1
|
McEntee SC, Jackman CM, Weigt DM, Dunn WR, Kashyap V, Kraft R, Louis CK, Branduardi‐Raymont G, Gladstone GR, Gallagher PT. Comparing Jupiter's Equatorial X-Ray Emissions With Solar X-Ray Flux Over 19 Years of the Chandra Mission. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022; 127:e2022JA030971. [PMID: 37032656 PMCID: PMC10078327 DOI: 10.1029/2022ja030971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 06/19/2023]
Abstract
We present a statistical study of Jupiter's disk X-ray emissions using 19 years of Chandra X-Ray Observatory (CXO) observations. Previous work has suggested that these emissions are consistent with solar X-rays elastically scattered from Jupiter's upper atmosphere. We showcase a new pulse invariant (PI) filtering method that minimizes instrumental effects which may produce unphysical trends in photon counts across the nearly two-decade span of the observations. We compare the CXO results with solar X-ray flux data from the Geostationary Operational Environmental Satellites X-ray Sensor for the wavelength band 1-8 Å (long channel), to quantify the correlation between solar activity and Jovian disk counts. We find a statistically significant Pearson's Correlation Coefficient of 0.9, which confirms that emitted Jovian disk X-rays are predominantly governed by solar activity. We also utilize the high spatial resolution of the High Resolution Camera Instrument on-board the CXO to map the disk photons to their positions on Jupiter's surface. Voronoi tessellation diagrams were constructed with the Juno Reference Model through Perijove 9 internal field model overlaid to identify any spatial preference of equatorial photons. After accounting for area and scattering across the curved surface of the planet, we find a preference of Jovian disk emission at 2-3.5 Gauss surface magnetic field strength. This suggests that a portion of the disk X-rays may be linked to processes other than solar scattering: the spatial preference associated with magnetic field strength may imply increased precipitation from the radiation belts, as previously postulated.
Collapse
Affiliation(s)
- S. C. McEntee
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
- School of PhysicsTrinity College DublinDublinIreland
| | - C. M. Jackman
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - D. M. Weigt
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - W. R. Dunn
- Department of Physics and AstronomyUniversity College LondonLondonUK
- Centre for Planetary Sciences at UCL/BirkbeckLondonUK
| | - V. Kashyap
- Harvard‐Smithsonian Center for AstrophysicsSmithsonian Astrophysical ObservatoryCambridgeMAUSA
| | - R. Kraft
- Harvard‐Smithsonian Center for AstrophysicsSmithsonian Astrophysical ObservatoryCambridgeMAUSA
| | - C. K. Louis
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - G. Branduardi‐Raymont
- Mullard Space Science LaboratoryDepartment of Space and Climate PhysicsUniversity College LondonDorkingUK
| | - G. R. Gladstone
- Space Science and Engineering DivisionSouthwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | - P. T. Gallagher
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
- School of PhysicsTrinity College DublinDublinIreland
| |
Collapse
|
2
|
Dunn WR, Weigt DM, Grodent D, Yao ZH, May D, Feigelman K, Sipos B, Fleming D, McEntee S, Bonfond B, Gladstone GR, Johnson RE, Jackman CM, Guo RL, Branduardi‐Raymont G, Wibisono AD, Kraft RP, Nichols JD, Ray LC. Jupiter's X-Ray and UV Dark Polar Region. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097390. [PMID: 35865009 PMCID: PMC9287093 DOI: 10.1029/2021gl097390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
We present 14 simultaneous Chandra X-ray Observatory (CXO)-Hubble Space Telescope (HST) observations of Jupiter's Northern X-ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X-ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X-ray photons. For all 14 observations, the low level of X-ray emission from the DPR is consistent (within 2-standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X-ray-bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X-ray signature.
Collapse
Affiliation(s)
- W. R. Dunn
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - D. M. Weigt
- School of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
- School of PhysicsTrinity College DublinDublinIreland
| | - D. Grodent
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | - Z. H. Yao
- Key Laboratory of Earth and Planetary PhysicsInstitute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
- College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - D. May
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - K. Feigelman
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - B. Sipos
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - D. Fleming
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - S. McEntee
- School of PhysicsTrinity College DublinDublinIreland
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - B. Bonfond
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | - G. R. Gladstone
- Division of Space Science and EngineeringSouthwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | - R. E. Johnson
- Department of PhysicsAberystwyth UniversityCeredigionUK
| | - C. M. Jackman
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - R. L. Guo
- Laboratory of Optical Astronomy and Solar‐Terrestrial EnvironmentSchool of Space Science and PhysicsInstitute of Space SciencesShandong UniversityWeihaiChina
| | - G. Branduardi‐Raymont
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - A. D. Wibisono
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - R. P. Kraft
- Harvard‐Smithsonian Center for AstrophysicsSmithsonian Astrophysical ObservatoryCambridgeMAUSA
| | - J. D. Nichols
- Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - L. C. Ray
- Department of PhysicsLancaster UniversityLancasterUK
| |
Collapse
|
3
|
Yao Z, Dunn WR, Woodfield EE, Clark G, Mauk BH, Ebert RW, Grodent D, Bonfond B, Pan D, Rae IJ, Ni B, Guo R, Branduardi-Raymont G, Wibisono AD, Rodriguez P, Kotsiaros S, Ness JU, Allegrini F, Kurth WS, Gladstone GR, Kraft R, Sulaiman AH, Manners H, Desai RT, Bolton SJ. Revealing the source of Jupiter's x-ray auroral flares. SCIENCE ADVANCES 2021; 7:7/28/eabf0851. [PMID: 34244139 PMCID: PMC8270495 DOI: 10.1126/sciadv.abf0851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Jupiter's rapidly rotating, strong magnetic field provides a natural laboratory that is key to understanding the dynamics of high-energy plasmas. Spectacular auroral x-ray flares are diagnostic of the most energetic processes governing magnetospheres but seemingly unique to Jupiter. Since their discovery 40 years ago, the processes that produce Jupiter's x-ray flares have remained unknown. Here, we report simultaneous in situ satellite and space-based telescope observations that reveal the processes that produce Jupiter's x-ray flares, showing surprising similarities to terrestrial ion aurora. Planetary-scale electromagnetic waves are observed to modulate electromagnetic ion cyclotron waves, periodically causing heavy ions to precipitate and produce Jupiter's x-ray pulses. Our findings show that ion aurorae share common mechanisms across planetary systems, despite temporal, spatial, and energetic scales varying by orders of magnitude.
Collapse
Affiliation(s)
- Zhonghua Yao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - William R Dunn
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, MA, USA
- The Centre for Planetary Science at UCL/Birkbeck, Gower Street, London WC1E 6BT, UK
| | | | - George Clark
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Barry H Mauk
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Robert W Ebert
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Denis Grodent
- Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, Liège, Belgium
| | - Bertrand Bonfond
- Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, Liège, Belgium
| | - Dongxiao Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Binbin Ni
- Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, Hubei, China
- CAS Center for Excellence in Comparative Planetology, Hefei, Anhui, China
| | - Ruilong Guo
- Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, Liège, Belgium
| | | | - Affelia D Wibisono
- Mullard Space Science Laboratory, University College London, Dorking, UK
- The Centre for Planetary Science at UCL/Birkbeck, Gower Street, London WC1E 6BT, UK
| | - Pedro Rodriguez
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
| | | | - Jan-Uwe Ness
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
| | - Frederic Allegrini
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - William S Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - G Randall Gladstone
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ralph Kraft
- Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, MA, USA
| | - Ali H Sulaiman
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - Harry Manners
- Blackett Laboratory, Imperial College London, London, UK
| | | | - Scott J Bolton
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
| |
Collapse
|
4
|
Zhang B, Delamere PA, Yao Z, Bonfond B, Lin D, Sorathia KA, Brambles OJ, Lotko W, Garretson JS, Merkin VG, Grodent D, Dunn WR, Lyon JG. How Jupiter's unusual magnetospheric topology structures its aurora. SCIENCE ADVANCES 2021; 7:7/15/eabd1204. [PMID: 33837073 PMCID: PMC8034855 DOI: 10.1126/sciadv.abd1204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/22/2021] [Indexed: 05/24/2023]
Abstract
Jupiter's bright persistent polar aurora and Earth's dark polar region indicate that the planets' magnetospheric topologies are very different. High-resolution global simulations show that the reconnection rate at the interface between the interplanetary and jovian magnetic fields is too slow to generate a magnetically open, Earth-like polar cap on the time scale of planetary rotation, resulting in only a small crescent-shaped region of magnetic flux interconnected with the interplanetary magnetic field. Most of the jovian polar cap is threaded by helical magnetic flux that closes within the planetary interior, extends into the outer magnetosphere, and piles up near its dawnside flank where fast differential plasma rotation pulls the field lines sunward. This unusual magnetic topology provides new insights into Jupiter's distinctive auroral morphology.
Collapse
Affiliation(s)
- Binzheng Zhang
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Peter A Delamere
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Zhonghua Yao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bertrand Bonfond
- LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium
| | - D Lin
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Kareem A Sorathia
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - William Lotko
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jeff S Garretson
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - Denis Grodent
- LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium
| | - William R Dunn
- Mullard Space Science Laboratory, University College London, Dorking, UK
| | - John G Lyon
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
- Gamera Consulting, Hanover, NH, USA
| |
Collapse
|
5
|
Lynch BJ, Airapetian VS, DeVore CR, Kazachenko MD, Lüftinger T, Kochukhov O, Rosén L, Abbett WP. Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from κ 1 Cet. THE ASTROPHYSICAL JOURNAL 2019; 880:97. [PMID: 32214410 PMCID: PMC7094772 DOI: 10.3847/1538-4357/ab287e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Observations from the Kepler mission have revealed frequent superflares on young and active solar-like stars. Superflares result from the large-scale restructuring of stellar magnetic fields, and are associated with the eruption of coronal material (a coronal mass ejection, or CME) and energy release that can be orders of magnitude greater than those observed in the largest solar flares. These catastrophic events, if frequent, can significantly impact the potential habitability of terrestrial exoplanets through atmospheric erosion or intense radiation exposure at the surface. We present results from numerical modeling designed to understand how an eruptive superflare from a young solar-type star, κ 1 Cet, could occur and would impact its astrospheric environment. Our data-inspired, three-dimensional magnetohydrodynamic modeling shows that global-scale shear concentrated near the radial-field polarity inversion line can energize the closed-field stellar corona sufficiently to power a global, eruptive superflare that releases approximately the same energy as the extreme 1859 Carrington event from the Sun. We examine proxy measures of synthetic emission during the flare and estimate the observational signatures of our CME-driven shock, both of which could have extreme space-weather impacts on the habitability of any Earth-like exoplanets. We also speculate that the observed 1986 Robinson-Bopp superflare from κ 1 Cet was perhaps as extreme for that star as the Carrington flare was for the Sun.
Collapse
Affiliation(s)
- Benjamin J. Lynch
- Space Sciences Laboratory, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Vladimir S. Airapetian
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Department of Physics, American University, Washington, D.C. 20016, USA
| | | | - Maria D. Kazachenko
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA
| | - Teresa Lüftinger
- Department of Astrophysics, University of Vienna, Vienna, Austria
| | - Oleg Kochukhov
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Lisa Rosén
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - William P. Abbett
- Space Sciences Laboratory, University of California–Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
|
7
|
Dunn WR, Branduardi-Raymont G, Elsner RF, Vogt MF, Lamy L, Ford PG, Coates AJ, Gladstone GR, Jackman CM, Nichols JD, Rae IJ, Varsani A, Kimura T, Hansen KC, Jasinski JM. The impact of an ICME on the Jovian X-ray aurora. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2016; 121:2274-2307. [PMID: 27867794 PMCID: PMC5111422 DOI: 10.1002/2015ja021888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 06/06/2023]
Abstract
We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) discovered the polar X-ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter's dayside, produced the X-ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 RJ were dominated by emission from precipitating sulfur ions (S7+,…,14+). Emissions mapping to closed field lines between 70 and 120 RJ and to open field lines were generated by a mixture of precipitating oxygen (O7+,8+) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X-ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large-scale dayside reconnection event.
Collapse
Affiliation(s)
- William R Dunn
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK
| | | | - Ronald F Elsner
- ZP12, NASA Marshall Space Flight Center Huntsville Alabama USA
| | - Marissa F Vogt
- Center for Space Physics Boston University Boston Massachusetts USA
| | - Laurent Lamy
- LESIA, Observatoire de Paris, CNRS, UPMC Université Paris Diderot Meudon France
| | - Peter G Ford
- Kavli Institute for Astrophysics and Space Research MIT Cambridge Massachusetts USA
| | - Andrew J Coates
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK
| | - G Randall Gladstone
- Space Science and Engineering Division Southwest Research Institute San Antonio Texas USA
| | - Caitriona M Jackman
- Department of Physics and Astronomy University of Southampton Southampton UK
| | - Jonathan D Nichols
- Department of Physics and Astronomy University of Leicester Leicester UK
| | - I Jonathan Rae
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK
| | - Ali Varsani
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Space Research Institute Austrian Academy of Sciences Graz Austria
| | - Tomoki Kimura
- Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Sagamihara Japan; Nishina Center for Accelerator-Based Science RIKEN Wako Japan
| | - Kenneth C Hansen
- Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor Michigan USA
| | - Jamie M Jasinski
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK; Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
8
|
Gopalswamy N, Mäkelä P, Akiyama S, Yashiro S, Xie H, Thakur N, Kahler SW. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/806/1/8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Branduardi-Raymont G, Elsner RF, Galand M, Grodent D, Cravens TE, Ford P, Gladstone GR, Waite JH. Spectral morphology of the X-ray emission from Jupiter's aurorae. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007ja012600] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - R. F. Elsner
- NASA Marshall Space Flight Center; NSSTC/XD12, Space Science Branch; Huntsville Alabama USA
| | - M. Galand
- Imperial College London, Space and Atmospheric Physics Group; Blackett Laboratory; London UK
| | - D. Grodent
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - T. E. Cravens
- Department of Physics and Astronomy; University of Kansas; Lawrence Kansas USA
| | - P. Ford
- Massachusetts Institute of Technology; Kavli Institute for Astrophysics and Space Research; Cambridge Massachusetts USA
| | | | - J. H. Waite
- Southwest Research Institute; San Antonio Texas USA
| |
Collapse
|
10
|
Nichols JD, Bunce EJ, Clarke JT, Cowley SWH, Gérard JC, Grodent D, Pryor WR. Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006ja012005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. D. Nichols
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - E. J. Bunce
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - J. T. Clarke
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | - S. W. H. Cowley
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - J.-C. Gérard
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - D. Grodent
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - W. R. Pryor
- Central Arizona College; Coolidge Arizona USA
| |
Collapse
|
11
|
Cravens TE, Clark J, Bhardwaj A, Elsner R, Waite JH, Maurellis AN, Gladstone GR, Branduardi-Raymont G. X-ray emission from the outer planets: Albedo for scattering and fluorescence of solar X rays. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005ja011413] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Cowley SWH, Alexeev II, Belenkaya ES, Bunce EJ, Cottis CE, Kalegaev VV, Nichols JD, Prangé R, Wilson FJ. A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter's polar ionosphere. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005ja011237] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|