1
|
Huang D, Li Q, Han Y, Xia SY, Zhou J, Che H, Lu K, Yang F, Long X, Chen Y. Biogenic volatile organic compounds dominated the near-surface ozone generation in Sichuan Basin, China, during fall and wintertime. J Environ Sci (China) 2024; 141:215-224. [PMID: 38408822 DOI: 10.1016/j.jes.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 02/28/2024]
Abstract
The complex air pollution driven by both Ozone (O3) and fine particulate matter (PM2.5) significantly influences the air quality in the Sichuan Basin (SCB). Understanding the O3 formation during autumn and winter is necessary to understand the atmospheric oxidative capacity. Therefore, continuous in-site field observations were carried out during the late summer, early autumn and winter of 2020 in a rural area of Chongqing. The total volatile organic compounds (VOCs) concentration reported by a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were 13.66 ± 9.75 ppb, 5.50 ± 2.64 ppb, and 9.41 ± 5.11 ppb in late summer, early autumn and winter, respectively. The anthropogenic VOCs (AVOCs) and biogenic VOCs (BVOCs) were 8.48 ± 7.92 ppb and 5.18 ± 2.99 ppb in late summer, 3.31 ± 1.89 ppb and 2.19 ± 0.93 ppb in autumn, and 6.22 ± 3.99 ppb and 3.20 ± 1.27 ppb in winter. A zero-dimensional atmospheric box model was employed to investigate the sensitivity of O3-precursors by relative incremental reactivity (RIR). The RIR values of AVOCs, BVOCs, carbon monoxide (CO), and nitrogen oxides (NOx) were 0.31, 0.71, 0.09, and -0.36 for late summer, 0.24, 0.59, 0.22, and -0.38 for early autumn, and 0.30, 0.64, 0.33 and -0.70 for winter, and the results showed that the O3 formation of sampling area was in the VOC-limited region, and O3 was most sensitive to BVOCs (with highest RIR values, > 0.6). This study can be helpful in understanding O3 formation and interpreting the secondary formation of aerosols in the winter.
Collapse
Affiliation(s)
- Dasheng Huang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; College of Resources and Environment, Chongqing School, University of the Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, China
| | - Qing Li
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404199, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shi-Yong Xia
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jiawei Zhou
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Keding Lu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fumo Yang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
2
|
Yang X, Wang H, Lu K, Ma X, Tan Z, Long B, Chen X, Li C, Zhai T, Li Y, Qu K, Xia Y, Zhang Y, Li X, Chen S, Dong H, Zeng L, Zhang Y. Reactive aldehyde chemistry explains the missing source of hydroxyl radicals. Nat Commun 2024; 15:1648. [PMID: 38388476 PMCID: PMC10883920 DOI: 10.1038/s41467-024-45885-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Hydroxyl radicals (OH) determine the tropospheric self-cleansing capacity, thus regulating air quality and climate. However, the state-of-the-art mechanisms still underestimate OH at low nitrogen oxide and high volatile organic compound regimes even considering the latest isoprene chemistry. Here we propose that the reactive aldehyde chemistry, especially the autoxidation of carbonyl organic peroxy radicals (R(CO)O2) derived from higher aldehydes, is a noteworthy OH regeneration mechanism that overwhelms the contribution of the isoprene autoxidation, the latter has been proved to largely contribute to the missing OH source under high isoprene condition. As diagnosed by the quantum chemical calculations, the R(CO)O2 radicals undergo fast H-migration to produce unsaturated hydroperoxyl-carbonyls that generate OH through rapid photolysis. This chemistry could explain almost all unknown OH sources in areas rich in both natural and anthropogenic emissions in the warm seasons, and may increasingly impact the global self-cleansing capacity in a future low nitrogen oxide society under carbon neutrality scenarios.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, 519082, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Bo Long
- College of Material Science and Engineering, Guizhou Minzu University, Guizhou, China
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chunmeng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianyu Zhai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Kun Qu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yu Xia
- College of Material Science and Engineering, Guizhou Minzu University, Guizhou, China
| | - Yuqiong Zhang
- College of Material Science and Engineering, Guizhou Minzu University, Guizhou, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Ninneman M, Lyman S, Hu L, Cope E, Ketcherside D, Jaffe D. Investigation of Ozone Formation Chemistry during the Salt Lake Regional Smoke, Ozone, and Aerosol Study (SAMOZA). ACS EARTH & SPACE CHEMISTRY 2023; 7:2521-2534. [PMID: 38148992 PMCID: PMC10749563 DOI: 10.1021/acsearthspacechem.3c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Salt Lake City (SLC), UT, is an urban area where ozone (O3) concentrations frequently exceed health standards. This study uses an observationally constrained photochemical box model to investigate the drivers of O3 production during the Salt Lake Regional Smoke, Ozone, and Aerosol Study (SAMOZA), which took place from August to September 2022 in SLC. During SAMOZA, a suite of volatile organic compounds (VOCs), oxides of nitrogen (NOx), and other parameters were measured at the Utah Technical Center, a high-NOx site in the urban core. We examined four high-O3 cases: 4 August and 3, 11, and 12 September, which were classified as a nonsmoky weekday, a weekend day with minimal smoke influence, a smoky weekend day, and a smoky weekday, respectively. The modeled O3 production on 4 August and 3 September was highly sensitive to VOCs and insensitive to NOx reductions of ≤50%. Box model results suggest that the directly emitted formaldehyde contributed to the rapid increase in morning O3 concentrations on 3 September. Model sensitivity tests for September 11-12 indicated that smoke-emitted VOCs, especially aldehydes, had a much larger impact on O3 production than NOx and/or anthropogenic VOCs. On 11 and 12 September, smoke-emitted VOCs enhanced model-predicted maximum daily 8 h average O3 concentrations by 21 and 13 parts per billion (ppb), respectively. Overall, our results suggest that regionwide VOC reductions of at least 30-50% or NOx reductions of at least 60% are needed to bring SLC into compliance with the national O3 standard of 70 ppb.
Collapse
Affiliation(s)
- Matthew Ninneman
- School
of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
| | - Seth Lyman
- Bingham
Research Center, Utah State University, 320 North Aggie Boulevard, Vernal, Utah 84078, United States
- Department
of Chemistry and Biochemistry, Utah State
University, 4820 Old
Main Hill, Logan, Utah 84322, United States
| | - Lu Hu
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Emily Cope
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Damien Ketcherside
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Daniel Jaffe
- School
of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
- Department
of Atmospheric Sciences, University of Washington, 3920 Okanogan Lane, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
R L, Bano S, More D, Ambulkar R, Mondal T, Maurya P, Bs M. On the transition of major pollutant and O 3 production regime during Covid-19 lockdowns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116907. [PMID: 36508979 DOI: 10.1016/j.jenvman.2022.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Lockdowns enforced amid the pandemic facilitated the evaluation of the impact of emission reductions on air quality and the production regime of O3 under NOx reduction. Analysis of space-time variation of various pollutants (PM10, PM2.5, NOx, CO, O3 and VOC or TNMHC) through the lockdown phases at eight typical stations (Urban/Metro, Rural/high vegetation and coastal) is carried out. It reveals how the major pollutant (PM10 or PM2.5 or O3, or CO) differs from station to station as lockdowns progress depending on geography, land-use pattern and efficacy of lockdown implementation. Among the stations analyzed, Delhi (Chandnichowk), the most polluted (PM10 = 203 μgm-3; O3 = 17.4 ppbv) in pre-lockdown, experienced maximum reduction during the first phase of lockdown in PM2.5 (-47%), NO2 (-40%), CO (-37%) while O3 remained almost the same (2% reduction) to pre-lockdown levels. The least polluted Mahabaleshwar (PM10 = 45 μgm-3; O3 = 54 ppbv) witnessed relatively less reduction in PM2.5 (-2.9%), NO2 (-4.7%), CO (-49%) while O3 increased by 36% to pre-lockdown levels. In rural stations with lots of greenery, O3 is the major pollutant attributed to biogenic VOC emissions from vegetation besides lower NO levels. In other stations, PM2.5 or PM10 is the primary pollutant. At Chennai, Jabalpur, Mahabaleshwar and Goa, the deciding factor of Air Quality Index (AQI) remained unchanged, with reduced values. Particulate matter, PM10 decided AQI for three stations (dust as control component), and PM2.5 decided the same for two but within acceptable limits for stations. Improvement of AQI through control of dust would prove beneficial for Chennai and Patiala; anthropogenic emission control would work for Chandani chowk, Goa and Patiala; emission control of CO is required for Mahabaleshwar and Thiruvanathapuram. Under low VOC/NOx ratio conditions, O3 varies with the ratio, NO/NO2, with a negative (positive) slope indicating VOC-sensitive (NOx-sensitive) regime. Peak O3 isopleths as a function of NOx and VOC depicting distinct patterns suggest that O3 variation is entirely non-linear for a given NOx or VOC.
Collapse
Affiliation(s)
- Latha R
- Indian Institute of Tropical Meteorology, Pune, India
| | - Shahana Bano
- Indian Institute of Tropical Meteorology, Pune, India
| | - Dolly More
- Indian Institute of Tropical Meteorology, Pune, India
| | | | | | | | - Murthy Bs
- Indian Institute of Tropical Meteorology, Pune, India.
| |
Collapse
|
5
|
Karl T, Lamprecht C, Graus M, Cede A, Tiefengraber M, Vila-Guerau de Arellano J, Gurarie D, Lenschow D. High urban NO x triggers a substantial chemical downward flux of ozone. SCIENCE ADVANCES 2023; 9:eadd2365. [PMID: 36652521 PMCID: PMC9848777 DOI: 10.1126/sciadv.add2365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen oxides (NOx) play a central role in catalyzing tropospheric ozone formation. Nitrogen dioxide (NO2) has recently reemerged as a key target for air pollution control measures, and observational evidence points toward a limited understanding of ozone in high-NOx environments. A complete understanding of the mechanisms controlling the rapid atmospheric cycling between ozone (O3)-nitric oxide (NO)-NO2 in high-NOx regimes at the surface is therefore paramount but remains challenging because of competing dynamical and chemical effects. Here, we present long-term eddy covariance measurements of O3, NO, and NO2, over an urban area, that allow disentangling important physical and chemical processes. When generalized, our findings suggest that the depositional O3 flux near the surface in urban environments is negligible compared to the flux caused by chemical conversion of O3. This leads to an underestimation of the Leighton ratio and is a key process for modulating urban NO2 mixing ratios. As a consequence, primary NO2 emissions have been significantly overestimated.
Collapse
Affiliation(s)
- Thomas Karl
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | - Christian Lamprecht
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | - Martin Graus
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
6
|
Chen T, Zhang P, Ma Q, Chu B, Liu J, Ge Y, He H. Smog Chamber Study on the Role of NO x in SOA and O 3 Formation from Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13654-13663. [PMID: 36136046 DOI: 10.1021/acs.est.2c04022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
China is facing dual pressures to reduce both PM2.5 and O3 pollution, the crucial precursors of which are NOx and VOCs. In our study, the role of NOx in both secondary organic aerosol (SOA, the important constituent of PM2.5) and O3 formation was examined in our 30 m3 indoor smog chamber. As revealed in the present study, the NOx level can obviously affect the OH concentration and volatility distribution of gas-phase oxidation products and thus O3 and SOA formation. Reducing the NOx concentration to the NOx-sensitive regime can inhibit O3 formation (by 42%), resulting in the reduction of oxidation capacity, which suppresses the SOA formation (by 45%) by inhibiting the formation of O- and N-containing gas-phase oxidation products with low volatility. The contribution of these oxidation products to the formation of SOA was also estimated, and the results could substantially support the trend of SOA yield with NOx at different VOC levels. The atmospheric implications of NOx in the coordinated control of PM2.5 and O3 are also discussed.
Collapse
Affiliation(s)
- Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Perdigones BC, Lee S, Cohen RC, Park JH, Min KE. Two Decades of Changes in Summertime Ozone Production in California's South Coast Air Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10586-10595. [PMID: 35855520 DOI: 10.1021/acs.est.2c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tropospheric ozone (O3) continues to be a threat to human health and agricultural productivity. While O3 control is challenging, tracking underlying formation mechanisms provides insights for regulatory directions. Here, we describe a comprehensive analysis of the effects of changing emissions on O3 formation mechanisms with observational evidence. We present a new approach that provides a quantitative metric for the ozone production rate (OPR) and its sensitivity to precursor levels by interpreting two decades of in situ observations of the six criteria air pollutants(2001-2018). Applying to the South Coast Air Basin (SoCAB), California, we show that by 2016-2018, the basin was at the transition region between nitrogen oxide (NOx)-limited and volatile organic compound (VOC)-limited chemical regimes. Assuming future weather conditions are similar to 2016-2018, we predict that NOx-focused reduction is required to reduce the number of summer days the SoCAB is in violation of the National Ambient Air Quality Standard (70 ppbv) for O3. Roughly, ∼40% (∼60%) NOx reductions are required to reduce the OPR by ∼1.8 ppb/h (∼3.3 ppb/h). This change would reduce the number of violation days from 28 to 20% (10%) in a year, mostly in summertime. Concurrent VOC reductions which reduce the production rate of HOx radicals would also be beneficial.
Collapse
Affiliation(s)
- Begie C Perdigones
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Soojin Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ronald C Cohen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, United States
| | - Jeong-Hoo Park
- Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Kyung-Eun Min
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
8
|
Abstract
SignificanceOH is the critical chemical setting removal rates of local pollutants in the atmosphere. The importance of OH to tropospheric chemistry stands in stark contrast to the absence of long-term measurements. Here we synthesize a machine learning technique, satellite observations, and simulations from a state-of-the-art chemical model to estimate OH trends between 2005 and 2014 in 49 North American cities. Compared to the summertime OH in 2005, the OH in 2014 exhibits changes that range from -17 to +11% in different cities. The variation of OH over one decade can be explained by the chemical regime shifts over the years. The identification of chemical regime, in turn, sheds light on the effective policy for controlling ozone.
Collapse
|
9
|
Dhanya G, Pranesha TS, Chate DM, Beig G. Analysis of Ozone Photochemistry over Southern Tropical Megacity, Bengaluru, India. Photochem Photobiol 2022; 98:1312-1322. [PMID: 35363894 DOI: 10.1111/php.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
Rapid infrastructure development, increased population, shift in land use practices and higher vehicular emissions have all influenced Ozone (O3 ) production through its precursor gases in southern megacity, Bengaluru, India. We have investigated the photochemistry, using hourly measurements of O3 and associated precursor gases conducted in Bengaluru during January to December 2019. The rate of formation of O3 is analysed for Bengaluru for the first time using a photochemical model involving NOx cycle. On the diurnal scale, O3 showed a mid-day peak (12:00-15:00 IST), while its precursors showed a bimodal trend with peaks at (9:00 IST) and (21:00 IST). The photolytic rate constants for jNO2 and jO3 were derived from the Tropospheric Ultraviolet and Visible (TUV) Radiation model. Using the photolytic rate constants for jNO2 and jO3 under the triad NO-NO2 -O3, Photo Stationary State (PSS), Leighton Ratio (Ф) and its deviations from unity were estimated over Bengaluru. Positive anomalies (Φ > 1) were obtained, and the computed Φ were utilized to determine the total mixing ratios of the peroxy radical (PO2 ). The seasonal variation in jO3 revealed that in the presence of intense solar radiation and NOx, VOCs, CO and NMVOCs in the mixing layer, O3 forms photochemically over the surface.
Collapse
Affiliation(s)
- G Dhanya
- Department of Physics, BMS College of Engineering, Bengaluru, 560019, India
| | - T S Pranesha
- Department of Physics, BMS College of Engineering, Bengaluru, 560019, India
| | - D M Chate
- Centre for Development of Advanced Computing, Pune, 411008, India
| | - G Beig
- Indian Institute of Tropical Meteorology, Pune, 411008, India
| |
Collapse
|
10
|
Souri AH, Chance K, Bak J, Nowlan CR, Abad GG, Jung Y, Wong DC, Mao J, Liu X. Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:1-19. [PMID: 34987561 PMCID: PMC8721815 DOI: 10.5194/acp-21-18227-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Questions about how emissions are changing during the COVID-19 lockdown periods cannot be answered by observations of atmospheric trace gas concentrations alone, in part due to simultaneous changes in atmospheric transport, emissions, dynamics, photochemistry, and chemical feedback. A chemical transport model simulation benefiting from a multi-species inversion framework using well-characterized observations should differentiate those influences enabling to closely examine changes in emissions. Accordingly, we jointly constrain NO x and VOC emissions using well-characterized TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 columns during the months of March, April, and May 2020 (lockdown) and 2019 (baseline). We observe a noticeable decline in the magnitude of NO x emissions in March 2020 (14 %-31 %) in several major cities including Paris, London, Madrid, and Milan, expanding further to Rome, Brussels, Frankfurt, Warsaw, Belgrade, Kyiv, and Moscow (34 %-51 %) in April. However, NO x emissions remain at somewhat similar values or even higher in some portions of the UK, Poland, and Moscow in March 2020 compared to the baseline, possibly due to the timeline of restrictions. Comparisons against surface monitoring stations indicate that the constrained model underrepresents the reduction in surface NO2. This underrepresentation correlates with the TROPOMI frequency impacted by cloudiness. During the month of April, when ample TROPOMI samples are present, the surface NO2 reductions occurring in polluted areas are described fairly well by the model (model: -21 ± 17 %, observation: -29 ± 21 %). The observational constraint on VOC emissions is found to be generally weak except for lower latitudes. Results support an increase in surface ozone during the lockdown. In April, the constrained model features a reasonable agreement with maximum daily 8 h average (MDA8) ozone changes observed at the surface (r = 0.43), specifically over central Europe where ozone enhancements prevail (model: +3.73 ± 3.94 %, + 1.79 ppbv, observation: +7.35 ± 11.27 %, +3.76 ppbv). The model suggests that physical processes (dry deposition, advection, and diffusion) decrease MDA8 surface ozone in the same month on average by -4.83 ppbv, while ozone production rates dampened by largely negative J NO 2 [ NO 2 ] - k NO + O 3 [ NO ] [ O 3 ] become less negative, leading ozone to increase by +5.89 ppbv. Experiments involving fixed anthropogenic emissions suggest that meteorology contributes to 42 % enhancement in MDA8 surface ozone over the same region with the remaining part (58 %) coming from changes in anthropogenic emissions. Results illustrate the capability of satellite data of major ozone precursors to help atmospheric models capture ozone changes induced by abrupt emission anomalies.
Collapse
Affiliation(s)
- Amir H. Souri
- Atomic and Molecular Physics (AMP) Division, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Kelly Chance
- Atomic and Molecular Physics (AMP) Division, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Juseon Bak
- Institute of Environmental Studies, Pusan National University, Busan, South Korea
| | - Caroline R. Nowlan
- Atomic and Molecular Physics (AMP) Division, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Gonzalo González Abad
- Atomic and Molecular Physics (AMP) Division, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Yeonjin Jung
- Atomic and Molecular Physics (AMP) Division, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - David C. Wong
- US Environmental Protection Agency, Center for Environmental Measurement & Modeling, Research Triangle Park, NC, USA
| | - Jingqiu Mao
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Xiong Liu
- Atomic and Molecular Physics (AMP) Division, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
| |
Collapse
|
11
|
Tan Z, Ma X, Lu K, Jiang M, Zou Q, Wang H, Zeng L, Zhang Y. Direct evidence of local photochemical production driven ozone episode in Beijing: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:148868. [PMID: 34384967 DOI: 10.1016/j.scitotenv.2021.148868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
We present a comprehensive field campaign conducted in Beijing, September 2016, to elucidate the photochemical smog pollution, i.e. Ozone (O3). The observed daily maximum hydroxyl radical (OH) and hydroperoxy radical (HO2) concentrations were up to 1 × 107 cm-3 and 6 × 108 cm-3, respectively, indicating the active photochemistry in autumn Beijing. Photolysis of nitrous acid (HONO) and O3 contributed 1-2 ppbv h-1 to OH primary production during daytime. OH termination were dominated by the reaction with nitric oxide (NO) and nitrogen dioxide (NO2), which were in general larger than primary production rates, indicating other primary radical sources maybe important. The measurement of radicals facilitates the direct determination of local ozone production rate P (Ox) (Ox = O3 + NO2). The integrated P(Ox) reached 75 ppbv in afternoon (for 4 h) when planetary boundary layer was well developed. At the same time period, the observed total oxidant concentrations Ox, increased significantly by 70 ppbv. In addition, the Ox measurement showed compact increase in 12 stations both temporally and spatially in Beijing, indicating that active photochemical production happened homogenously throughout the city. The back-trajectory analysis showed that Beijing was isolated from the other cities during the episode, which further proved that the fast ozone pollution was contributed by local photochemical production rather than regional advection.
Collapse
Affiliation(s)
- Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China.
| | - Meiqing Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Qi Zou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, 100871 Beijing, China.
| |
Collapse
|
12
|
Lien J, Hung HM. The contribution of transport and chemical processes on coastal ozone and emission control strategies to reduce ozone. Heliyon 2021; 7:e08210. [PMID: 34729439 PMCID: PMC8545683 DOI: 10.1016/j.heliyon.2021.e08210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
The interaction between transport and chemistry is pivotal for local ozone (O3) concentration, especially for a coastal region where the upstream sources might change diurnally. In the current emission control policy, most pollutants, such as particulate matter, SO2, NOx, and CO, decrease while the annual O3 trend might increase due to the complex feedbacks of precursors. In this study, we investigate the influence of transport upon the wintertime O3 diurnal trend over ZuoYing Kaohsiung, an urban coastal site in southern Taiwan, by constructing a two-dimensional numerical model coupling both physical mechanisms and core chemical processes and provide a feasible emission control strategy. The transport process (i.e., import vs. export) for the daytime is determined using the Leighton Ratio (Φ), the ratio of O3-production over O3-loss rate, under the pseudo-steady-state condition. Φ shows a deviation of -9 to +13% from the photo-stationary state, and experiences a transition from import effect before 10:15 to weakening import or net export effect afterward associated with a net O3 production as sea breeze starts developing. The significantly higher Φ derived from observation than from simulation by a factor of 1.35 might be resulted from the over-reported NO2 due to NOy contribution on the NO2 measurement, and the influence of aerosol and cloud possibly reducing ∼30% on applied NO2 photolysis rate constant, associated with aerosol optical depth of 0.75 ± 0.15 and single scattering albedo of 0.85 ± 0.15. In this studied NOx-saturated regime, the addition of sea breeze convergence over the land enhances the maximal O3 by ∼10%, mainly due to the O3 accumulation (∼88%). Furthermore, the ozone isopleth analysis as a function of non-methane hydrocarbons and NOx emissions provides an achievable strategy to decrease both maximum daily ozone and the increment of ozone from morning to maximum by reducing hydrocarbons and NOx emissions, which can also eliminate the additional nitrate contribution on the aerosols.
Collapse
Affiliation(s)
- Justin Lien
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hui-Ming Hung
- Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
13
|
Steinbrecht W, Kubistin D, Plass‐Dülmer C, Davies J, Tarasick DW, von der Gathen P, Deckelmann H, Jepsen N, Kivi R, Lyall N, Palm M, Notholt J, Kois B, Oelsner P, Allaart M, Piters A, Gill M, Van Malderen R, Delcloo AW, Sussmann R, Mahieu E, Servais C, Romanens G, Stübi R, Ancellet G, Godin‐Beekmann S, Yamanouchi S, Strong K, Johnson B, Cullis P, Petropavlovskikh I, Hannigan JW, Hernandez J, Diaz Rodriguez A, Nakano T, Chouza F, Leblanc T, Torres C, Garcia O, Röhling AN, Schneider M, Blumenstock T, Tully M, Paton‐Walsh C, Jones N, Querel R, Strahan S, Stauffer RM, Thompson AM, Inness A, Engelen R, Chang K, Cooper OR. COVID-19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2020GL091987. [PMID: 33785974 PMCID: PMC7995013 DOI: 10.1029/2020gl091987] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 05/21/2023]
Abstract
Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000-2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any previous year since at least 2000. Atmospheric composition analyses from the Copernicus Atmosphere Monitoring Service and simulations from the NASA GMI model indicate that the large 2020 springtime ozone depletion in the Arctic stratosphere contributed less than one-quarter of the observed tropospheric anomaly. The observed anomaly is consistent with recent chemistry-climate model simulations, which assume emissions reductions similar to those caused by the COVID-19 crisis. COVID-19 related emissions reductions appear to be the major cause for the observed reduced free tropospheric ozone in 2020.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter von der Gathen
- Alfred Wegener InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungPotsdamGermany
| | - Holger Deckelmann
- Alfred Wegener InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungPotsdamGermany
| | - Nis Jepsen
- Danish Meteorological InstituteCopenhagenDenmark
| | - Rigel Kivi
- Finnish Meteorological InstituteSodankyläFinland
| | | | | | | | - Bogumil Kois
- Institute of Meteorology and Water ManagementLegionowoPoland
| | | | - Marc Allaart
- Royal Netherlands Meteorological InstituteDeBiltThe Netherlands
| | - Ankie Piters
- Royal Netherlands Meteorological InstituteDeBiltThe Netherlands
| | | | | | | | - Ralf Sussmann
- Karlsruhe Institute of TechnologyIMK‐IFUGarmisch‐PartenkirchenGermany
| | - Emmanuel Mahieu
- Institute of Astrophysics and GeophysicsUniversity of LiègeLiègeBelgium
| | - Christian Servais
- Institute of Astrophysics and GeophysicsUniversity of LiègeLiègeBelgium
| | - Gonzague Romanens
- Federal Office of Meteorology and ClimatologyMeteoSwissPayerneSwitzerland
| | - Rene Stübi
- Federal Office of Meteorology and ClimatologyMeteoSwissPayerneSwitzerland
| | | | | | | | | | | | - Patrick Cullis
- NOAA ESRL Global Monitoring LaboratoryBoulderCOUSA
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
| | - Irina Petropavlovskikh
- NOAA ESRL Global Monitoring LaboratoryBoulderCOUSA
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
| | | | | | | | | | - Fernando Chouza
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyTable Mountain FacilityWrightwoodCAUSA
| | - Thierry Leblanc
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyTable Mountain FacilityWrightwoodCAUSA
| | | | | | | | | | | | | | - Clare Paton‐Walsh
- Centre for Atmospheric ChemistryUniversity of WollongongWollongongAustralia
| | - Nicholas Jones
- Centre for Atmospheric ChemistryUniversity of WollongongWollongongAustralia
| | - Richard Querel
- National Institute of Water and Atmospheric ResearchLauderNew Zealand
| | - Susan Strahan
- NASA Goddard Space Flight CenterEarth Sciences DivisionGreenbeltMDUSA
- Universities Space Research AssociationColumbiaMDUSA
| | - Ryan M. Stauffer
- NASA Goddard Space Flight CenterEarth Sciences DivisionGreenbeltMDUSA
- Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkMDUSA
| | - Anne M. Thompson
- NASA Goddard Space Flight CenterEarth Sciences DivisionGreenbeltMDUSA
| | - Antje Inness
- European Centre for Medium‐Range Weather ForecastsReadingUK
| | | | - Kai‐Lan Chang
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Owen R. Cooper
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| |
Collapse
|
14
|
Cazorla M, Herrera E, Palomeque E, Saud N. What the COVID-19 lockdown revealed about photochemistry and ozone production in Quito, Ecuador. ATMOSPHERIC POLLUTION RESEARCH 2021; 12:124-133. [PMID: 32863711 PMCID: PMC7446709 DOI: 10.1016/j.apr.2020.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/20/2023]
Abstract
The COVID-19 lockdown presented a peculiar opportunity to study a shift in the photochemical regime of ozone production in Quito (Ecuador) before and after mobility restrictions. Primary precursors such as NO and CO dropped dramatically as early as 13 March 2020, due to school closures, but ambient ozone did not change. In this work we use a chemical box model in order to estimate regimes of ozone production before and after the lockdown. We constrain the model with observations in Quito (ozone, NOx, CO, and meteorology) and with estimations of traffic-associated VOCs that are tightly linked to CO. To this end, we use the closest observational data of VOC/CO ratios at an urban area that shares with Quito conditions of high altitude and is located in the tropics, namely Mexico City. A shift in the chemical regime after mobility restrictions was evaluated in light of the magnitude of radical losses to nitric acid and to hydrogen peroxide. With reduced NOx in the morning rush hour (lockdown conditions), ozone production rates at 08:30-10:30 increased from 4.2-17 to 9.7-23 ppbv h-1, respectively. To test further the observed shift in chemical regime, ozone production was recalculated with post-lockdown NOx levels, but setting VOCs to pre-lockdown conditions. This change tripled ozone production rates in the mid-morning and stayed higher throughout the day. In light of these findings, practical scenarios that present the potential for ozone accumulation in the ambient air are discussed.
Collapse
Affiliation(s)
- María Cazorla
- Universidad San Francisco de Quito, Instituto de Investigaciones Atmosféricas, Diego de Robles y Av. Interoceánica, Quito, Ecuador
| | - Edgar Herrera
- Universidad San Francisco de Quito, Instituto de Investigaciones Atmosféricas, Diego de Robles y Av. Interoceánica, Quito, Ecuador
| | - Emilia Palomeque
- Universidad San Francisco de Quito, Instituto de Investigaciones Atmosféricas, Diego de Robles y Av. Interoceánica, Quito, Ecuador
| | - Nicolás Saud
- Universidad San Francisco de Quito, Instituto de Investigaciones Atmosféricas, Diego de Robles y Av. Interoceánica, Quito, Ecuador
| |
Collapse
|
15
|
Abstract
Urbanization is an ongoing global phenomenon as more and more people are moving from rural to urban areas for better employment opportunities and a higher standard of living, leading to the growth of megacities, broadly defined as urban agglomeration with more than 10 million inhabitants. Intense activities in megacities induce high levels of air pollutants in the atmosphere that harm human health, cause regional haze and acid deposition, damage crops, influence air quality in regions far from the megacity sources, and contribute to climate change. Since the Great London Smog and the first recognized episode of Los Angeles photochemical smog seventy years ago, substantial progress has been made in improving the scientific understanding of air pollution and in developing emissions reduction technologies. However, much remains to be understood about the complex processes of atmospheric oxidation mechanisms; the formation and evolution of secondary particles, especially those containing organic species; and the influence of emerging emissions sources and changing climate on air quality and health. While air quality has substantially improved in megacities in developed regions and some in the developing regions, many still suffer from severe air pollution. Strong regional and international collaboration in data collection and assessment will be beneficial in strengthening the capacity. This article provides an overview of the sources of emissions in megacities, atmospheric physicochemical processes, air quality trends and management in a few megacities, and the impacts on health and climate. The challenges and opportunities facing megacities due to lockdown during the COVID-19 pandemic is also discussed.
Collapse
Affiliation(s)
- Luisa T Molina
- Molina Center for Energy and the Environment, La Jolla, California 92037, USA.
| |
Collapse
|
16
|
Wang M, Yim SH, Dong G, Ho K, Wong D. Mapping ozone source-receptor relationship and apportioning the health impact in the Pearl River Delta region using adjoint sensitivity analysis. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 222:1-117026. [PMID: 32461735 PMCID: PMC7252566 DOI: 10.1016/j.atmosenv.2019.117026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While fine particulate matters are decreasing in the Pearl River Delta (PRD) region, the regional ozone (O3) shows an increasing trend that affects human health, leading to an urgent need for scientific understanding of source-receptor relationship between O3 and its precursor emissions given the changing background composition. We advanced and applied an adjoint air quality model to map contributions of individual O3 precursor emission sources [nitrogen oxides (NOx) and volatile organic compound (VOC)] at each location to annual regional O3 concentrations and to identify the possible dominant influential pathways of emission sources to O3 at different spatiotemporal scales. Additionally, we introduced the novel adjoint sensitivity approach to assess the relationship between precursor emissions and O3-induced premature mortality. Adjoint results show that Shenzhen was a major source contributor to regional O3 throughout all seasons, of which 49.4% (3.8%) were from its NOx (VOC) emissions. Local emissions (within PRD) contributed to 83% of the regional O3 whereas only ~54% of the estimated ~4000 regional O3-induced premature mortalities. The discrepancy between these two contributions was because O3-induced mortalities are dependent on not only O3 concentration, but incident rate and population density. We also found that a city with low O3-induced mortalities could have significant emission contributions to health impact in the region since the transport pathways could be through transport of local O3 or through transport of O3 precursors that form regional O3 thereafter. It is therefore necessary to formulate emission control policies from both air quality and public health perspectives, and it is also critical to have better understanding of influential pathways of emission sources to O3.
Collapse
Affiliation(s)
- M.Y. Wang
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - Steve H.L. Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
- Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - G.H. Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - K.F. Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - D.C. Wong
- Computational Exposure Division, National Exposure Research Laboratory, US Environmental Protection Agency, USA
| |
Collapse
|
17
|
Demetillo MAG, Anderson JF, Geddes JA, Yang X, Najacht EY, Herrera SA, Kabasares KM, Kotsakis AE, Lerdau MT, Pusede SE. Observing Severe Drought Influences on Ozone Air Pollution in California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4695-4706. [PMID: 30968688 DOI: 10.1021/acs.est.8b04852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drought conditions affect ozone air quality, potentially altering multiple terms in the O3 mass balance equation. Here, we present a multiyear observational analysis using data collected before, during, and after the record-breaking California drought (2011-2015) at the O3-polluted locations of Fresno and Bakersfield near the Sierra Nevada foothills. We separately assess drought influences on O3 chemical production ( PO3) from O3 concentration. We show that isoprene concentrations, which are a source of O3-forming organic reactivity, were relatively insensitive to early drought conditions but decreased by more than 50% during the most severe drought years (2014-2015), with recovery a function of location. We find drought-isoprene effects are temperature-dependent, even after accounting for changes in leaf area, consistent with laboratory studies but not previously observed at landscape scales with atmospheric observations. Drought-driven decreases in organic reactivity are contemporaneous with a change in dominant oxidation mechanism, with PO3 becoming more NO x-suppressed, leading to a decrease in PO3 of ∼20%. We infer reductions in atmospheric O3 loss of ∼15% during the most severe drought period, consistent with past observations of decreases in O3 uptake by plants. We consider drought-related trends in O3 variability on synoptic time scales by analyzing statistics of multiday high-O3 events. We discuss implications for regulating O3 air pollution in California and other locations under more prevalent drought conditions.
Collapse
Affiliation(s)
- Mary Angelique G Demetillo
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Jaime F Anderson
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Jeffrey A Geddes
- Department of Earth and Environment , Boston University , Boston , Massachusetts 02215 , United States
| | - Xi Yang
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Emily Y Najacht
- Department of Chemistry , Saint Mary's College , Notre Dame , Indiana 46556 , United States
| | - Solianna A Herrera
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Kyle M Kabasares
- Department of Physics , University of California Irvine , Irvine , California 92697 , United States
| | - Alexander E Kotsakis
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - Manuel T Lerdau
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Biology , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Sally E Pusede
- Department of Environmental Sciences , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
18
|
Revell LE, Stenke A, Tummon F, Feinberg A, Rozanov E, Peter T, Abraham NL, Akiyoshi H, Archibald AT, Butchart N, Deushi M, Jöckel P, Kinnison D, Michou M, Morgenstern O, O'Connor FM, Oman LD, Pitari G, Plummer DA, Schofield R, Stone K, Tilmes S, Visioni D, Yamashita Y, Zeng G. Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry-climate model. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:16155-16172. [PMID: 32742283 PMCID: PMC7394122 DOI: 10.5194/acp-18-16155-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous multi-model intercomparisons have shown that chemistry-climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC/IGAC (Stratosphere-troposphere Processes and their Role in Climate/International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40-50% in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to ~30% in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2 DU - approximately 33% larger than the CCMI multi-model mean. Here we introduce an updated version of SOCOLv3.0, "SOCOLv3.1", which includes an improved treatment of ozone sink processes, and results in a reduction in the tropospheric column ozone bias of up to 8 DU, mostly due to the inclusion of N2O5 hydrolysis on tropospheric aerosols. As a result of these developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen oxides (NOx), carbon monoxide, methane and other volatile organic compounds) are responsible for more than 90% of the variance in tropospheric ozone. However, it may not be the emissions inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, and we discuss this in the wider context of the other CCMI models. Given that the emissions data set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 20% more NOx than the data set used for CCMI, further work is urgently needed to address the challenges of simulating sub-grid processes of importance to tropospheric ozone in the current generation of chemistry-climate models.
Collapse
Affiliation(s)
- Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
- Bodeker Scientific, Christchurch, New Zealand
| | - Andrea Stenke
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Fiona Tummon
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
- Now at: Biosciences, Fisheries, and Economics Faculty, University of Tromsø, Norway
| | - Aryeh Feinberg
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Eugene Rozanov
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
- Physical-Meteorological Observatory/World Radiation Center, Davos, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - N Luke Abraham
- Department of Chemistry, University of Cambridge, Cambridge, UK
- National Centre for Atmospheric Science (NCAS), UK
| | | | - Alexander T Archibald
- Department of Chemistry, University of Cambridge, Cambridge, UK
- National Centre for Atmospheric Science (NCAS), UK
| | | | - Makoto Deushi
- Meteorological Research Institute (MRI), Tsukuba, Japan
| | - Patrick Jöckel
- Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
| | - Douglas Kinnison
- National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
| | | | - Olaf Morgenstern
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | | | - Luke D Oman
- National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), Greenbelt, Maryland, USA
| | - Giovanni Pitari
- Department of Physical and Chemical Sciences, Università dell'Aquila, L'Aquila, Italy
| | | | - Robyn Schofield
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia
| | - Kane Stone
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia
- Now at: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Simone Tilmes
- National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
| | - Daniele Visioni
- Department of Physical and Chemical Sciences, Università dell'Aquila, L'Aquila, Italy
| | - Yousuke Yamashita
- National Institute of Environmental Studies (NIES), Tsukuba, Japan
- Now at: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| | - Guang Zeng
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| |
Collapse
|
19
|
Riedel TP, DeMarini DM, Zavala J, Warren SH, Corse EW, Offenberg JH, Kleindienst TE, Lewandowski M. Mutagenic atmospheres resulting from the photooxidation of aromatic hydrocarbon and NO x mixtures. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2018; 178:164-172. [PMID: 29725240 PMCID: PMC5921836 DOI: 10.1016/j.atmosenv.2018.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although many volatile organic compounds (VOCs) are regulated to limit air pollution and the consequent health effects, the photooxidation products generally are not. Thus, we examined the mutagenicity in Salmonella TA100 of photochemical atmospheres generated in a steady-state atmospheric simulation chamber by irradiating mixtures of single aromatic VOCs, NOx, and ammonium sulfate seed aerosol in air. The 10 VOCs examined were benzene; toluene; ethylbenzene; o-, m-, and p-xylene; 1,2,4- and 1,3,5-trimethylbenzene; m-cresol; and naphthalene. Salmonella were exposed at the air-agar interface to the generated atmospheres for 1, 2, 4, 8, or 16 h. Dark-control exposures produced non-mutagenic atmospheres, illustrating that the gas-phase precursor VOCs were not mutagenic at the concentrations tested. Under irradiation, all but m-cresol and naphthalene produced mutagenic atmospheres, with potencies ranging from 2.0 (p-xylene) to 10.4 (ethylbenzene) revertants m3 mgC-1 h-1. The mutagenicity was due exclusively to direct-acting late-generation products of the photooxidation reactions. Gas-phase chemical analysis showed that a number of oxidized organic chemical species enhanced during the irradiated exposure experiments correlated (r ≥ 0.81) with the mutagenic potencies of the atmospheres. Molecular formulas assigned to these species indicated that they likely contained peroxy acid, aldehyde, alcohol, and other functionalities.
Collapse
Affiliation(s)
- Theran P. Riedel
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - David M. DeMarini
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Jose Zavala
- Oak Ridge Institute for Science and Education, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Sarah H. Warren
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Eric W. Corse
- Jacobs Technology, Cary, North Carolina, United States
| | - John H. Offenberg
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Tadeusz E. Kleindienst
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Michael Lewandowski
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| |
Collapse
|
20
|
Mao J, Carlton A, Cohen RC, Brune WH, Brown SS, Wolfe GM, Jimenez JL, Pye HOT, Ng NL, Xu L, McNeill VF, Tsigaridis K, McDonald BC, Warneke C, Guenther A, Alvarado MJ, de Gouw J, Mickley LJ, Leibensperger EM, Mathur R, Nolte CG, Portmann RW, Unger N, Tosca M, Horowitz LW. Southeast Atmosphere Studies: learning from model-observation syntheses. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:2615-2651. [PMID: 29963079 PMCID: PMC6020695 DOI: 10.5194/acp-18-2615-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Collapse
Affiliation(s)
- Jingqiu Mao
- Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Annmarie Carlton
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ronald C. Cohen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - William H. Brune
- Department of Meteorology, Pennsylvania State University, University Park, PA, USA
| | - Steven S. Brown
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Glenn M. Wolfe
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Jose L. Jimenez
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nga Lee Ng
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Xu
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY USA
| | - Kostas Tsigaridis
- Center for Climate Systems Research, Columbia University, New York, NY, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Brian C. McDonald
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | | | - Joost de Gouw
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Rohit Mathur
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher G. Nolte
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert W. Portmann
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Nadine Unger
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Mika Tosca
- School of the Art Institute of Chicago (SAIC), Chicago, IL 60603, USA
| | - Larry W. Horowitz
- Geophysical Fluid Dynamics Laboratory–National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| |
Collapse
|
21
|
Henneman LRF, Shen H, Liu C, Hu Y, Mulholland JA, Russell AG. Responses in Ozone and Its Production Efficiency Attributable to Recent and Future Emissions Changes in the Eastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13797-13805. [PMID: 29112386 DOI: 10.1021/acs.est.7b04109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ozone production efficiency (OPE), a measure of the number of ozone (O3) molecules produced per emitted NOX (NO + NO2) molecule, helps establish the relationship between NOX emissions and O3 formation. We estimate long-term OPE variability across the eastern United States using two novel approaches: an observation-based empirical method and a chemical transport model (CTM) method. The CTM approach explicitly controls for differing O3 and NOX reaction product (NOZ) deposition rates and separately estimates OPEs from on-road mobile and electricity generating unit sources across a broad spatial scale. We find lower OPEs in urban areas and that average July OPE increased over the eastern United States domain between 2001 and 2011 from 11 to 14. CTM and empirical approaches agree at low NOZ concentrations, but CTM OPEs are greater than empirical OPEs at high NOZ. Our results support that NOX emissions reductions become more effective at reducing O3 at lower NOZ concentrations. Electricity generating unit OPEs are higher than mobile OPEs except near emissions locations, meaning further utility NOX emissions reductions will have greater per unit impacts on O3 regionally.
Collapse
Affiliation(s)
- Lucas R F Henneman
- Harvard University , T.H. Chan School of Public Health, Boston, Massachusetts 02445, United States
| | - Huizhong Shen
- School of Civil and Environmental Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| | - Cong Liu
- School of Energy and Environment, Southeast University , Nanjing, China
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| | - James A Mulholland
- School of Civil and Environmental Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Abstract
Oxygenic photosynthesis is Earth's dominant metabolism, having evolved to harvest the largest expected energy source at the surface of most terrestrial habitable zone planets. Using CO2 and H2O-molecules that are expected to be abundant and widespread on habitable terrestrial planets-oxygenic photosynthesis is plausible as a significant planetary process with a global impact. Photosynthetic O2 has long been considered particularly robust as a sign of life on a habitable exoplanet, due to the lack of known "false positives"-geological or photochemical processes that could also produce large quantities of stable O2. O2 has other advantages as a biosignature, including its high abundance and uniform distribution throughout the atmospheric column and its distinct, strong absorption in the visible and near-infrared. However, recent modeling work has shown that false positives for abundant oxygen or ozone could be produced by abiotic mechanisms, including photochemistry and atmospheric escape. Environmental factors for abiotic O2 have been identified and will improve our ability to choose optimal targets and measurements to guard against false positives. Most of these false-positive mechanisms are dependent on properties of the host star and are often strongest for planets orbiting M dwarfs. In particular, selecting planets found within the conservative habitable zone and those orbiting host stars more massive than 0.4 M⊙ (M3V and earlier) may help avoid planets with abundant abiotic O2 generated by water loss. Searching for O4 or CO in the planetary spectrum, or the lack of H2O or CH4, could help discriminate between abiotic and biological sources of O2 or O3. In advance of the next generation of telescopes, thorough evaluation of potential biosignatures-including likely environmental context and factors that could produce false positives-ultimately works to increase our confidence in life detection. Key Words: Biosignatures-Exoplanets-Oxygen-Photosynthesis-Planetary spectra. Astrobiology 17, 1022-1052.
Collapse
Affiliation(s)
- Victoria S Meadows
- 1 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
- 2 NASA Astrobiology Institute-Virtual Planetary Laboratory , USA
| |
Collapse
|
23
|
Jones KK, Eckler LH, Nee MJ. Effect of Ionic Strength on Solvation Geometries in Aqueous Nitrate Ion Solutions. J Phys Chem A 2017; 121:2322-2330. [DOI: 10.1021/acs.jpca.6b12102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Konnor K. Jones
- Department of Chemistry, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, Kentucky 42101, United States
| | - Logan H. Eckler
- Department of Chemistry, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, Kentucky 42101, United States
| | - Matthew J. Nee
- Department of Chemistry, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, Kentucky 42101, United States
| |
Collapse
|
24
|
Bates KH, Nguyen TB, Teng AP, Crounse JD, Kjaergaard HG, Stoltz BM, Seinfeld JH, Wennberg PO. Production and Fate of C4 Dihydroxycarbonyl Compounds from Isoprene Oxidation. J Phys Chem A 2016; 120:106-17. [DOI: 10.1021/acs.jpca.5b10335] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Henrik G. Kjaergaard
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
25
|
Brune WH, Baier BC, Thomas J, Ren X, Cohen RC, Pusede SE, Browne EC, Goldstein AH, Gentner DR, Keutsch FN, Thornton JA, Harrold S, Lopez-Hilfiker FD, Wennberg PO. Ozone production chemistry in the presence of urban plumes. Faraday Discuss 2016; 189:169-89. [DOI: 10.1039/c5fd00204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ozone pollution affects human health, especially in urban areas on hot sunny days. Its basic photochemistry has been known for decades and yet it is still not possible to correctly predict the high ozone levels that are the greatest threat. The CalNex_SJV study in Bakersfield CA in May/June 2010 provided an opportunity to examine ozone photochemistry in an urban area surrounded by agriculture. The measurement suite included hydroxyl (OH), hydroperoxyl (HO2), and OH reactivity, which are compared with the output of a photochemical box model. While the agreement is generally within combined uncertainties, measured HO2 far exceeds modeled HO2 in NOx-rich plumes. OH production and loss do not balance as they should in the morning, and the ozone production calculated with measured HO2 is a decade greater than that calculated with modeled HO2 when NO levels are high. Calculated ozone production using measured HO2 is twice that using modeled HO2, but this difference in calculated ozone production has minimal impact on the assessment of NOx-sensitivity or VOC-sensitivity for midday ozone production. Evidence from this study indicates that this important discrepancy is not due to the HO2 measurement or to the sampling of transported plumes but instead to either emissions of unknown organic species that accompany the NO emissions or unknown photochemistry involving nitrogen oxides and hydrogen oxides, possibly the hypothesized reaction OH + NO + O2 → HO2 + NO2.
Collapse
|
26
|
Hidy GM, Blanchard CL. Precursor reductions and ground-level ozone in the Continental United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:1261-82. [PMID: 26252366 DOI: 10.1080/10962247.2015.1079564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
UNLABELLED Numerous papers analyze ground-level ozone (O₃) trends since the 1980s, but few have linked O₃trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O₃concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO₂; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO₂concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O₃photochemistry. The linear O₃-NO₂relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O₃with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O₃concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O₃concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O₃reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O₃with emissions suggest that O₃is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O₃change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O₃production efficiency at lower NOx concentrations (higher O₃/NOy ratio), and the presence of natural NOx and NMOC precursors and background O₃. IMPLICATIONS This analysis demonstrates empirical relations between O₃and precursors based on long term trends in U.S. LOCATIONS The results indicate that ground-level O₃concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O₃and NO₂concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.
Collapse
|
27
|
Pusede SE, Steiner AL, Cohen RC. Temperature and recent trends in the chemistry of continental surface ozone. Chem Rev 2015; 115:3898-918. [PMID: 25950502 DOI: 10.1021/cr5006815] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Allison L Steiner
- §Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
28
|
Hsieh S, Vushe R, Tun YT, Vallejo JL. Trends in organic hydroperoxide photodissociation and absorption cross sections between 266 and 377 nm. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Han KM, Park RS, Kim HK, Woo JH, Kim J, Song CH. Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:754-771. [PMID: 23867846 DOI: 10.1016/j.scitotenv.2013.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
In this study, the accuracy of biogenic isoprene emission fluxes over East Asia during two summer months (July and August) was examined by comparing two tropospheric HCHO columns (ΩHCHO) obtained from the SCIAMACHY sensor and the Community Multi-scale Air Quality (CMAQ v4.7.1) model simulations, using three available biogenic isoprene emission inventories over East Asia: i) GEIA, ii) MEGAN and iii) MOHYCAN. From this comparative analysis, the tropospheric HCHO columns from the CMAQ model simulations, using the MEGAN and MOHYCAN emission inventories (Ω(CMAQ, MEGAN) and Ω(CMAQ, MOHYCAN)), were found to agree well with the tropospheric HCHO columns from the SCIAMACHY observations (Ω(SCIA)). Secondly, the propagation of such uncertainties in the biogenic isoprene emission fluxes to the levels of atmospheric oxidants (e.g., OH and HO2) and other atmospheric gaseous/particulate species over East Asia during the two summer months was also investigated. As the biogenic isoprene emission fluxes decreased from the GEIA to the MEGAN emission inventories, the levels of OH radicals increased by factors of 1.39 and 1.75 over Central East China (CEC) and South China, respectively. Such increases in the OH radical mixing ratios subsequently influence the partitioning of HO(y) species. For example, the HO2/OH ratios from the CMAQ model simulations with GEIA isoprene emissions were 2.7 times larger than those from the CMAQ model simulations based on MEGAN isoprene emissions. The large HO2/OH ratios from the CMAQ model simulations with the GEIA biogenic emission were possibly due to the overestimation of GEIA biogenic isoprene emissions over East Asia. It was also shown that such large changes in HO(x) radicals created large differences on other tropospheric compounds (e.g., NO(y) chemistry) over East Asia during the summer months.
Collapse
Affiliation(s)
- K M Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea; Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Warneke C, de Gouw JA, Holloway JS, Peischl J, Ryerson TB, Atlas E, Blake D, Trainer M, Parrish DD. Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017899] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
da Silva G. Reaction of Methacrolein with the Hydroxyl Radical in Air: Incorporation of Secondary O2 Addition into the MACR + OH Master Equation. J Phys Chem A 2012; 116:5317-24. [DOI: 10.1021/jp303806w] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
32
|
Crounse JD, Knap HC, Ørnsø KB, Jørgensen S, Paulot F, Kjaergaard HG, Wennberg PO. Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O2. J Phys Chem A 2012; 116:5756-62. [DOI: 10.1021/jp211560u] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- John D. Crounse
- Division of Geological
and Planetary
Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hasse C. Knap
- Department of Chemistry,
DK-2100 Copenhagen Ø, University of Copenhagen, Copenhagen, Denmark
| | - Kristian B. Ørnsø
- Department of Chemistry,
DK-2100 Copenhagen Ø, University of Copenhagen, Copenhagen, Denmark
| | - Solvejg Jørgensen
- Department of Chemistry,
DK-2100 Copenhagen Ø, University of Copenhagen, Copenhagen, Denmark
| | - Fabien Paulot
- Division
of Engineering and Applied
Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Henrik G. Kjaergaard
- Department of Chemistry,
DK-2100 Copenhagen Ø, University of Copenhagen, Copenhagen, Denmark
| | - Paul O. Wennberg
- Division of Geological
and Planetary
Science, California Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied
Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
33
|
Orlando JJ, Tyndall GS. Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. Chem Soc Rev 2012; 41:6294-317. [PMID: 22847633 DOI: 10.1039/c2cs35166h] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- John J Orlando
- National Center for Atmospheric Research, Earth System Laboratory, Atmospheric Chemistry Division, Boulder, USA.
| | | |
Collapse
|
34
|
Stone D, Whalley LK, Heard DE. Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chem Soc Rev 2012; 41:6348-404. [DOI: 10.1039/c2cs35140d] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Whalley L, Stone D, Heard D. New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Top Curr Chem (Cham) 2012; 339:55-95. [DOI: 10.1007/128_2012_359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
36
|
Wolfe GM, Crounse JD, Parrish JD, St. Clair JM, Beaver MR, Paulot F, Yoon TP, Wennberg PO, Keutsch FN. Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Phys Chem Chem Phys 2012; 14:7276-86. [DOI: 10.1039/c2cp40388a] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Crounse JD, Paulot F, Kjaergaard HG, Wennberg PO. Peroxy radical isomerization in the oxidation of isoprene. Phys Chem Chem Phys 2011; 13:13607-13. [PMID: 21701740 DOI: 10.1039/c1cp21330j] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report experimental evidence for the formation of C(5)-hydroperoxyaldehydes (HPALDs) from 1,6-H-shift isomerizations in peroxy radicals formed from the hydroxyl radical (OH) oxidation of 2-methyl-1,3-butadiene (isoprene). At 295 K, the isomerization rate of isoprene peroxy radicals (ISO2•) relative to the rate of reaction of ISO2• + HO2 is k(isom)(295)/(k(ISO2•+HO2)(295)) = (1.2 ± 0.6) x 10(8) mol cm(-3), or k(isom)(295) ≃ 0.002 s(-1). The temperature dependence of this rate was determined through experiments conducted at 295, 310 and 318 K and is well described by k(isom)(T)/(k(ISO2•+HO2)(T)) = 2.0 x 10(21) exp(-9000/T) mol cm(-3). The overall uncertainty in the isomerization rate (relative to k(ISO2•+HO2)) is estimated to be 50%. Peroxy radicals from the oxidation of the fully deuterated isoprene analog isomerize at a rate ∼15 times slower than non-deuterated isoprene. The fraction of isoprene peroxy radicals reacting by 1,6-H-shift isomerization is estimated to be 8-11% globally, with values up to 20% in tropical regions.
Collapse
Affiliation(s)
- John D Crounse
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
38
|
Navarro MA, Dusanter S, Hites RA, Stevens PS. Radical dependence of the yields of methacrolein and methyl vinyl ketone from the OH-initiated oxidation of isoprene under NO(x)-free conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:923-929. [PMID: 21175163 DOI: 10.1021/es103147w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Formation yields of methacrolein (MAC), methyl vinyl ketone (MVK), and 3-methyl furan (3MF) from the hydroxyl radical (OH) initiated oxidation of isoprene were investigated under NO(x)-free conditions (NO(x) = NO + NO(2)) at 50 °C and 1 atm in a quartz reaction chamber coupled to a mass spectrometer. Yields of the primary products were measured at various OH and hydroperoxy (HO(2)) radical concentrations and were found to decrease as the HO(2)-to-isoprene-based peroxy radical (ISORO(2)) concentration ratio increases. This is likely the result of a competition between ISORO(2) self- and cross-reactions that lead to the formation of the primary products, with reactions between these peroxy radicals and HO(2) which can lead to the formation of peroxides. Under conditions with HO(2)/ISORO(2) ratios close to 0.1, yields of MVK (15.5% ± 1.4%) and MAC (13.0% ± 1.2%) were higher than the yields of MVK (8.9% ± 0.9%) and MAC (10.9% ± 1.1%) measured under conditions with HO(2)/ISORO(2) ratios close to 1. This radical dependence of the yields was reproduced reasonably well by an explicit model of isoprene oxidation, suggesting that the model is able to reproduce the observed products yields under a realistic range of atmospheric HO(2)/ISORO(2) ratios.
Collapse
Affiliation(s)
- Maria A Navarro
- Center for Research in Environmental Science, School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | | | | | | |
Collapse
|
39
|
Buendía-Atencio C, Leyva V, González L. Thermochemistry and UV spectroscopy of alkyl peroxynitrates. J Phys Chem A 2010; 114:9537-44. [PMID: 20704316 DOI: 10.1021/jp103854y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High level ab initio calculations and multiconfigurational methods have been used to characterize the equilibrium structures, vibrational frequencies, enthalpies of formation, and UV-vis spectra of alkyl peroxynitrates R-OONO(2) (R = H, CH(3), C(2)H(5), C(3)H(7)). Excellent agreement with the experimental enthalpy of formation is obtained for HOONO(2) warranting similar accuracy for the rest of compounds for which values are inexistent or measured indirectly. The spectra obtained by MS-CASPT2/CASSCF calculations are very similar in all the species, showing a broad band below 200 nm with a shoulder due to pipi* transitions and a tail at approximately 250 nm due to weak npi* transitions on the NO(2) group.
Collapse
Affiliation(s)
- Cristian Buendía-Atencio
- INIFTA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, La Plata (1900), Argentina
| | | | | |
Collapse
|
40
|
Drozd GT, Melnichuk A, Donahue NM. The HOOH UV spectrum: importance of the transition dipole moment and torsional motion from semiclassical calculations on an ab initio potential energy surface. J Chem Phys 2010; 132:084304. [PMID: 20192299 DOI: 10.1063/1.3317438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The absorption cross section of HOOH, a starting point for larger ROOH, was calculated using the "Wigner method." Calculations use the Wigner transform of ground state wave functions and classical approximations for excited state wave functions. Potential energy and transition dipole moment surfaces were calculated using the equation-of-motion coupled-cluster singles and doubles method over an extended Franck-Condon region. The first two O-O stretches and the first five HOOH torsional levels are included. This study also addresses two fundamental questions about ROOH photodissociation. The long wavelength A(1)A:B(1)B excited state preference has been measured from dynamics experiments, but a Franck-Condon overlap explanation has not been directly verified. A moderate barrier to HOOH torsional motion and excited state dynamics affect the temperature dependence in the UV spectrum. Based on these initial findings for HOOH, photodissociation of large ROOH cannot be eliminated as an important factor for ozone and particulate matter production seen in both ambient and laboratory studies.
Collapse
Affiliation(s)
- Greg T Drozd
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
41
|
da Silva G. Hydroxyl radical regeneration in the photochemical oxidation of glyoxal: kinetics and mechanism of the HC(O)CO + O(2) reaction. Phys Chem Chem Phys 2010; 12:6698-705. [PMID: 20424780 DOI: 10.1039/b927176g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glyoxal, HC(O)CHO, is an important trace component of the Earth's atmosphere, formed in biomass burning and in the photooxidation of volatile organic compounds (VOCs) like isoprene and aromatic hydrocarbons. The HC(O)CO free radical is the primary product of the glyoxal + OH reaction, and this study uses computational chemistry to show that the HC(O)CO radical can react with O(2) to regenerate the hydroxyl radical (OH) in the atmosphere. Master equation simulations indicate that the HC(O)C(O)O(2) peroxy radical adduct proceeds directly to CO(2) + CO + OH in a chemically activated mechanism, with minor collisional deactivation of the relatively unstable HC(O)C(O)O(2) peroxy radical. The reaction of HC(O)CO with O(2) is found to be competitive with thermal decomposition to HCO + CO at tropospheric temperatures and pressures, accounting for ca. 40% or more of the total yield. The present process provides a new mechanism for OH regeneration in the troposphere, which involves the decomposition of unstable alpha-formylperoxy radicals.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia.
| |
Collapse
|
42
|
Lu K, Zhang Y, Su H, Brauers T, Chou CC, Hofzumahaus A, Liu SC, Kita K, Kondo Y, Shao M, Wahner A, Wang J, Wang X, Zhu T. Oxidant (O3+ NO2) production processes and formation regimes in Beijing. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012714] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Jenkin ME, Hurley MD, Wallington TJ. Investigation of the Radical Product Channel of the CH3OCH2O2 + HO2 Reaction in the Gas Phase. J Phys Chem A 2009; 114:408-16. [DOI: 10.1021/jp908158w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. E. Jenkin
- Atmospheric Chemistry Services, Okehampton, Devon, EX20 1FB, U.K., and Research and Advanced Engineering, Ford Motor Company, SRL-3083, PO Box 2053, Dearborn, Michigan 48121-2053
| | - M. D. Hurley
- Atmospheric Chemistry Services, Okehampton, Devon, EX20 1FB, U.K., and Research and Advanced Engineering, Ford Motor Company, SRL-3083, PO Box 2053, Dearborn, Michigan 48121-2053
| | - T. J. Wallington
- Atmospheric Chemistry Services, Okehampton, Devon, EX20 1FB, U.K., and Research and Advanced Engineering, Ford Motor Company, SRL-3083, PO Box 2053, Dearborn, Michigan 48121-2053
| |
Collapse
|
44
|
Affiliation(s)
- Tadeusz E. Kleindienst
- National Exposure Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711, USA
| |
Collapse
|
45
|
Hofzumahaus A, Rohrer F, Lu K, Bohn B, Brauers T, Chang CC, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S, Shao M, Zeng L, Wahner A, Zhang Y. Amplified Trace Gas Removal in the Troposphere. Science 2009; 324:1702-4. [DOI: 10.1126/science.1164566] [Citation(s) in RCA: 465] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Ito A, Sillman S, Penner JE. Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011254] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Kondo Y, Morino Y, Fukuda M, Kanaya Y, Miyazaki Y, Takegawa N, Tanimoto H, McKenzie R, Johnston P, Blake DR, Murayama T, Koike M. Formation and transport of oxidized reactive nitrogen, ozone, and secondary organic aerosol in Tokyo. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd010134] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Fu TM, Jacob DJ, Wittrock F, Burrows JP, Vrekoussis M, Henze DK. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009505] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
|
50
|
Atmospheric oxidation capacity sustained by a tropical forest. Nature 2008; 452:737-40. [PMID: 18401407 DOI: 10.1038/nature06870] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 02/22/2008] [Indexed: 11/09/2022]
Abstract
Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere, which are removed by oxidation reactions and deposition of reaction products. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily formed through the photodissociation of ozone. Previously it was thought that, in unpolluted air, biogenic VOCs deplete OH and reduce the atmospheric oxidation capacity. Conversely, in polluted air VOC oxidation leads to noxious oxidant build-up by the catalytic action of nitrogen oxides (NO(x) = NO + NO2). Here we report aircraft measurements of atmospheric trace gases performed over the pristine Amazon forest. Our data reveal unexpectedly high OH concentrations. We propose that natural VOC oxidation, notably of isoprene, recycles OH efficiently in low-NO(x) air through reactions of organic peroxy radicals. Computations with an atmospheric chemistry model and the results of laboratory experiments suggest that an OH recycling efficiency of 40-80 per cent in isoprene oxidation may be able to explain the high OH levels we observed in the field. Although further laboratory studies are necessary to explore the chemical mechanism responsible for OH recycling in more detail, our results demonstrate that the biosphere maintains a remarkable balance with the atmospheric environment.
Collapse
|