1
|
Fernandez Milano A, Krieg S, Kostev K. Medication Burden Before and After Prescription of Biologics in Patients with Inflammatory Bowel Disease. J Clin Med 2024; 13:6408. [PMID: 39518547 PMCID: PMC11546370 DOI: 10.3390/jcm13216408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Biologics are a cornerstone in the treatment of severe cases of inflammatory bowel disease (IBD) and aim to control the disease and improve quality of life. This study investigated changes in nonbiologic medication prescriptions for IBD patients initiating biologic therapy in Germany. Methods: This study used data from anonymized pharmacy records in the German longitudinal prescription (LRx) database and included biologic-naive IBD patients who received their first biologic therapy prescription between 2016 and 2022. Changes in prescription rates and pill counts for nonbiologic medications (corticosteroids, 5-aminosalicylates (5-ASA), proton pump inhibitors, analgesics, immunosuppressants, Vitamin D, iron, and antibiotics) before and after the initiation of biologic therapy were assessed using descriptive statistics, McNemar's tests, and Poisson regression models, adjusting for age and sex. Results: A total of 29,559 biologic-naive IBD patients were included. Prior to index, 91.2% received at least one nonbiologic medication prescription, where corticosteroids and 5-ASA were the most common. Postindex, the overall prescription rate decreased to 87.7%, with significant reductions in prescriptions observed for corticosteroids, 5-ASA, and immunosuppressants (p-values < 0.001). The mean (SD) pill count dropped from 704 (1712) to 514 (1651), with the largest mean differences (95% CI) having been for corticosteroids (-77.9 [-80.3 to -75.5]), 5-ASA (-61.6 [-65.2 to -58.1]), and immunosuppressants (-55.0 [-57.5 to -52.6]). Older patients tended to have greater decreases in pill counts for corticosteroids and 5-ASA, while males showed statistically significant reductions in pill count for immunosuppressants compared with females. Conclusions: This study demonstrates that the prescription of nonbiologic medications significantly decreased after biologic therapy initiation. The use of biologics may therefore lead to improved disease management and potentially better patient outcomes.
Collapse
Affiliation(s)
| | - Sarah Krieg
- Department of Inclusive Medicine, University Hospital Ostwestfalen-Lippe, Bielefeld University, 33617 Bielefeld, Germany
| | - Karel Kostev
- Epidemiology, IQVIA, 60549 Frankfurt, Germany
- University Clinic, Philipps-University, 35043 Marburg, Germany
| |
Collapse
|
2
|
Ammirata G, Arigoni M, Licastro D, Caviglia GP, Disabato M, Zubair G, Bezzio C, Saibeni S, De Nicolò A, Cusato J, Palermiti A, Manca A, Tolosano E, Cozzini S, Mancini M, Altruda F, D’Avolio A, Ribaldone DG, Ala U, Fagoonee S. Extracellular Vesicle-Enclosed Oxidative Stress- and Inflammation-Related microRNAs as Potential Biomarkers of Vitamin D Responsivity: A Pilot Study on Inflammatory Bowel Disease Patients with or without COVID-19. Antioxidants (Basel) 2024; 13:1047. [PMID: 39334706 PMCID: PMC11429492 DOI: 10.3390/antiox13091047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The relationship between serum 25-hydroxyvitamin D (25(OH)D) levels, genomic response to vitamin D (Vit.D), and positivity to SARS-CoV-2 remains understudied. In this pilot study, during the follow-up of patients with Inflammatory Bowel Disease (IBD) and COVID-19, we investigated this issue by analyzing the molecular contents of serum extracellular vesicles (EVs) from six groups of IBD patients (n = 32), classified according to anti-SARS-CoV-2 status, 25(OH)D level, and Vit.D supplementation, by small RNA-seq. This analysis revealed differentially expressed miRNAs, PIWI-RNA, transfer RNA, small nucleolar RNAs, and protein-coding RNAs in the EVs obtained from these cohorts of IBD patients. Experimental validation evidenced a statistically significant increase in miR30d-5p, miR150-5p, Let-7f-5p, and Let-7a-5p in the anti-SARS-CoV-2-positive and low 25(OH)D and Vit.D supplemented groups with respect to the non-Vit.D supplemented group, indicating their responsiveness to Vit.D treatment. Bioinformatics analysis highlighted the regulation of these validated miRNAs by oxidative stress and inflammation, hallmarks of IBD and COVID-19. Our study reports an unprecedented panel of circulating EV-enclosed inflammation- and oxidative stress-related miRNAs, the potentiality of which, as biomarkers for Vit.D responsivity in IBD patients, needs to be explored in future studies on larger cohorts in order to allow clinicians to optimize current treatment strategies upon viral infection.
Collapse
Affiliation(s)
- Giorgia Ammirata
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Danilo Licastro
- AREA Science Park, Padriciano, 34149 Trieste, Italy; (D.L.); (S.C.)
| | - Gian Paolo Caviglia
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Michela Disabato
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Ghania Zubair
- Department of Mathematics “Giuseppe Peano”, University of Turin, 10126 Turin, Italy;
| | - Cristina Bezzio
- IBD Centre, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Simone Saibeni
- Gastroenterology Unit, Rho Hospital, ASST Rhodense, 20017 Milan, Italy;
| | - Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Stefano Cozzini
- AREA Science Park, Padriciano, 34149 Trieste, Italy; (D.L.); (S.C.)
| | - Marcello Mancini
- Institute for Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy;
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy; (G.A.); (M.A.); (E.T.); (F.A.)
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy; (A.D.N.); (J.C.); (A.P.); (A.M.); (A.D.)
| | - Davide Giuseppe Ribaldone
- Gastroenterology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (M.D.); (D.G.R.)
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, CNR, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
3
|
Wang Y, Song J, Dai Q, Duan X. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:3146-3157. [PMID: 38294927 DOI: 10.1109/jbhi.2024.3360437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Predicting potential drug-disease associations (RDAs) plays a pivotal role in elucidating therapeutic strategies for diseases and facilitating drug repositioning, making it of paramount importance. However, existing methods are constrained and rely heavily on limited domain-specific knowledge, impeding their ability to effectively predict candidate associations between drugs and diseases. Moreover, the simplistic definition of unknown information pertaining to drug-disease relationships as negative samples presents inherent limitations. To overcome these challenges, we introduce a novel hierarchical negative sampling-based graph contrastive model, termed HSGCLRDA, which aims to forecast latent associations between drugs and diseases. In this study, HSGCLRDA integrates the association information as well as similarity between drugs, diseases and proteins. Meanwhile, the model constructs a drug-disease-protein heterogeneous network. Subsequently, employing a hierarchical structural sampling technique, we establish reliable negative drug-disease samples utilizing PageRank algorithms. Utilizing meta-path aggregation within the heterogeneous network, we derive low-dimensional representations for drugs and diseases, thereby constructing global and local feature graphs that capture their interactions comprehensively. To obtain representation information, we adopt a self-supervised graph contrastive approach that leverages graph convolutional networks (GCNs) and second-order GCNs to extract feature graph information. Furthermore, we integrate a contrastive cost function derived from the cross-entropy cost function, facilitating holistic model optimization. Experimental results obtained from benchmark datasets not only showcase the superior performance of HSGCLRDA compared to various baseline methods in predicting RDAs but also emphasize its practical utility in identifying novel potential diseases associated with existing drugs through meticulous case studies.
Collapse
|
4
|
Laurindo LF, Direito R, Bueno Otoboni AMM, Goulart RA, Quesada K, Barbalho SM. Grape Processing Waste: Effects on Inflammatory Bowel Disease and Colorectal Cancer. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2168281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Rosa Direito
- Department of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Ricardo Alvares Goulart
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, FATEC, Avenida Castro Alves, São Paulo, Brazil
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| |
Collapse
|
5
|
Laurindo LF, de Maio MC, Minniti G, de Góes Corrêa N, Barbalho SM, Quesada K, Guiguer EL, Sloan KP, Detregiachi CRP, Araújo AC, de Alvares Goulart R. Effects of Medicinal Plants and Phytochemicals in Nrf2 Pathways during Inflammatory Bowel Diseases and Related Colorectal Cancer: A Comprehensive Review. Metabolites 2023; 13:243. [PMID: 36837862 PMCID: PMC9966918 DOI: 10.3390/metabo13020243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are related to nuclear factor erythroid 2-related factor 2 (Nrf2) dysregulation. In vitro and in vivo studies using phytocompounds as modulators of the Nrf2 signaling in IBD have already been published. However, no existing review emphasizes the whole scenario for the potential of plants and phytocompounds as regulators of Nrf2 in IBD models and colitis-associated colorectal carcinogenesis. For these reasons, this study aimed to build a review that could fill this void. The PubMed, EMBASE, COCHRANE, and Google Scholar databases were searched. The literature review showed that medicinal plants and phytochemicals regulated the Nrf2 on IBD and IBD-associated colorectal cancer by amplifying the expression of the Nrf2-mediated phase II detoxifying enzymes and diminishing NF-κB-related inflammation. These effects improve the bowel environment, mucosal barrier, colon, and crypt disruption, reduce ulceration and microbial translocation, and consequently, reduce the disease activity index (DAI). Moreover, the modulation of Nrf2 can regulate various genes involved in cellular redox, protein degradation, DNA repair, xenobiotic metabolism, and apoptosis, contributing to the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Mariana Canevari de Maio
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Natália de Góes Corrêa
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | | | - Claudia R. P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
6
|
Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023; 13:metabo13010096. [PMID: 36677021 PMCID: PMC9862976 DOI: 10.3390/metabo13010096] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing idiopathic inflammatory conditions affecting the gastrointestinal tract. They are mainly represented by two forms, ulcerative colitis (UC) and Crohn's disease (CD). IBD can be associated with the activation of nuclear factors, such as nuclear factor-kB (NF-kB), leading to increased transcription of pro-inflammatory mediators that result in diarrhea, abdominal pain, bleeding, and many extra-intestinal manifestations. Phytochemicals can interfere with many inflammation targets, including NF-kB pathways. Thus, this review aimed to investigate the effects of different phytochemicals in the NF-kB pathways in vitro and in vivo models of IBD. Fifty-six phytochemicals were included in this study, such as curcumin, resveratrol, kaempferol, sesamol, pinocembrin, astragalin, oxyberberine, berberine hydrochloride, botulin, taxifolin, naringin, thymol, isobavachalcone, lancemaside A, aesculin, tetrandrine, Ginsenoside Rk3, mangiferin, diosgenin, theanine, tryptanthrin, lycopene, gyngerol, alantolactone, mangostin, ophiopogonin D, fisetin, sinomenine, piperine, oxymatrine, euphol, artesunate, galangin, and nobiletin. The main observed effects related to NF-kB pathways were reductions in tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2), and augmented occludin, claudin-1, zonula occludens-1, and IL-10 expression levels. Moreover, phytochemicals can improve weight loss, stool consistency, and rectal bleeding in IBD. Therefore, phytochemicals can constitute a powerful treatment option for IBD in humans.
Collapse
|
7
|
Definition, Assessment, and Management of Vitamin D Inadequacy: Suggestions, Recommendations, and Warnings from the Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Nutrients 2022; 14:nu14194148. [PMID: 36235800 PMCID: PMC9573415 DOI: 10.3390/nu14194148] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
In the recent years, both the prescriptions of serum 25(OH)D levels assay, and vitamin D supplementation are constantly increasing, as well as the costs to be incurred relating to these specific aspects. As in many other countries, the risk of vitamin D deficiency is particularly high in Italy, as recently confirmed by cohort studies in the general population as well as in patients with metabolic bone disorder. Results confirmed the North-South gradient of vitamin D levels described among European countries, despite the wide use of supplements. Although vitamin D supplementation is also recommended by the Italian Medicine Agency for patients at risk for fragility fracture or for initiating osteoporotic medication, the therapeutic gap for osteoporosis in Italy is very high. There is a consistent proportion of osteoporotic patients not receiving specific therapy for osteoporosis following a fragility fracture, with a poor adherence to the recommendations provided by national guidelines and position paper documents. The failure or inadequate supplementation with vitamin D in patients on antiresorptive or anabolic treatment for osteoporosis is thought to further amplify the problem and exposes patients to a high risk of re-fracture and mortality. Therefore, it is important that attention to its possible clinical consequences must be given. Thus, in light of new evidence from the literature, the SIOMMMS board felt the need to revise and update, by a GRADE/PICO system approach, its previous original recommendations about the definition, prevention, and treatment of vitamin D deficiency in adults, released in 2011. Several key points have been here addressed, such as the definition of the vitamin D status: normality values and optimal values; who are the subjects considered at risk of hypovitaminosis D; opportunity or not of performing the biochemical assessment of serum 25(OH)D levels in general population and in subjects at risk of hypovitaminosis D; the need or not to evaluate baseline serum 25(OH)D in candidate subjects for pharmacological treatment for osteoporosis; how and whether to supplement vitamin D subjects with hypovitaminosis D or candidates for pharmacological treatment with bone active agents, and the general population; how and whether to supplement vitamin D in chronic kidney disease and/or chronic liver diseases or under treatment with drugs interfering with hepatic metabolism; and finally, if vitamin D may have toxic effects in the subject in need of supplementation.
Collapse
|