1
|
Garat CV, Majka SM, Sullivan TM, Crossno JT, Reusch JE, Klemm DJ. CREB depletion in smooth muscle cells promotes medial thickening, adventitial fibrosis and elicits pulmonary hypertension. Pulm Circ 2020; 10:2045894019898374. [PMID: 32313640 PMCID: PMC7158261 DOI: 10.1177/2045894019898374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
Levels of the cAMP-responsive transcription factor, CREB, are reduced in medial smooth muscle cells in remodeled pulmonary arteries from hypertensive calves and rats with chronic hypoxia-induced pulmonary hypertension. Here, we show that chronic hypoxia fails to promote CREB depletion in pulmonary artery smooth muscle cells or elicit significant remodeling of the pulmonary arteries in mice, suggesting that sustained CREB expression prevents hypoxia-induced pulmonary artery remodeling. This hypothesis was tested by generating mice, in which CREB was ablated in smooth muscle cells. Loss of CREB in smooth muscle cells stimulated pulmonary artery thickening, right ventricular hypertrophy, profound adventitial collagen deposition, recruitment of myeloid cells to the adventitia, and elevated right ventricular systolic pressure without exposure to chronic hypoxia. Isolated murine CREB-null smooth muscle cells exhibited serum-independent proliferation and hypertrophy in vitro and medium conditioned by CREB-null smooth muscle cells stimulated proliferation and expression of extracellular matrix proteins by adventitial fibroblasts. We conclude that CREB governs the pathologic switch from homeostatic, quiescent smooth muscle cells to proliferative, synthetic cells that drive arterial remodeling contributing to the development or pulmonary hypertension.
Collapse
Affiliation(s)
- Chrystelle V. Garat
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Susan M. Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Denver, CO, USA
| | - Timothy M. Sullivan
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Joseph T. Crossno
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Jane E.B. Reusch
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Endocrinology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Dwight J. Klemm
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, USA
- Geriatric Research, Education and Clinical Center, Veterans Administration, Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
2
|
Lott ME, Slocomb JE, Gao Z, Gabbay RA, Quillen D, Gardner TW, Bettermann K. Impaired coronary and retinal vasomotor function to hyperoxia in Individuals with Type 2 diabetes. Microvasc Res 2015; 101:1-7. [PMID: 26002545 DOI: 10.1016/j.mvr.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE Adults with diabetes are at a high risk of developing coronary heart disease. The purpose of this study was to assess coronary artery vascular function non-invasively in individuals with and without Type 2 diabetes and to compare these coronary responses to another microvascular bed (i.e. retina). We hypothesized that individuals with diabetes would have impaired coronary reactivity and that these impairments would be associated with impairments in retinal reactivity. METHODS Coronary blood velocity (Transthoracic Doppler Echocardiography) and retinal diameters (Dynamic Vessel Analyzer) were measured continuously during five minutes of breathing 100% oxygen (i.e. hyperoxia) in 15 persons with Type 2 diabetes and 15 age-matched control subjects. Using fundus photographs, retinal vascular calibers were also measured (central retinal arteriole and venule equivalents). RESULTS Individuals with diabetes compared to controls had impaired coronary (-2.34±16.64% vs. -14.27±10.58%, P=0.03) and retinal (arteriole: -0.04±3.34% vs. -3.65±5.07%, P=0.03; venule: -1.65±3.68% vs. -5.23±5.47%, P=0.05) vasoconstrictor responses to hyperoxia, and smaller central arteriole-venule equivalent ratios (0.83±0.07 vs. 0.90±0.07, P=0.014). Coronary reactivity was associated with central retinal arteriole equivalents (r=-0.516, P=0.005) and retinal venular reactivity (r=0.387, P=0.034). CONCLUSION Diabetes impairs coronary and retinal microvascular function to hyperoxia. Impaired vasoconstrictor responses may be part of a systemic diabetic vasculopathy, which may contribute to adverse cardiovascular events in individuals with diabetes.
Collapse
Affiliation(s)
- Mary E Lott
- Penn State Hershey Medical Center, Heart and Vascular Institute, Hershey, PA 17033, USA.
| | - Julia E Slocomb
- John Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Zhaohui Gao
- Penn State Hershey Medical Center, Heart and Vascular Institute, Hershey, PA 17033, USA
| | - Robert A Gabbay
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02116, USA
| | - David Quillen
- Penn State Hershey Medical Center, Department of Ophthalmology, Hershey, PA 17033, USA
| | - Thomas W Gardner
- University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Kerstin Bettermann
- Penn State Hershey Medical Center, Department of Neurology, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Balogh A, Németh M, Koloszár I, Markó L, Przybyl L, Jinno K, Szigeti C, Heffer M, Gebhardt M, Szeberényi J, Müller DN, Sétáló G, Pap M. Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis 2015; 19:1080-98. [PMID: 24722832 DOI: 10.1007/s10495-014-0986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.
Collapse
Affiliation(s)
- András Balogh
- Department of Medical Biology, University of Pécs Medical School, Szigeti 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Transcription factor cAMP response element modulator (Crem) restrains Pdgf-dependent proliferation of vascular smooth muscle cells in mice. Pflugers Arch 2014; 467:2165-77. [PMID: 25425331 PMCID: PMC4564437 DOI: 10.1007/s00424-014-1652-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022]
Abstract
Transcription factors of the cAMP response element-binding protein (Creb)/cAMP response element modulator (Crem) family were linked to the switch from a contractile to a proliferating phenotype in vascular smooth muscle cells (VSMCs). Here, we analyzed the vascular function of Crem in mice with a global inactivation of Crem (Crem(-/-)). CRE-mediated transcriptional activity was enhanced in primary Crem(-/-) VSMCs under nonstimulated conditions and under stimulation with Forskolin and platelet-derived growth factor (Pdgf) whereas stimulation with nitric oxide or cGMP showed no effect. This elevated CRE-mediated transcriptional activity as a result of Crem inactivation did not alter aortic contractility or fractions of proliferating or apoptotic aortic VSMCs in situ, and no impact of Crem inactivation on the development of atherosclerotic plaques was observed. Crem(-/-) mice exhibited an increased neointima formation after carotid ligation associated with an increased proliferation of VSMCs in the carotid media. Pdgf-stimulated proliferation of primary aortic Crem(-/-) VSMCs was increased along with an upregulation of messenger RNA (mRNA) levels of Pdgf receptor, alpha polypeptide (Pdgfra), cyclophilin A (Ppia), the regulator of G-protein signaling 5 (Rgs5), and Rho GTPase-activating protein 12 (Arhgap12). Taken together, our data reveal the inhibition of Pdgf-stimulated proliferation of VSMCs by repressing the Pdgf-stimulated CRE-mediated transcriptional activation as the predominant function of Crem in mouse vasculature suggesting an important role of Crem in vasculoproliferative diseases.
Collapse
|
5
|
Guo J, Dhaliwall JK, Chan KK, Ghanim H, Al Koudsi N, Lam L, Madadi G, Dandona P, Giacca A, Bendeck MP. In vivo Effect of Insulin to Decrease Matrix Metalloproteinase-2 and -9 Activity after Arterial Injury. J Vasc Res 2013; 50:279-88. [DOI: 10.1159/000351611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
|
6
|
Laaksamo E, Ramachandran M, Frösen J, Tulamo R, Baumann M, Friedlander RM, Harbaugh RE, Hernesniemi J, Niemelä M, Raghavan ML, Laakso A. Intracellular signaling pathways and size, shape, and rupture history of human intracranial aneurysms. Neurosurgery 2012; 70:1565-72; discussion 1572-3. [PMID: 22278358 DOI: 10.1227/neu.0b013e31824c057e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Size and morphological features are associated with intracranial aneurysm (IA) rupture. The cellular mechanisms of IA development and rupture are poorly known. OBJECTIVE We studied the expression and phosphorylation of different intracellular signaling molecules in the IA wall compared with IA morphological features to understand better the cellular pathways involved in IA development and wall degeneration. METHODS Nine ruptured and 17 unruptured human IA samples were collected intraoperatively. The expression levels and phosphorylation state of 3 mitogen-activated protein kinases (c-Jun N-terminal kinase [JNK], p38, extracellular signal-regulated kinase [ERK]), Bcl-2 antagonist of cell death (Bad), mammalian target of rapamycin (mTOR), cyclic AMP response element binding protein (CREB), and Akt were determined by Western blotting. The localization of signaling proteins was determined by immunofluorescence. From 3-dimensional segmentation of computed tomography angiographic data, size and shape indexes were calculated. RESULTS We found a 5-fold difference in phospho-Bad levels between ruptured and unruptured IAs. Phospho-mTOR was downregulated 2.5-fold in ruptured IAs. Phospho-p54 JNK, phospho-p38, and phospho-Akt levels correlated positively with IA size. Phospho-CREB levels were significantly associated with nonsphericity and ellipticity indexes. Phospho-Akt and phospho-p38 correlated negatively with undulation index. CONCLUSION The signaling pathway profile (apoptosis, cell proliferation, stress signaling) differs between ruptured and unruptured IAs and is associated with IA geometry. Our results increase the knowledge of IA development and wall degeneration.
Collapse
Affiliation(s)
- Elisa Laaksamo
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schauer IE, Reusch JEB. Nonesterified fatty acid exposure activates protective and mitogenic pathways in vascular smooth muscle cells by alternate signaling pathways. Metabolism 2009; 58:319-27. [PMID: 19217446 PMCID: PMC2901169 DOI: 10.1016/j.metabol.2008.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
Vascular smooth muscle cells (VSMC) are dynamic cells exposed to fluctuating concentrations of nutrients on a daily basis. Nonesterified fatty acids (NEFA) have been indicted as potential mediators of atherosclerosis and exaggerated VSMC remodeling observed in diabetes, and in vitro data support a model of VSMC activation by NEFA. However, recent observations suggest that metabolic stressors such as oxidants and NEFA may also simultaneously induce cytoprotective events as part of a homeostatic "off switch." Our group has established that the transcription factor cyclic adenosine monophosphate response element binding protein (CREB) is important for maintenance of VSMC quiescence, differentiation, and survival. We therefore examined whether acute physiologic NEFA exposure would regulate CREB in primary cultures of bovine aortic VSMC and explored the relationship between signaling to the cytoprotective CREB and the activating mitogen-activated protein kinase pathways. In vitro exposure of VSMC to 3 classes of unsaturated NEFA leads to significant acute, transient, dose-dependent, and repeatedly inducible CREB activation. As expected, extracellular signal-regulated kinase, P38 mitogen-activated protein kinase, Akt, Jun N-terminal kinase, and protein kinase C (PKC) pathways are also activated by NEFA. Using a battery of pharmacologic inhibitors and antioxidants, we demonstrate that CREB activation is mediated by a novel PKC isoform and is reactive oxygen species independent, whereas extracellular signal-regulated kinase activation, in contrast, is mediated by reactive oxygen species and is PKC independent. These data suggest parallel and mechanistically distinct stimulation of separate stabilizing and activating pathways in VSMC response to acute NEFA-mediated stress. Furthermore, the down-regulation of CREB in models of chronic metabolic stress reported in the literature would be expected to disrupt this homeostasis and shift the balance toward VSMC activation, consistent with emerging models of atherosclerosis.
Collapse
Affiliation(s)
- Irene E Schauer
- Denver Research Institute, Denver Veterans Administration Medical Center, Denver, CO 80220, USA
| | | |
Collapse
|
8
|
Antonioli E, Cardoso AB, Carvalho HF. Effects of long-term castration on the smooth muscle cell phenotype of the rat ventral prostate. JOURNAL OF ANDROLOGY 2007; 28:777-83. [PMID: 17522419 DOI: 10.2164/jandrol.107.002873] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle (SM) is an important component of the prostatic stroma. We previously showed that, despite extensive morphologic changes, smooth muscle cells (SMCs) of the rat ventral prostate preserve some differentiation markers 21 days after castration. In the present study, we investigated whether the expression of SMC markers is preserved in the rat ventral prostate after long-term castration. Adult Wistar rats were castrated and sacrificed 100 days after surgery. The ventral prostates were processed for histology, stereology, immunocytochemistry (SM alpha-actin and SM-myosin heavy chain [MHC]), transmission electron microscopy (TEM), and reverse transcription polymerase chain reaction (smoothelin, sm22, and calponin). The prostates of castrated rats showed significant weight reduction, corresponding to only 5.6% of the control. Stereology showed that SMCs occupied the same proportion of the prostate volume but suffered a significant reduction in absolute volume (5.5% of control). The SMCs were retracted and showed spinous outlines. TEM revealed the presence of an abundant myofibrillar component, dense plaques, and an external lamina in these cells. SMCs were reactive to antibodies against SM alpha-actin and SM-MHC and expressed mRNA for smoothelin, sm22, and calponin. The results confirmed that rat prostatic SMCs are affected by androgen deprivation. Although showing marked phenotypic changes, these cells expressed SMC markers at the protein (SM alpha-actin and SM-MHC) and mRNA (smoothelin, sm22, and calponin) levels. These observations support the idea that SMCs may modulate their phenotypes (contractile vs synthetic) without changing their differentiation states.
Collapse
Affiliation(s)
- Eliane Antonioli
- Department of Cell Biology, UNICAMP, CP6109, 13083-863 Campinas SP, Brazil
| | | | | |
Collapse
|
9
|
Najwer I, Lilly B. Ca2+/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements. Am J Physiol Cell Physiol 2005; 289:C785-93. [PMID: 15917302 DOI: 10.1152/ajpcell.00098.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle-specific transcription is controlled by a multitude of transcriptional regulators that cooperate to drive expression in a temporospatial manner. Previous analysis of the cysteine-rich protein 1 ( CRP1/Csrp) gene revealed an intronic enhancer that is sufficient for expression in arterial smooth muscle cells and requires a serum response factor-binding CArG element for activity. The presence of a CArG box in smooth muscle regulatory regions is practically invariant; however, it stands to reason that additional elements contribute to the modulation of transcription in concert with the CArG. Because of the potential importance of other regulatory elements for expression of the CRP1 gene, we sought to identify additional motifs within the enhancer that are necessary for expression. In this effort, we identified a conserved cAMP response element (CRE) that, when mutated, diminishes the expression of the enhancer in cultured vascular smooth muscle cells. Using transfection and electrophoretic mobility shift assays, we have shown that the CRE binds the cAMP response element-binding protein (CREB) and is activated by Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), but not by CaMKII. Furthermore, our data demonstrate that CaMKIV stimulates CRP1 expression not only through the CRE but also through the CArG box. These findings represent evidence of a functional CRE within a smooth muscle-specific gene and provide support for a mechanism in which CREB functions as a smooth muscle determinant through CaMKIV activation.
Collapse
Affiliation(s)
- Ida Najwer
- Vascular Biology Center and Department of Obstetrics and Gynecology, Medical College of Georgia, 1459 Laney Walker Blvd., CB3207, Augusta, Georgia 30912-2500, USA
| | | |
Collapse
|