1
|
Sun Y, Zhang Q, Qin Z, Li K, Zhang Y. Laboratory study on the characteristics of fresh and aged PM 1 emitted from typical forest vegetation combustion in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124505. [PMID: 38968986 DOI: 10.1016/j.envpol.2024.124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The frequency and intensity of forest fires are amplified by climate change. Substantial quantities of PM1 emitted from forest fires can undergo gradual atmospheric dispersion and long-range transport, thus impacting air quality far from the source. However, the chemical composition and physical properties of PM emitted from forest fires and its changes during atmospheric transport remain uncertain. In this study, the evolution of organic carbon (OC), elemental carbon (EC), water-soluble ions, and water-soluble metals in the particulate phase of smoke emitted from the typical forest vegetation combustion in Southwest China before and after photo-oxidation was investigated in the laboratory. Two aging periods of 5 and 9 days were selected. The OC and TC mass concentrations tended to decrease after 9-days aged compared to fresh emissions. OP, OC2, and OC3 in PM1 are expected to be potential indicators of fresh smoke, while OC3 and OC4 may serve as suitable markers for identifying aged carbon sources from the typical forest vegetation combustion in Southwest China. K+ exhibited the highest abundant water-soluble ion in fresh PM1, whereas NO3- became the most abundant water-soluble ion in aged PM1. NH4NO3 emerged as the primary secondary inorganic aerosol emitted from typical forest vegetation combustion in Southwest China. Notably, a 5-day aging period proved insufficient for the complete formation of the secondary inorganic aerosols NH4NO3 and (NH4)2SO4. After aging, the mass concentration of the water-soluble metal Ni in PM1 from typical forest vegetation combustion in Southwest China decreased, while the mean mass concentrations of all other water-soluble metals increased in varying degrees. These findings provide valuable data support and theoretical guidance for studying the atmospheric evolution of forest fire aerosols, as well as contribute to policy formulation and management of atmospheric environment safety and human health.
Collapse
Affiliation(s)
- Yuping Sun
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Zhenhai Qin
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kaili Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
2
|
Chen K, Hamilton C, Ries B, Lum M, Mayorga R, Tian L, Bahreini R, Zhang H, Lin YH. Relative Humidity Modulates the Physicochemical Processing of Secondary Brown Carbon Formation from Nighttime Oxidation of Furan and Pyrrole. ACS ES&T AIR 2024; 1:426-437. [PMID: 38751608 PMCID: PMC11091849 DOI: 10.1021/acsestair.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Light-absorbing secondary organic aerosols (SOAs), also known as secondary brown carbon (BrC), are major components of wildfire smoke that can have a significant impact on the climate system; however, how environmental factors such as relative humidity (RH) influence their formation is not fully understood, especially for heterocyclic precursors. We conducted chamber experiments to investigate secondary BrC formation from the nighttime oxidation of furan and pyrrole, two primary heterocyclic precursors in wildfires, in the presence of pre-existing particles at RH < 20% and ∼ 50%. Our findings revealed that increasing RH significantly affected the size distribution dynamics of both SOAs, with pyrrole SOA showing a stronger potential to generate ultrafine particles via intensive nucleation processes. Higher RH led to increased mass fractions of oxygenated compounds in both SOAs, suggesting enhanced gas-phase and/or multiphase oxidation under humid conditions. Moreover, higher RH reduced the mass absorption coefficients of both BrC, contrasting with those from homocyclic precursors, due to the formation of non-absorbing high-molecular-weight oxygenated compounds and the decreasing mass fractions of molecular chromophores. Overall, our findings demonstrate the unique RH dependence of secondary BrC formation from heterocyclic precursors, which may critically modulate the radiative effects of wildfire smoke on climate change.
Collapse
Affiliation(s)
- Kunpeng Chen
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Caitlin Hamilton
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Bradley Ries
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael Lum
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Raphael Mayorga
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Linhui Tian
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Roya Bahreini
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Haofei Zhang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Li S, Liu D, Wu Y, Hu K, Jiang X, Tian P, Sheng J, Pan B, Zhao D. Aging effects on residential biomass burning emissions under quasi-real atmospheric conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122615. [PMID: 37757938 DOI: 10.1016/j.envpol.2023.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Emissions from biomass burning (BB) vastly contribute to the atmospheric trace gases and particles, which affect air quality and human health. After emission, the chemical evolution changes the mass and composition of organic aerosol (OA) in the diluted and aged plume. In this study, we used a quasi-real atmospheric smog chamber system to conduct aging experiments and investigated the multiphase oxidation of primary organic aerosol (POA) and the formation of secondary organic aerosols (SOA) in residential biomass burning plumes. We found that the emissions in the gas and particle phases were interlinked during the plume evolution. During photochemical aging, more oxidized OA was produced, and SOA formation increased by a factor of 2 due to functionalization reactions of gaseous precursors such as furans, phenols, and carbonyls. On the other hand, dark aging resulted in a lower OA mass enhancement by a factor of 1.2, with weaker oxidation from gaseous reactions. Dark aging experiments resulted in the generation of substantial quantities of nitrogen-containing organic compounds in both gas and particulate phases, while photochemical aging led to a notable increase in the concentration of gaseous carboxylic acids. Our observations show that the properties of SOA are influenced by exposure to sunlight radiation and oxidants such as OH or NO3 radicals. These results reflect the aging process of BB plumes in real-world atmospheric conditions and highlight the importance of considering various aging mechanisms.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China.
| | - Yangzhou Wu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China
| | - Kang Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xiaotong Jiang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China
| | - Ping Tian
- Beijing Weather Modification Office, Beijing, 100089, China
| | - Jiujiang Sheng
- Beijing Weather Modification Office, Beijing, 100089, China
| | - Baiwan Pan
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China
| | - Delong Zhao
- Beijing Weather Modification Office, Beijing, 100089, China
| |
Collapse
|
4
|
Liu Y, Huang Y, Liggio J, Hayden K, Mihele C, Wentzell J, Wheeler M, Leithead A, Moussa S, Xie C, Yang Y, Zhang Y, Han T, Li SM. A newly developed Lagrangian chemical transport scheme: Part 1. Simulation of a boreal forest fire plume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163232. [PMID: 37023817 DOI: 10.1016/j.scitotenv.2023.163232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Forest fire research over the last several decades has improved the understanding of fire emissions and impacts. Nevertheless, the evolution of forest fire plumes remains poorly quantified and understood. Here, a Lagrangian chemical transport model, the Forward Atmospheric Stochastic Transport model coupled with the Master Chemical Mechanism (FAST-MCM), has been developed to simulate the transport and chemical transformations of plumes from a boreal forest fire over several hours since their emission. The model results for NOx (NO and NO2), O3, HONO, HNO3, pNO3 and 70 VOC species are compared with airborne in-situ measurements within plume centers and their surrounding portions during the transport. Comparisons between simulation results and measurements show that the FAST-MCM model can properly reproduce the physical and chemical evolution of forest fire plumes. The results indicate that the model can be an important tool used to aid the understanding of the downwind impacts of forest fire plumes.
Collapse
Affiliation(s)
- Yayong Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yufei Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - John Liggio
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Katherine Hayden
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Cris Mihele
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Jeremy Wentzell
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Michael Wheeler
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amy Leithead
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Samar Moussa
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Conghui Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yanrong Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yuheng Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Tianran Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Shao-Meng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871.
| |
Collapse
|
5
|
Jordan CE, Anderson BE, Barrick JD, Blum D, Brunke K, Chai J, Chen G, Crosbie EC, Dibb JE, Dillner AM, Gargulinski E, Hudgins CH, Joyce E, Kaspari J, Martin RF, Moore RH, O’Brien R, Robinson CE, Schuster GL, Shingler TJ, Shook MA, Soja AJ, Thornhill KL, Weakley AT, Wiggins EB, Winstead EL, Ziemba LD. Beyond the Ångström Exponent: Probing Additional Information in Spectral Curvature and Variability of In Situ Aerosol Hyperspectral (0.3-0.7 μm) Optical Properties. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD037201. [PMID: 36590057 PMCID: PMC9787633 DOI: 10.1029/2022jd037201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Ångström exponents (α) allow reconstruction of aerosol optical spectra over a broad range of wavelengths from measurements at two or more wavelengths. Hyperspectral measurements of atmospheric aerosols provide opportunities to probe measured spectra for information inaccessible from only a few wavelengths. Four sets of hyperspectral in situ aerosol optical coefficients (aerosol-phase total extinction, σ ext, and absorption, σ abs; liquid-phase soluble absorption from methanol, σ MeOH-abs, and water, σ DI-abs, extracts) were measured from biomass burning aerosols (BBAs). Hyperspectral single scattering albedo (ω), calculated from σ ext and σ abs, provide spectral resolution over a wide spectral range rare for this optical parameter. Observed spectral shifts between σ abs and σ MeOH-abs/σ DI-abs argue in favor of measuring σ abs rather than reconstructing it from liquid extracts. Logarithmically transformed spectra exhibited curvature better fit by second-order polynomials than linear α. Mapping second order fit coefficients (a 1, a 2) revealed samples from a given fire tended to cluster together, that is, aerosol spectra from a given fire were similar to each other and somewhat distinct from others. Separation in (a 1, a 2) space for spectra with the same α suggest additional information in second-order parameterization absent from the linear fit. Spectral features found in the fit residuals indicate more information in the measured spectra than captured by the fits. Above-detection σ MeOH-abs at 0.7 μm suggests assuming all absorption at long visible wavelengths is BC to partition absorption between BC and brown carbon (BrC) overestimates BC and underestimates BrC across the spectral range. Hyperspectral measurements may eventually discriminate BBA among fires in different ecosystems under variable conditions.
Collapse
Affiliation(s)
- Carolyn E. Jordan
- National Institute of AerospaceHamptonVAUSA
- NASA Langley Research CenterHamptonVAUSA
| | | | - John D. Barrick
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | | | - Gao Chen
- NASA Langley Research CenterHamptonVAUSA
| | - Ewan C. Crosbie
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | - Emily Gargulinski
- National Institute of AerospaceHamptonVAUSA
- NASA Langley Research CenterHamptonVAUSA
| | - Charles H. Hudgins
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | | | | | | | - Claire E. Robinson
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
- William & MaryWilliamsburgVAUSA
| | | | | | | | - Amber J. Soja
- National Institute of AerospaceHamptonVAUSA
- NASA Langley Research CenterHamptonVAUSA
| | - Kenneth L. Thornhill
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | - Edward L. Winstead
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | |
Collapse
|
6
|
Xu L, Crounse JD, Vasquez KT, Allen H, Wennberg PO, Bourgeois I, Brown SS, Campuzano-Jost P, Coggon MM, Crawford JH, DiGangi JP, Diskin GS, Fried A, Gargulinski EM, Gilman JB, Gkatzelis GI, Guo H, Hair JW, Hall SR, Halliday HA, Hanisco TF, Hannun RA, Holmes CD, Huey LG, Jimenez JL, Lamplugh A, Lee YR, Liao J, Lindaas J, Neuman JA, Nowak JB, Peischl J, Peterson DA, Piel F, Richter D, Rickly PS, Robinson MA, Rollins AW, Ryerson TB, Sekimoto K, Selimovic V, Shingler T, Soja AJ, St. Clair JM, Tanner DJ, Ullmann K, Veres PR, Walega J, Warneke C, Washenfelder RA, Weibring P, Wisthaler A, Wolfe GM, Womack CC, Yokelson RJ. Ozone chemistry in western U.S. wildfire plumes. SCIENCE ADVANCES 2021; 7:eabl3648. [PMID: 34878847 PMCID: PMC8654285 DOI: 10.1126/sciadv.abl3648] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.
Collapse
Affiliation(s)
- Lu Xu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (L.X.); (P.O.W.)
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Krystal T. Vasquez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hannah Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Paul O. Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (L.X.); (P.O.W.)
| | - Ilann Bourgeois
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Steven S. Brown
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew M. Coggon
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | | | | | | - Alan Fried
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Georgios I. Gkatzelis
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Hongyu Guo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Samuel R. Hall
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | | | - Thomas F. Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Reem A. Hannun
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Christopher D. Holmes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - L. Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron Lamplugh
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Young Ro Lee
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jin Liao
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - Jakob Lindaas
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - J. Andrew Neuman
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jeff Peischl
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | | - Felix Piel
- Department of Chemistry, University of Oslo, Oslo, Norway
- IONICON Analytik GmbH, Innsbruck, Austria
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Dirk Richter
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Pamela S. Rickly
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Michael A. Robinson
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Vanessa Selimovic
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| | | | - Amber J. Soja
- NASA Langley Research Center, Hampton, VA, USA
- National Institute of Aerospace, Hampton, VA, USA
| | - Jason M. St. Clair
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - David J. Tanner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kirk Ullmann
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | | | - James Walega
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Petter Weibring
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Armin Wisthaler
- Department of Chemistry, University of Oslo, Oslo, Norway
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Glenn M. Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Caroline C. Womack
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Robert J. Yokelson
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| |
Collapse
|
7
|
Chen X, Millet DB, Neuman JA, Veres PR, Ray EA, Commane R, Daube BC, McKain K, Schwarz JP, Katich JM, Froyd KD, Schill GP, Kim MJ, Crounse JD, Allen HM, Apel EC, Hornbrook RS, Blake DR, Nault BA, Campuzano-Jost P, Jimenez JL, Dibb JE. HCOOH in the remote atmosphere: Constraints from Atmospheric Tomography (ATom) airborne observations. ACS EARTH & SPACE CHEMISTRY 2021; 5:1436-1454. [PMID: 34164590 PMCID: PMC8216292 DOI: 10.1021/acsearthspacechem.1c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow. Enhancements correlate with known combustion tracers and trajectory-based fire influences. The GEOS-Chem model underpredicts these in-plume HCOOH enhancements, but elsewhere we find no broad indication of a missing HCOOH source in the background free troposphere. We conclude that missing non-fire HCOOH precursors inferred previously are predominantly short-lived. We find indications of a wet scavenging underestimate in the model consistent with a positive HCOOH bias in the tropical upper troposphere. Observations reveal episodic evidence of ocean HCOOH uptake, which is well-captured by GEOS-Chem; however, despite its strong seawater undersaturation HCOOH is not consistently depleted in the remote marine boundary layer. Over fifty fire and mixed plumes were intercepted during ATom with widely varying transit times and source regions. HCOOH:CO normalized excess mixing ratios in these plumes range from 3.4 to >50 ppt/ppb CO and are often over an order of magnitude higher than expected primary emission ratios. HCOOH is thus a major reactive organic carbon reservoir in the aged plumes sampled during ATom, implying important missing pathways for in-plume HCOOH production.
Collapse
Affiliation(s)
- Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - J. Andrew Neuman
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | | | - Eric A. Ray
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Róisín Commane
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964
| | - Bruce C. Daube
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | - Kathryn McKain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- NOAA Global Monitoring Laboratory, Boulder, CO 80305
| | | | - Joseph M. Katich
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Karl D. Froyd
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Gregory P. Schill
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Michelle J. Kim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Hannah M. Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Eric C. Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Rebecca S. Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Benjamin A. Nault
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jack E. Dibb
- Earth Systems Research Center/EOS, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
8
|
Wu J, Kong S, Zeng X, Cheng Y, Yan Q, Zheng H, Yan Y, Zheng S, Liu D, Zhang X, Fu P, Wang S, Qi S. First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1497-1507. [PMID: 33423493 DOI: 10.1021/acs.est.0c06675] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Levoglucosan (LG) emitted from non-biomass burning (non-BB) sources has given rise to biased or even unreasonable source identification results when adopting LG as a distinct marker of biomass burning (BB). The estimation of LG emission and its spatiotemporal variation for various sources are the keys to reducing uncertainty. This study first developed a LG emission inventory for China from 25 sub-type sources belonging to eight categories, with a 3 km × 3 km spatial resolution and monthly distribution. The total LG emission in 2014 was 145.7 Gg. Domestic BB and open BB contributed 39.2 and 34.3% of the total emission. Non-BB sources, including municipal solid waste burning (9.7%), firework burning (9.6%), meat cooking (5.4%), domestic coal burning (1.5%), ritual item burning (0.2%), and industrial coal burning (0.1%), contributed to 26.5% of the total emission. LG emission varied spatially and temporally. Non-BB sources have a significant spatiotemporal impact on BB source contributions, even in high BB emission regions or in sowing, harvesting, and winter heating seasons. The local BB contributions have been substantially overestimated by 4.28-369% in previous studies, wherein LG was solely referred to as the BB source. By 2018, LG emission from BB might decrease to 63.9% of its total emission. This high-resolution LG emission inventory can be greatly useful for source identification studies in China. It also supports future research on the modeling of smoke aging and pollution control.
Collapse
Affiliation(s)
- Jian Wu
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xin Zeng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yi Cheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qin Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Huang Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yingying Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shurui Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaoyang Zhang
- Geospatial Sciences Center of Excellence Department of Geography, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100089, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
9
|
Jaffe DA, O’Neill SM, Larkin NK, Holder AL, Peterson DL, Halofsky JE, Rappold AG. Wildfire and prescribed burning impacts on air quality in the United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:583-615. [PMID: 32240055 PMCID: PMC7932990 DOI: 10.1080/10962247.2020.1749731] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Air quality impacts from wildfires have been dramatic in recent years, with millions of people exposed to elevated and sometimes hazardous fine particulate matter (PM 2.5 ) concentrations for extended periods. Fires emit particulate matter (PM) and gaseous compounds that can negatively impact human health and reduce visibility. While the overall trend in U.S. air quality has been improving for decades, largely due to implementation of the Clean Air Act, seasonal wildfires threaten to undo this in some regions of the United States. Our understanding of the health effects of smoke is growing with regard to respiratory and cardiovascular consequences and mortality. The costs of these health outcomes can exceed the billions already spent on wildfire suppression. In this critical review, we examine each of the processes that influence wildland fires and the effects of fires, including the natural role of wildland fire, forest management, ignitions, emissions, transport, chemistry, and human health impacts. We highlight key data gaps and examine the complexity and scope and scale of fire occurrence, estimated emissions, and resulting effects on regional air quality across the United States. The goal is to clarify which areas are well understood and which need more study. We conclude with a set of recommendations for future research. IMPLICATIONS In the recent decade the area of wildfires in the United States has increased dramatically and the resulting smoke has exposed millions of people to unhealthy air quality. In this critical review we examine the key factors and impacts from fires including natural role of wildland fire, forest management, ignitions, emissions, transport, chemistry and human health.
Collapse
Affiliation(s)
- Daniel A. Jaffe
- School of STEM and Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Amara L. Holder
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David L. Peterson
- School of Environmental and Forest Sciences, University of Washington Seattle, Seattle WA, USA
| | - Jessica E. Halofsky
- School of Environmental and Forest Sciences, University of Washington Seattle, Seattle WA, USA
| | - Ana G. Rappold
- National Health and Environmental Effects Research Lab, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Hodshire AL, Akherati A, Alvarado MJ, Brown-Steiner B, Jathar SH, Jimenez JL, Kreidenweis SM, Lonsdale CR, Onasch TB, Ortega AM, Pierce JR. Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10007-10022. [PMID: 31365241 DOI: 10.1021/acs.est.9b02588] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biomass burning is a major source of atmospheric particulate matter (PM) with impacts on health, climate, and air quality. The particles and vapors within biomass burning plumes undergo chemical and physical aging as they are transported downwind. Field measurements of the evolution of PM with plume age range from net decreases to net increases, with most showing little to no change. In contrast, laboratory studies tend to show significant mass increases on average. On the other hand, similar effects of aging on the average PM composition (e.g., oxygen-to-carbon ratio) are reported for lab and field studies. Currently, there is no consensus on the mechanisms that lead to these observed similarities and differences. This review summarizes available observations of aging-related biomass burning aerosol mass concentrations and composition markers, and discusses four broad hypotheses to explain variability within and between field and laboratory campaigns: (1) variability in emissions and chemistry, (2) differences in dilution/entrainment, (3) losses in chambers and lines, and (4) differences in the timing of the initial measurement, the baseline from which changes are estimated. We conclude with a concise set of research needs for advancing our understanding of the aging of biomass burning aerosol.
Collapse
Affiliation(s)
- Anna L Hodshire
- Department of Atmospheric Science , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Ali Akherati
- Department of Mechanical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Matthew J Alvarado
- Atmospheric and Environmental Research, Inc. , Lexington , Massachusetts 02421 , United States
| | - Benjamin Brown-Steiner
- Atmospheric and Environmental Research, Inc. , Lexington , Massachusetts 02421 , United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Jose L Jimenez
- Dept. of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Sonia M Kreidenweis
- Department of Atmospheric Science , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Chantelle R Lonsdale
- Atmospheric and Environmental Research, Inc. , Lexington , Massachusetts 02421 , United States
| | - Timothy B Onasch
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | - Amber M Ortega
- Dept. Atmospheric and Oceanic Sciences Department and Cooperative Institute for Research in Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
11
|
Whitehill AR, George I, Long R, Baker KR, Landis M. Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems. ATMOSPHERE 2019; 10:1-464. [PMID: 31595190 PMCID: PMC6781241 DOI: 10.3390/atmos10080464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prescribed pasture burning plays a critical role in ecosystem maintenance in tallgrass prairie ecosystems and may contribute to agricultural productivity but can also have negative impacts on air quality. Volatile organic compound (VOC) concentrations were measured immediately downwind of prescribed tallgrass prairie fires in the Flint Hills region of Kansas, United States. The VOC mixture is dominated by alkenes and oxygenated VOCs, which are highly reactive and can drive photochemical production of ozone downwind of the fires. The computed emission factors are comparable to those previous measured from pasture maintenance fires in Brazil. In addition to the emission of large amounts of particulate matter, hazardous air pollutants such as benzene and acrolein are emitted in significant amounts and could contribute to adverse health effects in exposed populations.
Collapse
Affiliation(s)
- Andrew R. Whitehill
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Ingrid George
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Russell Long
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Kirk R. Baker
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Matthew Landis
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Tomaz S, Cui T, Chen Y, Sexton KG, Roberts JM, Warneke C, Yokelson RJ, Surratt JD, Turpin BJ. Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11027-11037. [PMID: 30153017 DOI: 10.1021/acs.est.8b03293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated the gas-phase chemical composition of biomass burning (BB) emissions and their role in aqueous secondary organic aerosol (aqSOA) formation through photochemical cloud processing. A high-resolution time-of-flight chemical ionization mass spectrometer using iodide reagent ion chemistry detected more than 100 gas-phase compounds from the emissions of 30 different controlled burns during the 2016 Fire Influence on Regional and Global Environments Experiment (FIREX) at the Fire Science Laboratory. Compounds likely to partition to cloudwater were selected based on high atomic oxygen-to-carbon ratio and abundance. Water solubility was confirmed by detection of these compounds in water after mist chamber collection during controlled burns and analysis using ion chromatography and electrospray ionization interfaced to high-resolution time-of-flight mass spectrometry. Known precursors of aqSOA were found in the primary gaseous BB emissions (e.g., phenols, acetate, and pyruvate). Aqueous OH oxidation of the complex biomass burning mixtures led to rapid depletion of many compounds (e.g., catechol, levoglucosan, methoxyphenol) and formation of others (e.g., oxalate, malonate, mesoxalate). After 150 min of oxidation (approximatively 1 day of cloud processing), oxalate accounted for 13-16% of total dissolved organic carbon. Formation of known SOA components suggests that cloud processing of primary BB emissions forms SOA.
Collapse
Affiliation(s)
- Sophie Tomaz
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kenneth G Sexton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - James M Roberts
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
| | - Carsten Warneke
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
- Cooperative Institute for Research in Environmental Sciences , University of Colorado , Boulder , Colorado 80309 , United States
| | - Robert J Yokelson
- Department of Chemistry and Biochemistry , University of Montana , Missoula , Montana 59812 , United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
13
|
Morgott DA. The Human Exposure Potential from Propylene Releases to the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010066. [PMID: 29300328 PMCID: PMC5800165 DOI: 10.3390/ijerph15010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/16/2022]
Abstract
A detailed literature search was performed to assess the sources, magnitudes and extent of human inhalation exposure to propylene. Exposure evaluations were performed at both the community and occupational levels for those living or working in different environments. The results revealed a multitude of pyrogenic, biogenic and anthropogenic emission sources. Pyrogenic sources, including biomass burning and fossil fuel combustion, appear to be the primary contributors to atmospheric propylene. Despite a very short atmospheric lifetime, measurable levels could be detected in highly remote locations as a result of biogenic release. The indoor/outdoor ratio for propylene has been shown to range from about 2 to 3 in non-smoking homes, which indicates that residential sources may be the largest contributor to the overall exposure for those not occupationally exposed. In homes where smoking takes place, the levels may be up to thirty times higher than non-smoking residences. Atmospheric levels in most rural regions are typically below 2 ppbv, whereas the values in urban levels are much more variable ranging as high as 10 ppbv. Somewhat elevated propylene exposures may also occur in the workplace; especially for firefighters or refinery plant operators who may encounter levels up to about 10 ppmv.
Collapse
Affiliation(s)
- David A Morgott
- Pennsport Consulting, LLC, 1 Christian Street, Unit#21, Philadelphia, PA 19147, USA.
| |
Collapse
|
14
|
Socorro J, Lakey PSJ, Han L, Berkemeier T, Lammel G, Zetzsch C, Pöschl U, Shiraiwa M. Heterogeneous OH Oxidation, Shielding Effects, and Implications for the Atmospheric Fate of Terbuthylazine and Other Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13749-13754. [PMID: 29125742 DOI: 10.1021/acs.est.7b04307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Terbuthylazine (TBA) is a widely used herbicide, and its heterogeneous reaction with OH radicals is important for assessing its potential to undergo atmospheric long-range transport and to affect the environment and public health. The apparent reaction rate coefficients obtained in different experimental investigations, however, vary by orders of magnitude depending on the applied experimental techniques and conditions. In this study, we used a kinetic multilayer model of aerosol chemistry with reversible surface adsorption and bulk diffusion (KM-SUB) in combination with a Monte Carlo genetic algorithm to simulate the measured decay rates of TBA. Two experimental data sets available from different studies can be described with a consistent set of kinetic parameters resolving the interplay of chemical reaction, mass transport, and shielding effects. Our study suggests that mass transport and shielding effects can substantially extend the atmospheric lifetime of reactive pesticides from a few days to weeks, with strong implications for long-range transport and potential health effects of these substances.
Collapse
Affiliation(s)
- Joanna Socorro
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Pascale S J Lakey
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
- Department of Chemistry, University of California , Irvine, California 92617, United States
| | - Lei Han
- Forschungsstelle für Atmosphärische Chemie, University of Bayreuth , 95440 Bayreuth, Germany
| | - Thomas Berkemeier
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 62500 Brno, Czech Republic
| | - Cornelius Zetzsch
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
- Forschungsstelle für Atmosphärische Chemie, University of Bayreuth , 95440 Bayreuth, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92617, United States
| |
Collapse
|
15
|
Gong X, Kaulfus A, Nair U, Jaffe DA. Quantifying O 3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13216-13223. [PMID: 29065684 DOI: 10.1021/acs.est.7b03130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wildfires emit O3 precursors but there are large variations in emissions, plume heights, and photochemical processing. These factors make it challenging to model O3 production from wildfires using Eulerian models. Here we describe a statistical approach to characterize the maximum daily 8-h average O3 (MDA8) for 8 cities in the U.S. for typical, nonfire, conditions. The statistical model represents between 35% and 81% of the variance in MDA8 for each city. We then examine the residual from the model under conditions with elevated particulate matter (PM) and satellite observed smoke ("smoke days"). For these days, the residuals are elevated by an average of 3-8 ppb (MDA8) compared to nonsmoke days. We found that while smoke days are only 4.1% of all days (May-Sept) they are 19% of days with an MDA8 greater than 75 ppb. We also show that a published method that does not account for transport patterns gives rise to large overestimates in the amount of O3 from fires, particularly for coastal cities. Finally, we apply this method to a case study from August 2015, and show that the method gives results that are directly applicable to the EPA guidance on excluding data due to an uncontrollable source.
Collapse
Affiliation(s)
- Xi Gong
- School of Resource and Environmental Sciences, Wuhan University , Wuhan 430079, China
- School of Science, Technology, Engineering, and Mathematics, University of Washington-Bothell , 18115 Campus Way NE, Bothell, Washington 98011, United States
| | - Aaron Kaulfus
- Department of Atmospheric Sciences, University of Alabama-Huntsville , Huntsville, Alabama 35899, United States
| | - Udaysankar Nair
- Department of Atmospheric Sciences, University of Alabama-Huntsville , Huntsville, Alabama 35899, United States
| | - Daniel A Jaffe
- School of Science, Technology, Engineering, and Mathematics, University of Washington-Bothell , 18115 Campus Way NE, Bothell, Washington 98011, United States
- Department of Atmospheric Sciences, University of Washington-Seattle , Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Di Lorenzo RA, Washenfelder RA, Attwood AR, Guo H, Xu L, Ng NL, Weber RJ, Baumann K, Edgerton E, Young CJ. Molecular-Size-Separated Brown Carbon Absorption for Biomass-Burning Aerosol at Multiple Field Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3128-3137. [PMID: 28199090 DOI: 10.1021/acs.est.6b06160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biomass burning is a known source of brown carbon aerosol in the atmosphere. We collected filter samples of biomass-burning emissions at three locations in Canada and the United States with transport times of 10 h to >3 days. We analyzed the samples with size-exclusion chromatography coupled to molecular absorbance spectroscopy to determine absorbance as a function of molecular size. The majority of absorption was due to molecules >500 Da, and these contributed an increasing fraction of absorption as the biomass-burning aerosol aged. This suggests that the smallest molecular weight fraction is more susceptible to processes that lead to reduced light absorption, while larger-molecular-weight species may represent recalcitrant brown carbon. We calculate that these large-molecular-weight species are composed of more than 20 carbons with as few as two oxygens and would be classified as extremely low volatility organic compounds (ELVOCs).
Collapse
Affiliation(s)
- Robert A Di Lorenzo
- Department of Chemistry, Memorial University , St. John's, Newfoundland A1B 3X5, Canada
| | - Rebecca A Washenfelder
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder , Boulder, Colorado 80309, United States
- Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration , Boulder, Colorado 80305, United States
| | - Alexis R Attwood
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder , Boulder, Colorado 80309, United States
- Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration , Boulder, Colorado 80305, United States
| | | | | | | | | | - Karsten Baumann
- Atmospheric Research & Analysis Inc. , Cary, North Carolina 27513, United States
| | - Eric Edgerton
- Atmospheric Research & Analysis Inc. , Cary, North Carolina 27513, United States
| | - Cora J Young
- Department of Chemistry, Memorial University , St. John's, Newfoundland A1B 3X5, Canada
| |
Collapse
|
17
|
Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C, Guo H, Fu H, Miljevic B, Morawska L, Thai P, Lam YF, Pereira G, Ding A, Huang X, Dumka UC. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1000-1034. [PMID: 27908624 DOI: 10.1016/j.scitotenv.2016.11.025] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 05/17/2023]
Abstract
Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China.
Collapse
Affiliation(s)
- Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.
| | - Chunlin Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Zoran Ristovski
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Andelija Milic
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yuantong Gu
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mohammad S Islam
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hefeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Branka Miljevic
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yun Fat Lam
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Gavin Pereira
- School of Public Health, Curtin University, Perth, WA, 6000, Australia
| | - Aijun Ding
- Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Umesh C Dumka
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China; Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263001, India
| |
Collapse
|
18
|
Slade JH, Knopf DA. Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: assessment of volatilisation products and the role of OH concentration on the reactive uptake kinetics. Phys Chem Chem Phys 2013; 15:5898-915. [DOI: 10.1039/c3cp44695f] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Bond WJ, Midgley GF. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos Trans R Soc Lond B Biol Sci 2012; 367:601-12. [PMID: 22232770 PMCID: PMC3248705 DOI: 10.1098/rstb.2011.0182] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Savannahs are a mixture of trees and grasses often occurring as alternate states to closed forests. Savannah fires are frequent where grass productivity is high in the wet season. Fires help maintain grassy vegetation where the climate is suitable for woodlands or forests. Saplings in savannahs are particularly vulnerable to topkill of above-ground biomass. Larger trees are more fire-resistant and suffer little damage when burnt. Recruitment to large mature tree size classes depends on sapling growth rates to fire-resistant sizes and the time between fires. Carbon dioxide (CO(2)) can influence the growth rate of juvenile plants, thereby affecting tree recruitment and the conversion of open savannahs to woodlands. Trees have increased in many savannahs throughout the world, whereas some humid savannahs are being invaded by forests. CO(2) has been implicated in this woody increase but attribution to global drivers has been controversial where changes in grazing and fire have also occurred. We report on diverse tests of the magnitude of CO(2) effects on both ancient and modern ecosystems with a particular focus on African savannahs. Large increases in trees of mesic savannahs in the region cannot easily be explained by land use change but are consistent with experimental and simulation studies of CO(2) effects. Changes in arid savannahs seem less obviously linked to CO(2) effects and may be driven more by overgrazing. Large-scale shifts in the tree-grass balance in the past and the future need to be better understood. They not only have major impacts on the ecology of grassy ecosystems but also on Earth-atmosphere linkages and the global carbon cycle in ways that are still being discovered.
Collapse
Affiliation(s)
- William J Bond
- Botany Department, University of Cape Town, Rondebosch 7701, South Africa.
| | | |
Collapse
|
20
|
Veres P, Roberts JM, Burling IR, Warneke C, de Gouw J, Yokelson RJ. Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014033] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Tummon F, Solmon F, Liousse C, Tadross M. Simulation of the direct and semidirect aerosol effects on the southern Africa regional climate during the biomass burning season. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Robinson AL, Grieshop AP, Donahue NM, Hunt SW. Updating the conceptual model for fine particle mass emissions from combustion systems. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2010; 60:1204-1222. [PMID: 21090549 DOI: 10.3155/1047-3289.60.10.1204] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Atmospheric transformations determine the contribution of emissions from combustion systems to fine particulate matter (PM) mass. For example, combustion systems emit vapors that condense onto existing particles or form new particles as the emissions are cooled and diluted. Upon entering the atmosphere, emissions are exposed to atmospheric oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary PM. This review discusses these transformations, focusing on organic PM. Organic PM emissions are semi-volatile at atmospheric conditions and thus their partitioning varies continuously with changing temperature and concentration. Because organics contribute a large portion of the PM mass emitted by most combustion sources, these emissions cannot be represented using a traditional, static emission factor. Instead, knowledge of the volatility distribution of emissions is required to explicitly account for changes in gas-particle partitioning. This requires updating how PM emissions from combustion systems are measured and simulated from combustion systems. Secondary PM production often greatly exceeds the direct or primary PM emissions; therefore, secondary PM must be included in any assessment of the contribution of combustion systems to ambient PM concentrations. Low-volatility organic vapors emitted by combustion systems appear to be very important secondary PM precursors that are poorly accounted for in inventories and models. The review concludes by discussing the implications that the dynamic nature of these PM emissions have on source testing for emission inventory development and regulatory purposes. This discussion highlights important linkages between primary and secondary PM, which could lead to simplified certification test procedures while capturing the emission components that contribute most to atmospheric PM mass.
Collapse
Affiliation(s)
- Allen L Robinson
- Department of Mechanical Engineering, Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
23
|
Calvo AI, Pont V, Castro A, Mallet M, Palencia C, Roger JC, Dubuisson P, Fraile R. Radiative forcing of haze during a forest fire in Spain. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Kovalev VA, Petkov A, Wold C, Urbanski S, Min Hao W. Determination of smoke plume and layer heights using scanning lidar data. APPLIED OPTICS 2009; 48:5287-5294. [PMID: 19798367 DOI: 10.1364/ao.48.005287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [Appl. Opt. 48, 2559 (2009)]. In this study, similar methodology is used to create the atmospheric heterogeneity height indicator (HHI), which shows all heights at which the smoke plume heterogeneity was detected by a scanning lidar. The methodology is simple and robust. Subtraction of the initial lidar signal offset from the measured lidar signal is not required. HHI examples derived from lidar scans obtained with the U.S. Forest Service, Fire Sciences Laboratory mobile lidar in areas polluted by wildfires are presented, and the basic details of the methodology are discussed.
Collapse
Affiliation(s)
- Vladimir A Kovalev
- United States Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, 5775 Highway 10 West, Missoula, Montana 59808, USA.
| | | | | | | | | |
Collapse
|
25
|
Magi BI, Ginoux P, Ming Y, Ramaswamy V. Evaluation of tropical and extratropical Southern Hemisphere African aerosol properties simulated by a climate model. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Alvarado MJ, Wang C, Prinn RG. Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 2. Three-dimensional Eulerian studies. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Alvarado MJ, Prinn RG. Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 1. Lagrangian parcel studies. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011144] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Biomass burning in Amazonia: Emissions, long-range transport of smoke and its regional and remote impacts. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008gm000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Bond WJ. What Limits Trees in C4 Grasslands and Savannas? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008. [DOI: 10.1146/annurev.ecolsys.39.110707.173411] [Citation(s) in RCA: 687] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- William J. Bond
- Botany Department, University of Cape Town, Private Bag, Rondebosch 7701, South Africa;
| |
Collapse
|
30
|
Bein KJ, Zhao Y, Johnston MV, Wexler AS. Interactions between boreal wildfire and urban emissions. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008910] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Magi BI, Fu Q, Redemann J, Schmid B. Using aircraft measurements to estimate the magnitude and uncertainty of the shortwave direct radiative forcing of southern African biomass burning aerosol. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian I. Magi
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - Qiang Fu
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - Jens Redemann
- Bay Area Environmental Research Institute; Sonoma California USA
| | - Beat Schmid
- Pacific Northwest National Laboratory; Richland Washington USA
| |
Collapse
|
32
|
Magi BI, Fu Q, Redemann J. A methodology to retrieve self-consistent aerosol optical properties using common aircraft measurements. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008312] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Christian TJ, Yokelson RJ, Carvalho JA, Griffith DWT, Alvarado EC, Santos JC, Neto TGS, Veras CAG, Hao WM. The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008147] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Real E, Law KS, Weinzierl B, Fiebig M, Petzold A, Wild O, Methven J, Arnold S, Stohl A, Huntrieser H, Roiger A, Schlager H, Stewart D, Avery M, Sachse G, Browell E, Ferrare R, Blake D. Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007576] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- E. Real
- Service d'Aéronomie du CNRS, Institut Pierre-Simon Laplace; Université Pierre et Marie Curie; Paris France
| | - K. S. Law
- Service d'Aéronomie du CNRS, Institut Pierre-Simon Laplace; Université Pierre et Marie Curie; Paris France
| | - B. Weinzierl
- Institut für Physik der Atmosphäre; Deutsches Zentrum für Luft- und Raumfahrt; Wessling Germany
| | - M. Fiebig
- Institut für Physik der Atmosphäre; Deutsches Zentrum für Luft- und Raumfahrt; Wessling Germany
| | - A. Petzold
- Institut für Physik der Atmosphäre; Deutsches Zentrum für Luft- und Raumfahrt; Wessling Germany
| | - O. Wild
- Centre for Atmospheric Science, Department of Chemistry; University of Cambridge; Cambridge UK
| | - J. Methven
- Department of Meteorology; University of Reading; Reading UK
| | - S. Arnold
- School of Earth and Environment; University of Leeds; Leeds UK
| | - A. Stohl
- Norwegian Institute for Air Research; Kjeller Norway
| | - H. Huntrieser
- Institut für Physik der Atmosphäre; Deutsches Zentrum für Luft- und Raumfahrt; Wessling Germany
| | - A. Roiger
- Institut für Physik der Atmosphäre; Deutsches Zentrum für Luft- und Raumfahrt; Wessling Germany
| | - H. Schlager
- Institut für Physik der Atmosphäre; Deutsches Zentrum für Luft- und Raumfahrt; Wessling Germany
| | - D. Stewart
- School of Environmental Science; University of East Anglia; Norwich UK
| | - M. Avery
- Atmospheric Science Division; NASA Langley Research Center; Hampton Virginia USA
| | - G. Sachse
- Atmospheric Science Division; NASA Langley Research Center; Hampton Virginia USA
| | - E. Browell
- Atmospheric Science Division; NASA Langley Research Center; Hampton Virginia USA
| | - R. Ferrare
- Atmospheric Science Division; NASA Langley Research Center; Hampton Virginia USA
| | - D. Blake
- Department of Chemistry; University of California; Irvine California USA
| |
Collapse
|
35
|
Lee YS, Collins DR, Li R, Bowman KP, Feingold G. Expected impact of an aged biomass burning aerosol on cloud condensation nuclei and cloud droplet concentrations. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
de Gouw JA, Warneke C, Stohl A, Wollny AG, Brock CA, Cooper OR, Holloway JS, Trainer M, Fehsenfeld FC, Atlas EL, Donnelly SG, Stroud V, Lueb A. Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006175] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - C. Warneke
- NOAA Aeronomy Laboratory; Boulder Colorado USA
| | - A. Stohl
- NOAA Aeronomy Laboratory; Boulder Colorado USA
| | | | - C. A. Brock
- NOAA Aeronomy Laboratory; Boulder Colorado USA
| | | | | | - M. Trainer
- NOAA Aeronomy Laboratory; Boulder Colorado USA
| | | | - E. L. Atlas
- Rosenstiel School of Marine and Atmospheric Science; University of Miami; Miami Florida USA
| | - S. G. Donnelly
- Department of Chemistry; Fort Hays State University; Hays Kansas USA
| | - V. Stroud
- National Center for Atmospheric Research; Boulder Colorado USA
| | - A. Lueb
- National Center for Atmospheric Research; Boulder Colorado USA
| |
Collapse
|
37
|
Wang J, Christopher SA, Nair US, Reid JS, Prins EM, Szykman J, Hand JL. Mesoscale modeling of Central American smoke transport to the United States: 1. “Top-down” assessment of emission strength and diurnal variation impacts. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006416] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Jansen KL, Larson TV, Koenig JQ, Mar TF, Fields C, Stewart J, Lippmann M. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1741-6. [PMID: 16330357 PMCID: PMC1314915 DOI: 10.1289/ehp.8153] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Indexed: 05/03/2023]
Abstract
We measured fractional exhaled nitric oxide (FE(NO)), spirometry, blood pressure, oxygen saturation of the blood (SaO2), and pulse rate in 16 older subjects with asthma or chronic obstructive pulmonary disease (COPD) in Seattle, Washington. Data were collected daily for 12 days. We simultaneously collected PM10 and PM2.5 (particulate matter < or = 10 microm or < or = 2.5 microm, respectively) filter samples at a central outdoor site, as well as outside and inside the subjects' homes. Personal PM10 filter samples were also collected. All filters were analyzed for mass and light absorbance. We analyzed within-subject associations between health outcomes and air pollution metrics using a linear mixed-effects model with random intercept, controlling for age, ambient relative humidity, and ambient temperature. For the 7 subjects with asthma, a 10 microg/m3 increase in 24-hr average outdoor PM10 and PM2.5 was associated with a 5.9 [95% confidence interval (CI), 2.9-8.9] and 4.2 ppb (95% CI, 1.3-7.1) increase in FE(NO), respectively. A 1 microg/m3 increase in outdoor, indoor, and personal black carbon (BC) was associated with increases in FE(NO) of 2.3 ppb (95% CI, 1.1-3.6), 4.0 ppb (95% CI, 2.0-5.9), and 1.2 ppb (95% CI, 0.2-2.2), respectively. No significant association was found between PM or BC measures and changes in spirometry, blood pressure, pulse rate, or SaO2 in these subjects. Results from this study indicate that FE(NO) may be a more sensitive marker of PM exposure than traditional health outcomes and that particle-associated BC is useful for examining associations between primary combustion constituents of PM and health outcomes.
Collapse
Affiliation(s)
- Karen L Jansen
- University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK. Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 2005; 307:1454-6. [PMID: 15746423 DOI: 10.1126/science.1104359] [Citation(s) in RCA: 468] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High concentrations of pollution particles, including "soot" or black carbon, exist over the Indian Ocean, but their sources and geographical origins are not well understood. We measured emissions from the combustion of biofuels, used widely in south Asia for cooking, and found that large amounts of carbonaceous aerosols are emitted per kilogram of fuel burnt. We calculate that biofuel combustion is the largest source of black carbon emissions in India, and we suggest that its control is central to climate change mitigation in the south Asian region.
Collapse
Affiliation(s)
- C Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | | | | | | | | |
Collapse
|
40
|
Müller D. Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005756] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Jeong MJ. Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd004647] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Trentmann J. An analysis of the chemical processes in the smoke plume from a savanna fire. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005628] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Takegawa N, Kondo Y, Koike M, Chen G, Machida T, Watai T, Blake DR, Streets DG, Woo JH, Carmichael GR, Kita K, Miyazaki Y, Shirai T, Liley JB, Ogawa T. Removal of NOxand NOyin Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004866] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N. Takegawa
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - Y. Kondo
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - M. Koike
- Department of Earth and Planetary Science; University of Tokyo; Tokyo Japan
| | - G. Chen
- NASA Langley Research Center; Hampton Virginia USA
| | - T. Machida
- National Institute for Environmental Studies; Ibaraki Japan
| | - T. Watai
- Global Environmental Forum; Ibaraki Japan
| | - D. R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - D. G. Streets
- Decision and Information Sciences Division; Argonne National Laboratory; Argonne Illinois USA
| | - J.-H. Woo
- Center for Global and Regional Environmental Research; University of Iowa; Iowa City Iowa USA
| | - G. R. Carmichael
- Center for Global and Regional Environmental Research; University of Iowa; Iowa City Iowa USA
| | - K. Kita
- Department of Environmental Science; Ibaraki University; Ibaraki Japan
| | - Y. Miyazaki
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - T. Shirai
- Earth Observation Research and Application Center; Japan Aerospace Exploration Agency; Tokyo Japan
| | - J. B. Liley
- National Institute of Water and Atmospheric Research; Lauder New Zealand
| | - T. Ogawa
- Earth Observation Research and Application Center; Japan Aerospace Exploration Agency; Tokyo Japan
| |
Collapse
|
44
|
Bertschi IT, Jaffe DA, Jaeglé L, Price HU, Dennison JB. PHOBEA/ITCT 2002 airborne observations of transpacific transport of ozone, CO, volatile organic compounds, and aerosols to the northeast Pacific: Impacts of Asian anthropogenic and Siberian boreal fire emissions. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004328] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- I. T. Bertschi
- Department of Interdisciplinary Arts and Sciences; University of Washington-Bothell; Bothell Washington USA
| | - D. A. Jaffe
- Department of Interdisciplinary Arts and Sciences; University of Washington-Bothell; Bothell Washington USA
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - L. Jaeglé
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - H. U. Price
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
- Department of Chemistry; University of Washington; Seattle Washington USA
| | - J. B. Dennison
- Department of Interdisciplinary Arts and Sciences; University of Washington-Bothell; Bothell Washington USA
| |
Collapse
|
45
|
Hudson PK, Murphy DM, Cziczo DJ, Thomson DS, de Gouw JA, Warneke C, Holloway J, Jost HJ, Hübler G. Biomass-burning particle measurements: Characteristic composition and chemical processing. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004398] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Hans-Jürg Jost
- Bay Area Environmental Research Institute; Sonoma California USA
| | | |
Collapse
|
46
|
Pósfai M, Gelencsér A, Simonics R, Arató K, Li J, Hobbs PV, Buseck PR. Atmospheric tar balls: Particles from biomass and biofuel burning. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004169] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihály Pósfai
- Department of Earth and Environmental Sciences; University of Veszprém; Veszprém Hungary
| | - András Gelencsér
- Air Chemistry Group; Hungarian Academy of Sciences; Veszprém Hungary
| | - Renáta Simonics
- Department of Earth and Environmental Sciences; University of Veszprém; Veszprém Hungary
| | - Krisztina Arató
- Department of Earth and Environmental Sciences; University of Veszprém; Veszprém Hungary
| | - Jia Li
- Department of Chemistry and Biochemistry; Arizona State University; Tempe Arizona USA
| | - Peter V. Hobbs
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - Peter R. Buseck
- Department of Chemistry and Biochemistry; Arizona State University; Tempe Arizona USA
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
47
|
Bremer H. Spatial and temporal variation of MOPITT CO in Africa and South America: A comparison with SHADOZ ozone and MODIS aerosol. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004234] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
DeBell LJ. A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004840] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Kondo Y. Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004203] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Christian TJ. Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd003874] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|