3 amino acid, linker to the form with 12 amino acid linker established that both forms display similar level of structural plasticity to accommodate several, but not all, asymmetric patterns of mutations that knock out individual segments of cofactor chains. While the system based on a fused gene does not allow for the assessments of the functionality of electron-transfer paths in vivo, the family of proteins with fused cytochrome b offers attractive model for detailed investigations of molecular mechanism of catalysis at in vitro/reconstitution level.
Collapse
Affiliation(s)
- Monika Czapla
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | | | | |
Collapse
|
20
|
Halsey CM, Oshokoya OO, Jiji RD, Cooley JW. Deep-UV Resonance Raman Analysis of theRhodobacter capsulatusCytochromebc1Complex Reveals a Potential Marker for the Transmembrane Peptide Backbone. Biochemistry 2011; 50:6531-8. [DOI: 10.1021/bi200596w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Lee DW, El Khoury Y, Francia F, Zambelli B, Ciurli S, Venturoli G, Hellwig P, Daldal F. Zinc inhibition of bacterial cytochrome bc(1) reveals the role of cytochrome b E295 in proton release at the Q(o) site. Biochemistry 2011; 50:4263-72. [PMID: 21500804 DOI: 10.1021/bi200230e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 μM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 μM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
de Lacroix de Lavalette A, Barucq L, Alric J, Rappaport F, Zito F. Is the redox state of the ci heme of the cytochrome b6f complex dependent on the occupation and structure of the Qi site and vice versa? J Biol Chem 2009; 284:20822-9. [PMID: 19478086 DOI: 10.1074/jbc.m109.016709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oxidoreductases of the cytochrome bc(1)/b(6)f family transfer electrons from a liposoluble quinol to a soluble acceptor protein and contribute to the formation of a transmembrane electrochemical potential. The crystal structure of cyt b(6)f has revealed the presence in the Q(i) site of an atypical c-type heme, heme c(i). Surprisingly, the protein does not provide any axial ligand to the iron of this heme, and its surrounding structure suggests it can be accessed by exogenous ligand. In this work we describe a mutagenesis approach aimed at characterizing the c(i) heme and its interaction with the Q(i) site environment. We engineered a mutant of Chlamydomonas reinhardtii in which Phe(40) from subunit IV was substituted by a tyrosine. This results in a dramatic slowing down of the reoxidation of the b hemes under single flash excitation, suggesting hindered accessibility of the heme to its quinone substrate. This modified accessibility likely originates from the ligation of the heme iron by the phenol(ate) side chain introduced by the mutation. Indeed, it also results in a marked downshift of the c(i) heme midpoint potential (from +100 mV to -200 mV at pH 7). Yet the overall turnover rate of the mutant cytochrome b(6)f complex under continuous illumination was found similar to the wild type one, both in vitro and in vivo. We propose that, in the mutant, a change in the ligation state of the heme upon its reduction could act as a redox switch that would control the accessibility of the substrate to the heme and trigger the catalysis.
Collapse
|
23
|
Lee DW, Oztürk Y, Osyczka A, Cooley JW, Daldal F. Cytochrome bc1-cy fusion complexes reveal the distance constraints for functional electron transfer between photosynthesis components. J Biol Chem 2008; 283:13973-82. [PMID: 18343816 DOI: 10.1074/jbc.m800091200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt c(y)) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-c(y) fusion complex that supported Ps growth solely relying on membrane-confined ET ( Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta 1757, 346-352 ). In this work, we further characterized this cyt bc1-c(y) fusion complex, and used its derivatives with shorter cyt c(y) linkers as "molecular rulers" to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-c(y) fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt c(y) linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt c(y) linker decreased drastically this electronic coupling between the cyt bc1-c(y) fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt c(y) linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-c(y) fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are "hardwired" for cyclic ET.
Collapse
|
24
|
Qian P, Bullough PA, Hunter CN. Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 2008; 283:14002-11. [PMID: 18326046 DOI: 10.1074/jbc.m800625200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A three-dimensional model of the dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) complex from Rhodobacter sphaeroides, calculated from electron microscope single particle analysis of negatively stained complexes, shows that the two halves of the dimer molecule incline toward each other on the periplasmic side, creating a remarkable V-shaped structure. The distribution of negative stain is consistent with loose packing of the LH1 ring near the 14th LH1 alpha/beta pair, which could facilitate the migration of quinone and quinol molecules across the LH1 boundary. The three-dimensional model encloses a space near the reaction center Q(B) site and the 14th LH1 alpha/beta pair, which is approximately 20 angstroms in diameter, sufficient to sequester a quinone pool. Helical arrays of dimers were used to construct a three-dimensional membrane model, which matches the packing lattice deduced from electron microscope analysis of the tubular dimer-only membranes found in mutants of Rba. sphaeroides lacking the LH2 complex. The intrinsic curvature of the dimer explains the shape and approximately 70-nm diameter of these membrane tubules, and at least partially accounts for the spherical membrane invaginations found in wild-type Rba. sphaeroides. A model of dimer aggregation and membrane curvature in these spherical membrane invaginations is presented.
Collapse
Affiliation(s)
- Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
25
|
Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 2007; 190:843-50. [PMID: 17993531 DOI: 10.1128/jb.01417-07] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.
Collapse
|
26
|
Giachini L, Francia F, Veronesi G, Lee DW, Daldal F, Huang LS, Berry EA, Cocco T, Papa S, Boscherini F, Venturoli G. X-Ray absorption studies of Zn2+ binding sites in bacterial, avian, and bovine cytochrome bc1 complexes. Biophys J 2007; 93:2934-51. [PMID: 17573435 PMCID: PMC1989705 DOI: 10.1529/biophysj.107.110957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of Zn2+ has been shown previously to inhibit the ubiquinol cytochrome c oxidoreductase (cyt bc1 complex). X-ray diffraction data in Zn-treated crystals of the avian cyt bc1 complex identified two binding sites located close to the catalytic Qo site of the enzyme. One of them (Zn01) might interfere with the egress of protons from the Qo site to the aqueous phase. Using Zn K-edge x-ray absorption fine-structure spectroscopy, we report here on the local structure of Zn2+ bound stoichiometrically to noncrystallized cyt bc1 complexes. We performed a comparative x-ray absorption fine-structure spectroscopy study by examining avian, bovine, and bacterial enzymes. A large number of putative clusters, built by combining information from first-shell analysis and metalloprotein databases, were fitted to the experimental spectra by using ab initio simulations. This procedure led us to identify the binding clusters with high levels of confidence. In both the avian and bovine enzyme, a tetrahedral ligand cluster formed by two His, one Lys, and one carboxylic residue was found, and this ligand attribution fit the crystallographic Zn01 location of the avian enzyme. In the chicken enzyme, the ligands were the His121, His268, Lys270, and Asp253 residues, and in the homologous bovine enzyme they were the His121, His267, Lys269, and Asp254 residues. Zn2+ bound to the bacterial cyt bc1 complex exhibited quite different spectral features, consistent with a coordination number of 6. The best-fit octahedral cluster was formed by one His, two carboxylic acids, one Gln or Asn residue, and two water molecules. It was interesting that by aligning the crystallographic structures of the bacterial and avian enzymes, this group of residues was found located in the region homologous to that of the Zn01 site. This cluster included the His276, Asp278, Glu295, and Asn279 residues of the cyt b subunit. The conserved location of the Zn2+ binding sites at the entrance of the putative proton release pathways, and the presence of His residues point to a common mechanism of inhibition. As previously shown for the photosynthetic bacterial reaction center, zinc would compete with protons for binding to the His residues, thus impairing their function as proton donors/acceptors.
Collapse
Affiliation(s)
- Lisa Giachini
- Department of Physics, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Forquer I, Covian R, Bowman MK, Trumpower BL, Kramer DM. Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc1 complex. J Biol Chem 2006; 281:38459-65. [PMID: 17008316 DOI: 10.1074/jbc.m605119200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria play critical roles in their respective electron transport chains. The quinol oxidase (Q(o)) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low potential cytochrome b heme and the "Rieske" iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a "Q-cycle" mechanism, which generates proton motive force for ATP synthesis. Since semiquinone intermediates of quinol oxidation are generally highly reactive, one of the key questions in this field is: how does the Q(o) site oxidize quinol without the production of deleterious side reactions including superoxide production? We attempt to test three possible general models to account for this behavior: 1) The Q(o) site semiquinone (or quinol-imidazolate complex) is unstable and thus occurs at a very low steady-state concentration, limiting O(2) reduction; 2) the Q(o) site semiquinone is highly stabilized making it unreactive toward oxygen; and 3) the Q(o) site catalyzes a quantum mechanically coupled two-electron/two-proton transfer without a semiquinone intermediate. Enthalpies of activation were found to be almost identical between the uninhibited Q-cycle and superoxide production in the presence of antimycin A in wild type. This behavior was also preserved in a series of mutants with altered driving forces for quinol oxidation. Overall, the data support models where the rate-limiting step for both Q-cycle and superoxide production is essentially identical, consistent with model 1 but requiring modifications to models 2 and 3.
Collapse
Affiliation(s)
- Isaac Forquer
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | |
Collapse
|
28
|
Mooser D, Maneg O, MacMillan F, Malatesta F, Soulimane T, Ludwig B. The menaquinol-oxidizing cytochrome bc complex from Thermus thermophilus: Protein domains and subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1084-95. [PMID: 16908008 DOI: 10.1016/j.bbabio.2006.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/27/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
A recently resolved respiratory complex III, isolated from the extreme thermophile Thermus thermophilus, is discussed in terms of cofactor and subunit composition, and with respect to the origin of its protein modules. The four polypeptides, encoded by a single operon, share general homologies to canonical complexes both of the bc and b6f type, but exhibit some unexpected features as well. Evidence for high thermostability of the isolated protein and for its quinol substrate specificity is derived from EPR and kinetic measurements. A functional integration of this complex into an aerobic electron transfer scheme, connecting known dehydrogenase activities to the terminal oxidase branches of Thermus is outlined, as well as the specific principles of redox protein interactions prevailing at high temperature. Findings from this enzyme are linked to present knowledge on other menaquinol oxidizing bc complexes.
Collapse
Affiliation(s)
- Daniela Mooser
- Molekulare Genetik, Institut für Biochemie, Biozentrum der J. W. Goethe-Universität, 60439 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Jones MR. Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 2006; 46:56-87. [PMID: 16963124 DOI: 10.1016/j.plipres.2006.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 12/19/2022]
Abstract
Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
30
|
Lee DW, Ozturk Y, Mamedova A, Osyczka A, Cooley JW, Daldal F. A functional hybrid between the cytochrome bc1 complex and its physiological membrane-anchored electron acceptor cytochrome cy in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:346-52. [PMID: 16781662 DOI: 10.1016/j.bbabio.2006.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/07/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The membrane integral ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductase (or the cyt bc1 complex) and its physiological electron acceptor, the membrane-anchored cytochrome cy (cyt cy), are discrete components of photosynthetic and respiratory electron transport chains of purple non-sulfur, facultative phototrophic bacteria of Rhodobacter species. In Rhodobacter capsulatus, it has been observed previously that, depending on the growth condition, absence of the cyt bc1 complex is often correlated with a similar lack of cyt cy (Jenney, F. E., et al. (1994) Biochemistry 33, 2496-2502), as if these two membrane integral components form a non-transient larger structure. To probe whether such a structural super complex can exist in photosynthetic or respiratory membranes, we attempted to genetically fuse cyt cy to the cyt bc1 complex. Here, we report successful production, and initial characterization, of a functional cyt bc1-cy fusion complex that supports photosynthetic growth of an appropriate R. capsulatus mutant strain. The three-subunit cyt bc1-cy fusion complex has an unprecedented bis-heme cyt c1-cy subunit instead of the native mono-heme cyt c1, is efficiently matured and assembled, and can sustain cyclic electron transfer in situ. The remarkable ability of R. capsulatus cells to produce a cyt bc1-cy fusion complex supports the notion that structural super complexes between photosynthetic or respiratory components occur to ensure efficient cellular energy production.
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biology, Plant Science Institute, The Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Cape JL, Bowman MK, Kramer DM. Understanding the cytochrome bc complexes by what they don't do. The Q-cycle at 30. TRENDS IN PLANT SCIENCE 2006; 11:46-55. [PMID: 16352458 DOI: 10.1016/j.tplants.2005.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/20/2005] [Accepted: 11/25/2005] [Indexed: 05/05/2023]
Abstract
The cytochrome (cyt) bc(1), b(6)f and related complexes are central components of the respiratory and photosynthetic electron transport chains. These complexes carry out an extraordinary sequence of electron and proton transfer reactions that conserve redox energy in the form of a trans-membrane proton motive force for use in synthesizing ATP and other processes. Thirty years ago, Peter Mitchell proposed a general turnover mechanism for these complexes, which he called the Q-cycle. Since that time, many opposing schemes have challenged the Q-cycle but, with the accumulation of large amounts of biochemical, kinetic, thermodynamic and high-resolution structural data, the Q-cycle has triumphed as the accepted model, although some of the intermediate steps are poorly understood and still controversial. One of the major research questions concerning the cyt bc(1) and b(6)f complexes is how these enzymes suppress deleterious and dissipative side reactions. In particular, most Q-cycle models involve reactive semiquinone radical intermediates that can reduce O(2) to superoxide and lead to cellular oxidative stress. Current models to explain the avoidance of side reactions involve unprecedented or unusual enzyme mechanisms, the testing of which will involve new theoretical and experimental approaches.
Collapse
Affiliation(s)
- Jonathan L Cape
- Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, WA 99164-6314, USA
| | | | | |
Collapse
|
32
|
Cooley JW, Ohnishi T, Daldal F. Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc1 complex. Biochemistry 2005; 44:10520-32. [PMID: 16060661 PMCID: PMC1360200 DOI: 10.1021/bi050571+] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple instances of low-potential electron-transport pathway inhibitors that affect the structure of the cytochrome (cyt) bc(1) complex to varying degrees, ranging from changes in hydroquinone (QH(2)) oxidation and cyt c(1) reduction kinetics to proteolytic accessibility of the hinge region of the iron-sulfur-containing subunit (Fe/S protein), have been reported. However, no instance has been documented of any ensuing change on the environment(s) of the [2Fe-2S] cluster. In this work, this issue was addressed in detail by taking advantage of the increased spectral and spatial resolution obtainable with orientation-dependent electron paramagnetic resonance (EPR) spectroscopic analysis of ordered membrane preparations. For the first time, perturbation of the low-potential electron-transport pathway by Q(i)-site inhibitors or various mutations was shown to change the EPR spectra of both the cyt b hemes and the [2Fe-2S] cluster of the Fe/S protein. In particular, two interlinked effects of Q(i)-site modifications on the Fe/S subunit, one changing the local environment of its [2Fe-2S] cluster and a second affecting the mobility of this subunit, are revealed. Remarkably, different inhibitors and mutations at or near the Q(i) site induce these two effects differently, indicating that the events occurring at the Q(i) site affect the global structure of the cyt bc(1). Furthermore, occupancy of discrete Q(i)-site subdomains differently impede the location of the Fe/S protein at the Q(o) site. These findings led us to propose that antimycin A and HQNO mimic the presence of QH(2) and Q at the Q(i) site, respectively. Implications of these findings in respect to the Q(o)-Q(i) sites communications and to multiple turnovers of the cyt bc(1) are discussed.
Collapse
Affiliation(s)
| | - Tomoko Ohnishi
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA 19104
| | - Fevzi Daldal
- Department of Biology, Plant Science Institute and
- *To whom correspondence should be addressed: Phone: (215) 898-4394 Fax: (215) 898-8780 E-mail:
| |
Collapse
|
33
|
Alric J, Pierre Y, Picot D, Lavergne J, Rappaport F. Spectral and redox characterization of the heme ci of the cytochrome b6f complex. Proc Natl Acad Sci U S A 2005; 102:15860-5. [PMID: 16247018 PMCID: PMC1276102 DOI: 10.1073/pnas.0508102102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absorption spectra of the purified cytochrome b(6)f complex from Chlamydomonas reinhardtii were monitored as a function of the redox potential. Four spectral and redox components were identified: in addition to heme f and the two b hemes, the fourth component must be the new heme c(i) (also denoted x) recently discovered in the crystallographic structures. This heme is covalently attached to the protein, but has no amino acid axial ligand. It is located in the plastoquinone-reducing site Q(i) in the immediate vicinity of a b heme. Each heme titrated as a one-electron Nernst curve, with midpoint potentials at pH 7.0 of -130 mV and -35 mV (hemes b), +100 mV (heme c(i)), and +355 mV (heme f). The reduced minus oxidized spectrum of heme c(i) consists of a broad absorption increase centered approximately 425 nm. Its potential has a dependence of -60 mV/pH unit, implying that the reduced form binds one proton in the pH 6-9 range. The Q(i) site inhibitor 2-n-nonyl-4-hydroxyquinoline N-oxide, a semiquinone analogue, induces a shift of this potential by about -225 mV. The spectrum of c(i) matches the absorption changes previously observed in vivo for an unknown redox center denoted "G." The data are discussed with respect to the effect of the membrane potential on the electron transfer equilibrium between G and heme b(H) found in earlier experiments.
Collapse
Affiliation(s)
- Jean Alric
- Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique-Université Paris 7, France
| | | | | | | | | |
Collapse
|
34
|
Cooley JW, Ohnishi T, Daldal F. Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc1 complex. Biochemistry 2005. [PMID: 16060661 DOI: 10.1021/bi050571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple instances of low-potential electron-transport pathway inhibitors that affect the structure of the cytochrome (cyt) bc(1) complex to varying degrees, ranging from changes in hydroquinone (QH(2)) oxidation and cyt c(1) reduction kinetics to proteolytic accessibility of the hinge region of the iron-sulfur-containing subunit (Fe/S protein), have been reported. However, no instance has been documented of any ensuing change on the environment(s) of the [2Fe-2S] cluster. In this work, this issue was addressed in detail by taking advantage of the increased spectral and spatial resolution obtainable with orientation-dependent electron paramagnetic resonance (EPR) spectroscopic analysis of ordered membrane preparations. For the first time, perturbation of the low-potential electron-transport pathway by Q(i)-site inhibitors or various mutations was shown to change the EPR spectra of both the cyt b hemes and the [2Fe-2S] cluster of the Fe/S protein. In particular, two interlinked effects of Q(i)-site modifications on the Fe/S subunit, one changing the local environment of its [2Fe-2S] cluster and a second affecting the mobility of this subunit, are revealed. Remarkably, different inhibitors and mutations at or near the Q(i) site induce these two effects differently, indicating that the events occurring at the Q(i) site affect the global structure of the cyt bc(1). Furthermore, occupancy of discrete Q(i)-site subdomains differently impede the location of the Fe/S protein at the Q(o) site. These findings led us to propose that antimycin A and HQNO mimic the presence of QH(2) and Q at the Q(i) site, respectively. Implications of these findings in respect to the Q(o)-Q(i) sites communications and to multiple turnovers of the cyt bc(1) are discussed.
Collapse
Affiliation(s)
- Jason W Cooley
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
35
|
Mather MW, Darrouzet E, Valkova-Valchanova M, Cooley JW, McIntosh MT, Daldal F, Vaidya AB. Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system. J Biol Chem 2005; 280:27458-65. [PMID: 15917236 PMCID: PMC1421511 DOI: 10.1074/jbc.m502319200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atovaquone is an antiparasitic drug that selectively inhibits electron transport through the parasite mitochondrial cytochrome bc1 complex and collapses the mitochondrial membrane potential at concentrations far lower than those at which the mammalian system is affected. Because this molecule represents a new class of antimicrobial agents, we seek a deeper understanding of its mode of action. To that end, we employed site-directed mutagenesis of a bacterial cytochrome b, combined with biophysical and biochemical measurements. A large scale domain movement involving the iron-sulfur protein subunit is required for electron transfer from cytochrome b-bound ubihydroquinone to cytochrome c1 of the cytochrome bc1 complex. Here, we show that atovaquone blocks this domain movement by locking the iron-sulfur subunit in its cytochrome b-binding conformation. Based on our malaria atovaquone resistance data, a series of cytochrome b mutants was produced that were predicted to have either enhanced or reduced sensitivity to atovaquone. Mutations altering the bacterial cytochrome b at its ef loop to more closely resemble Plasmodium cytochrome b increased the sensitivity of the cytochrome bc1 complex to atovaquone. A mutation within the ef loop that is associated with resistant malaria parasites rendered the complex resistant to atovaquone, thereby providing direct proof that the mutation causes atovaquone resistance. This mutation resulted in a 10-fold reduction in the in vitro activity of the cytochrome bc1 complex, suggesting that it may exert a cost on efficiency of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Michael W. Mather
- From the Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129 and
| | - Elisabeth Darrouzet
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Maria Valkova-Valchanova
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jason W. Cooley
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael T. McIntosh
- From the Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129 and
| | - Fevzi Daldal
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Akhil B. Vaidya
- From the Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129 and
- To whom correspondence should be addressed: Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129 USA. Tel.: 215-991-8557; E-mail:
| |
Collapse
|
36
|
Abstract
Mitchell's key insight that all bioenergetic membranes run on the conversion of redox energy into transmembrane electrical and proton gradients took the form 30 years ago of a working model of the Q cycle of cytochrome bc1, which operates reversibly on coupled electron and proton transfers of quinone at two binding sites on opposite membrane faces. His remarkable model still stands today, but he had no structural information to provide understanding into how dangerous short-circuit redox reactions were avoided. Now, it is clear that the Q cycle must be fixed with a special mechanism that avoids semiquinone-mediated short circuits. Either the redox states of the quinone electron-transfer partners double-gate the semiquinone-intermediate stability, or semiquinone is avoided altogether in concerted double-electron transfer.
Collapse
Affiliation(s)
- Artur Osyczka
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|