1
|
Kayaba S, Kajino M. Potential Impacts of Energy and Vehicle Transformation Through 2050 on Oxidative Stress-Inducing PM 2.5 Metals Concentration in Japan. GEOHEALTH 2023; 7:e2023GH000789. [PMID: 37842137 PMCID: PMC10574721 DOI: 10.1029/2023gh000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
The impacts of renewable energy shifting, passenger car electrification, and lightweighting through 2050 on the atmospheric concentrations of PM2.5 total mass and oxidative stress-inducing metals (PM2.5-Fe, Cu, and Zn) in Japan were evaluated using a regional meteorology-chemistry model. The surface concentrations of PM2.5 total mass, Fe, Cu, and Zn in the urban area decreased by 8%, 13%, 18%, and 5%, respectively. Battery electric vehicles (BEVs) have been considered to have no advantage in terms of non-exhaust PM emissions by previous studies. This is because the disadvantages (heavier weight increases tire wear, road wear, and resuspention) offset the advantages (regenerative braking system (RBS) reduces brake wear). However, the future lightweighting of drive battery and body frame were estimated to reduce all non-exhaust PM. Passenger car electrification only reduced PM2.5 concentration by 2%. However, Fe and Cu concentrations were more reduced (-8% and -13%, respectively) because they have high brake wear-derived and significantly reflects the benefits of BEV's RBS. The water-soluble fraction concentration of metals (induces oxidative stress in the body) was estimated based on aerosol acidity. The reduction of SOx, NOx, and NH3 emissions from on-road and thermal power plants slightly changed the aerosol acidity (pH ± 0.2). However, it had a negligible effect on water-soluble metal concentrations (maximum +2% for Fe and +0.5% for Cu and Zn). Therefore, the metal emissions reduction was more important than gaseous pollutants in decreasing the water-soluble metals that induces respiratory oxidative stress and passenger car electrification and lightweighting were effective means of achieving this.
Collapse
Affiliation(s)
- Satoko Kayaba
- Graduate School of Science and TechnologyUniversity of TsukubaTsukubaJapan
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
| | - Mizuo Kajino
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
2
|
Meng Q, Yan C, Li R, Zhang T, Zheng M, Liu Y, Zhang M, Wang G, Du Y, Shang C, Fu P. Variations of PM 2.5-bound elements and their associated effects during long-distance transport of dust storms: Insights from multi-sites observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164062. [PMID: 37207767 DOI: 10.1016/j.scitotenv.2023.164062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Dust storms are a significant concern because of their adverse effects on ambient air quality and human health. To investigate the evolution of dust storms during long-distance transport and its impacts on air quality and human health risks in cities along the transport pathway, we monitored the major fraction of dust (i.e., particle-bound elements) online in four cities in northern China during March 2021. Three dust events originating from the Gobi Desert of North China and Mongolia and the Taklimakan Desert of Northwest China were captured. We investigated the source regions of dust storms using daily multi-sensor absorbing aerosol index products, backward trajectories, and specific element ratios, identified and quantified sources of particle-bound elements using Positive Matrix Factorization model, and calculated the carcinogenic and non-carcinogenic risks of elements using a health risk assessment model. Our results indicated that under the influence of dust storms, mass concentrations of crustal elements increased up to dozens of times in cities near the dust source and up to ten times in cities farther from the source. In contrast, anthropogenic elements increased less or even decreased, depending on the relative contributions of the increase caused by accumulation of dust itself and entrainment along the transport path and the decrease caused by dilution of high wind speeds. Si/Fe ratio was found to be a valuable indicator for characterizing the attenuation of the amount of dust along its transport pathways, especially for the case originated from northern source regions. This study highlights the significant role of source regions, intensity and attenuation rates of dust storms, and wind speeds in determining the increased levels of element concentrations during dust storms and its associated impacts on downwind areas. Furthermore, non-carcinogenic risks of particle-bound elements increased at all sites during dust events, emphasizing the importance of personal exposure protection during dust storms.
Collapse
Affiliation(s)
- Qingpeng Meng
- Environment Research Institute, Shandong University, Qingdao 266237, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Ruiyu Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Tianle Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yue Liu
- Center for Environmental Metrology, National Institute of Metrology China, Beijing 100029, China
| | - Miao Zhang
- Shandong Provincial Eco-Environment Monitoring, Jinan 250101, China
| | - Guixia Wang
- Shandong Provincial Eco-Environment Monitoring, Jinan 250101, China
| | - Yuming Du
- Wuhai Environmental Monitoring Center Station, Inner Mongolia 01600, China
| | - Chunlin Shang
- Wuhai Environmental Monitoring Center Station, Inner Mongolia 01600, China
| | - Peng Fu
- Sailhero Environmental Protection High-tech Co., Ltd, Shijiazhuang 050035, China
| |
Collapse
|
3
|
Fan C, Xie W, Hu W, Matsusaki H, Kojima T, Zhang D. Number size distribution of bacterial aerosols in terrestrial and marine airflows at a coastal site of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161238. [PMID: 36586682 DOI: 10.1016/j.scitotenv.2022.161238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Size-differentiated concentration of bacterial aerosols is essential for investigating their dissemination via the atmosphere. In this study, the number size distribution of bacterial aerosols was measured at a coastal site in southwestern Japan (32.324°N, 129.993°E) using a size-segregated eight-stage (>11, 7.0-11, 4.7-7.0, 3.3-4.7, 2.1-3.3, 1.1-2.1, 0.65-1.1, and 0.43-0.65μm) sampler. The results showed that the distribution differed according to the source areas: terrestrial air, oceanic air, or a combination of the two. The distribution in the long-distance transported terrestrial air from the Asian continent was monomodal, with a peak of 3.3-4.7 μm. The distribution in local land breeze air was bimodal, with the peaks at 0.43-1.1 and 3.3-4.7 μm. A similar bimodal distribution was encountered when the local island air and long-distance transported terrestrial air mixed. In contrast, the size distribution did not show clear peaks in the air from either nearby or remote marine areas. According to the air mass backward trajectories, the further the distance the air moved in the 72 h before arriving at the site, the lower the concentration of total bacterial aerosols. The estimation of dry deposition fluxes of bacterial cells showed that the deposition was dominated by cells larger than 1.1 μm with a relative contribution from 70.5 % to 93.7 %, except for the local land breeze cases, where the contributions in the size ranges larger and smaller than 1.1 μm were similar. These results show the distinctive number size distributions and removal processes of bacterial aerosols in different types of air. In addition, they indicate that size-dependent characteristics of airborne bacteria should be considered when studying their activities and roles in the atmospheric environment.
Collapse
Affiliation(s)
- Chunlan Fan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wenwen Xie
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hiromi Matsusaki
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Tomoko Kojima
- Department Earth and Environmental Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
4
|
Liang M, Han Z, Li J, Sun Y, Liang L, Li Y. Radiative effects and feedbacks of anthropogenic aerosols on boundary layer meteorology and fine particulate matter during the COVID-19 lockdown over China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160767. [PMID: 36493835 PMCID: PMC9726208 DOI: 10.1016/j.scitotenv.2022.160767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/19/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 epidemic has exerted significant impacts on human health, social and economic activities, air quality and atmospheric chemistry, and potentially on climate change. In this study, an online coupled regional climate-chemistry-aerosol model (RIEMS-Chem) was applied to explore the direct, indirect, and feedback effects of anthropogenic aerosols on radiation, boundary layer meteorology, and fine particulate matter during the COVID-19 lockdown period from 23 January to 8 April 2020 over China. Model performance was validated against a variety of observations for meteorological variables, PM2.5 and its chemical components, aerosol optical properties, as well as shortwave radiation flux, which demonstrated that RIEMS-Chem was able to reproduce the spatial distribution and temporal variation of the above variables reasonably well. During the study period, direct radiative effect (DRE) of anthropogenic aerosols was stronger than indirect radiative effect (IRE) in most regions north of the Yangtze River, whereas IRE dominated over DRE in the Yangtze River regions and South China. In North China, DRE induced larger changes in meteorology and PM2.5 than those induced by IRE, whereas in South China, the changes by IRE were remarkably larger than those by DRE. Emission reduction alone during the COVID-19 lockdown reduced PM2.5 concentration by approximately 32 % on average over East China. As a result, DRE at the surface was weakened by 15 %, whereas IRE changed little over East China, leading to a decrease in total radiative effect (TRE) by approximately 7 % in terms of domain average. The DRE-induced changes in meteorology and PM2.5 were weakened due to emission reduction, whereas the IRE-induced changes were almost the same between the cases with and without emission reductions. By aerosol radiative and feedback effects, the COVID-19 emission reductions resulted in 0.06 °C and 0.04 °C surface warming, 1.6 and 4.0 μg m-3 PM2.5 decrease, 0.4 and 1.3 mm precipitation increase during the lockdown period in 2020 in terms of domain average over North China and South China, respectively, whereas the lockdown caused negligible changes on average over East Asia.
Collapse
Affiliation(s)
- Mingjie Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Han
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiawei Li
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lin Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Liang L, Han Z, Li J, Xia X, Sun Y, Liao H, Liu R, Liang M, Gao Y, Zhang R. Emission, transport, deposition, chemical and radiative impacts of mineral dust during severe dust storm periods in March 2021 over East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158459. [PMID: 36063936 DOI: 10.1016/j.scitotenv.2022.158459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
A Regional Air Quality Model System (named RAQMS) coupled with a developed dust model driven by WRF was applied to synthetically investigate the emission, transport, deposition, budget, and chemical and radiative effects of mineral dust during the severe dust storm periods of 10-31 March 2021. Model results were validated against a variety of ground, vertical and satellite observations, which demonstrated a generally good model ability in reproducing meteorological variables, particulate matter and compositions, and aerosol optical properties. The first dust storm (DS1), which was the severest one since 2010 was originated from the Gobi Desert in southern Mongolia on 14 March, with the dust emission flux reaching 2785 μg m-2 s-1 and the maximum dust concentration exceeding 18,000 μg m-3 in the dust deflation region. This dust storm resulted in remarkably high hourly PM10 observations up to 7506 μg m-3, 1887 μg m-3, and 2704 μg m-3 in Beijing, Tianjin, and Shijiazhuang on 15 March, respectively, and led to a maximum decrease in surface shortwave radiation up to 313.4 W m-2 (72 %) in Beijing. The second dust storm (DS2) broke out in the deserts of eastern Mongolia, with lower dust emission than the first one. The extinction of shortwave radiation by dust aerosols led to a reduction in photolysis rate and consequently decreases in O3 and secondary aerosol concentrations over the North China Plain (NCP), whereas total sulfate and nitrate concentrations consistently increased due to heterogeneous reactions on dust surfaces over the middle reaches of the Yellow River and the NCP region during DS1. Sulfate and nitrate formation through heterogeneous reactions were enhanced in the dust backflow on 16-17 March by approximately 18 % and 24 % on average in the NCP. Heterogeneous reactions and photolysis rate reduction by mineral dust jointly led to average changes in sulfate, nitrate, ammonium, and secondary organic aerosol (SOA) concentrations by 13.0 %, 13.5 %, -12.3 %, and -4.4 %, respectively, in the NCP region during DS1, larger than the changes in the Yangtze River Delta (YRD). The maximum dry deposition settled in the 7-11 μm size range in downwind land and ocean areas, while wet deposition peaked in the 4.7-7 μm size range in the entire domain. Wet deposition was approximately twice the dry deposition over mainland China except for dust source regions. During 10-31 March, the total dust emission, dry and wet depositions were estimated to be 31.4 Tg, 13.78 Tg and 4.75 Tg, respectively, with remaining 12.87 Tg of dust aerosols (41 % of the dust emission) suspending in the atmosphere or transporting to other continents and oceans.
Collapse
Affiliation(s)
- Lin Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Han
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiawei Li
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiangao Xia
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ruiting Liu
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Mingjie Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- Zhongwei Municipal Ecology and Environment Bureau, Zhongwei 755000, China
| | - Renjian Zhang
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
6
|
Li J, Han Z, Wu J, Tao J, Li J, Sun Y, Liang L, Liang M, Wang Q. Secondary organic aerosol formation and source contributions over east China in summertime. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119383. [PMID: 35504348 DOI: 10.1016/j.envpol.2022.119383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Various precursor emissions and chemical mechanisms for secondary organic aerosol (SOA) formation were incorporated into a regional air quality model system (RAQMS) and applied to investigate the distribution, composition, and source contribution of SOA over east China in summer 2018. Model comparison against a variety of observations at a national scale demonstrated that the model was able to reasonably reproduce meteorological variables, O3 and PM2.5 concentrations, and the model simulated SOA concentration generally agreed with observations, with the overall NMB of 7.0% and R of 0.4 in 10 cities over east China. The simulated period-mean SOA concentrations of 4-15 μg m-3 were mainly distributed over the North China Plain (NCP), the middle and lower reaches of the Yangtze River and Chongqing district. SOA dominated organic aerosol (OA) over China in summertime (90%). The percentage contributions to SOA from ASOA (SOA produced from anthropogenic volatile organic compounds (AVOC)), BSOA (SOA produced from biogenic volatile organic compounds (BVOC)), DSOA (SOA produced from aqueous uptake of glyoxal and methylglyoxal) and S/I-SOA (SOA produced from semi-volatile and intermediate volatile organic compounds) were estimated to be 48.3%, 28.6%, 14.3%, and 8.8% respectively, over east China in summertime. In terms of domain and period average, ASOA contributed most to SOA (59%) in north China, while BSOA contributed most to SOA (37.3%) in northeast China. The percentage contribution of DSOA to SOA reached 21.5% in southwest China. S/I-SOA accounted for approximately 10% of SOA in most areas of east China. This study reveals that while AVOC dominates SOA formation on average over east China, the SOA source contributions differ considerably in different regions of China. BVOC makes the same contribution to SOA formation as AVOC in northeast China and southwest China, where forest coverage and BVOC emission are higher and anthropogenic emissions are relatively low, highlighting the significant role of BVOC in summer SOA formation in China.
Collapse
Affiliation(s)
- Jie Li
- Department of Atmospheric Science, Yunnan University, Kunming, 650091, China
| | - Zhiwei Han
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian Wu
- Department of Atmospheric Science, Yunnan University, Kunming, 650091, China
| | - Jun Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Lin Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin'geng Wang
- School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Liang L, Han Z, Li J, Liang M. Investigation of the influence of mineral dust on airborne particulate matter during the COVID-19 epidemic in spring 2020 over China. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101424. [PMID: 35492578 PMCID: PMC9041551 DOI: 10.1016/j.apr.2022.101424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
A regional air quality model system (RAQMS) driven by the Weather Research and Forecasting model (WRF) is applied to investigate the distribution and evolution of mineral dust and anthropogenic aerosols over China in April 2020, when air quality was improved due to reduced human activity during the COVID-19 epidemic, whereas dust storms began to attack China and deteriorated air quality. A dust deflation model was developed and improved mineral dust prediction. Model validation demonstrated that RAQMS was able to reproduce PM10, PM2.5 and aerosol components reasonably well. China suffered from three dust events in April 2020, with the maximum hourly PM10 concentrations exceeding 700 μg m-3 in downwind cities over the North China Plain (NCP). Mineral dust dominated PM10 mass (>80%) over the Gobi deserts in north and west China, while it comprised approximately 30-50% of PM10 over wide areas of east China. The domain and monthly mean dust mass fractions in PM10 were estimated to be 47% and 43% over the North China Plain and east China, respectively. On average, mineral dust contributed up to 22% and 21% of PM2.5 mass over the North China Plain and east China in April 2020, respectively. Sulfate and nitrate produced by heterogeneous chemical reactions on dust surface accounted for approximately 9% and 13% of secondary inorganic aerosols (SIA) concentration over the North China Plain and east China, respectively. The results from this study demonstrated that mineral dust made an important contribution to particulate matter mass during the COVID-19 epidemic in spring 2020 over China.
Collapse
Affiliation(s)
- Lin Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwei Han
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Li
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China
| | - Mingjie Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Polarization Lidar Measurements of Dust Optical Properties at the Junction of the Taklimakan Desert–Tibetan Plateau. REMOTE SENSING 2022. [DOI: 10.3390/rs14030558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that dust aerosols may accelerate the melting of snow and glaciers over the Tibetan Plateau. To investigate the vertical structure of dust aerosols, we conducted a ground-based observation by using multi-wavelength polarization lidar which is designed for continuous network measurements. In this study, we used the lidar observation from September to October 2020 at the Ruoqiang site (39.0°N, 88.2°E; 894 m ASL), located at the junction of the Taklimakan Desert–Tibetan Plateau. Our results showed that dust aerosols can be lifted up to 5 km from the ground, which is comparable with the elevation of the Tibetan Plateau in autumn with a mass concentration of 400–900 μg m−3. Moreover, the particle depolarization ratio (PDR) of the lifted dust aerosols at 532 nm and 355 nm are 0.34 ± 0.03 and 0.25 ± 0.04, respectively, indicating the high degree of non-sphericity in shape. In addition, extinction-related Ångström exponents are very small (0.11 ± 0.24), implying the large values in size. Based on ground-based lidar observation, this study proved that coarse non-spherical Taklimakan dust with high concentration can be transported to the Tibetan Plateau, suggesting its possible impacts on the regional climate and ecosystem.
Collapse
|
9
|
Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020. ATMOSPHERE 2021. [DOI: 10.3390/atmos12080985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In-situ knowledge on characteristics of mineral aerosols is important for weather and climate prediction models, particularly for modeling such processes as the entrainment, transport and deposition of aerosols. However, field measurements of the dust emission flux, dust size distribution and its chemical composition under realistic wind conditions remain rare. In this study, we present experimental data over annual expeditions in the arid and semi-arid zones of the Caspian Lowland Desert (Kalmykia, south of Russia); we evaluate characteristics of mineral aerosol concentration and fluxes, estimate its chemical composition and calculate its long-distance transport characteristics. The mass concentration in different years ranges from several tens to several hundred of μg m−3. The significant influence of wind velocity on the value of mass and counting concentration and on the proposed entrainment mechanisms is confirmed. An increased content of anthropogenic elements (S, Sn, Pb, Bi, Mo, Ag, Cd, Hg, etc.), which is characteristic for all observation points in the south of the European Russia, is found. The trajectory analysis show that long-range air particles transport from the Caspian Lowland Desert to the central regions of European Russia tends to increase in the recent decades.
Collapse
|
10
|
Li J, Cai J, Zhang M, Liu H, Han X, Cai X, Xu Y. Model analysis of meteorology and emission impacts on springtime surface ozone in Shandong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144784. [PMID: 33736133 DOI: 10.1016/j.scitotenv.2020.144784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Air quality observations showed that surface ozone (O3) concentrations over Shandong increased significantly in springtime in recent years, especially 2017. The observed 90th percentile of hourly O3 concentrations (O3-h_90) in May increased from 148.4 μg/m3 in 2016 to 176.2 μg/m3 in 2017. To investigate the reasons of significant increase of O3 in spring of 2017, seven sensitivity cases were performed with the RAMS-CMAQ modeling system to identify the impacts of meteorological conditions (M) and emissions (E) on O3 concentrations in May of Shandong during the time period 2016-2018. The regional O3-h_90 in May of Shandong were 103.0, 120.3 and 86.3 μg/m3 in 2016, 2017 and 2018, respectively. It was found that the positive effects from favorable meteorology were the dominant reasons that resulted in the high O3 concentration in May 2017. When compared to 2017 standard simulation (17E17M), the differences of meteorological conditions led to the decrease of 17.5 and 33.8 μg/m3 in regional O3-h_90 of May in 2016 (17E16M) and 2018(17E18M), while small changes (0.6 and - 0.3 μg/m3) appeared in that of May 2016 (16E17M) and 2018(18E17M) due to emission differences. Since there were few differences in the wind speeds of May between three years, the higher temperature and lower relative humidity significantly contributed to O3 formation in May 2017 compared to May of 2016 and 2018. Besides, the amount of cloud fraction (CF), which has an indirect influence on the surface temperature and photochemical production of ozone by its impacts on the insolation, was the least in May 2017 compared to that in May 2016 and 2018 over Shandong. The distributions of changes in CF had obvious negative correlations with that of O3 vertical column concentrations and temperature. Thus, the fewer cloud fraction may play a key role in O3 formation of May 2017.
Collapse
Affiliation(s)
- Jialin Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Juzhen Cai
- Zhejiang Climate Center, Hangzhou 310017, China
| | - Meigen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houfeng Liu
- School of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Xiao Han
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Cai
- Taiyuan Meteorological Service, Taiyuan 030082, China
| | - Yongfu Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Huang J, Kang S, Yin R, Ram K, Liu X, Lu H, Guo J, Chen S, Tripathee L. Desert dust as a significant carrier of atmospheric mercury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115442. [PMID: 33254682 DOI: 10.1016/j.envpol.2020.115442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 06/12/2023]
Abstract
The atmospheric circulation plays a critical role in the global transport and deposition of atmospheric pollutants such as mercury (Hg). Desert dust emissions contribute to nearly 60-95% of the global dust budget and thus, desert dust may facilitate atmospheric Hg transport and deposition to the downwind regions worldwide. The role of desert dust in biogeochemical cycling of Hg, however, has not been well recognized by the Hg research community. In this study, we measured the concentration of particulate bound Hg (HgP) in total suspended particulate (TSP) collected from China's largest desert, Taklimakan Desert, between 2013 and 2017. The results show that HgP concentrations over the Taklimakan Desert atmosphere are remarkably higher than those observed from background sites in China and are even comparable to those measured in most of the Chinese metropolitan cities. Moreover, HgP concentrations in the Taklimakan Desert exhibit a distinct seasonal pattern peaking during dust storm outbreak periods in spring and summer (March to August). A preliminary estimation demonstrates that export of total Hg associated with atmospheric dust from the Taklimakan Desert could be 59.7 ± 60.3 (1SD) Mg yr-1. The unexpectedly high HgP concentrations during duststorms, together with consistent seasonal pattern of Hg revealed from the snow/ice, clearly demonstrate that Asian desert dust could act as a significant carrier of atmospheric Hg to the cryosphere of Western China and even can have further global reach.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northeast Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Kirpa Ram
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Xinchun Liu
- Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Institute of Desert Meteorology, China Meteorological Administration, Urumqi, 830002, China
| | - Hui Lu
- Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Institute of Desert Meteorology, China Meteorological Administration, Urumqi, 830002, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northeast Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Siyu Chen
- College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northeast Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
12
|
Li J, Han Z, Li J, Liu R, Wu Y, Liang L, Zhang R. The formation and evolution of secondary organic aerosol during haze events in Beijing in wintertime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134937. [PMID: 31767292 DOI: 10.1016/j.scitotenv.2019.134937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
A regional air quality model system (RAQMS) with a volatility basis set approach for secondary organic aerosol (SOA) formation and an emission inventory of semi-volatile (SVOC) and intermediate volatile organic compounds (IVOC) are applied to investigate the distribution and evolution of organic aerosols over the Beijing-Tianjin-Hebei (BTH) region in winter 2014, with focus on Beijing. Model validation demonstrates the model is capable of reproducing meteorological variables and major aerosol components, and the model significantly improves SOA and organic aerosol (OA) simulations by taking S/IVOCs (SVOC + IVOC) and relevant aging processes into account. SVOC and IVOC emissions in the BTH region are estimated to be 0.47 Tg and in a range of 0.09-0.36 Tg, respectively, which are about 18% and 4-14% of the emission amounts of volatile organic compounds (VOCs). The distribution of mean organic aerosols is characterized by a high concentration belt oriented southwest-northeast from southern Hebei to Beijing, with the maximum concentration up to 50 μg m-3 in Beijing and Shijiazhuang. The simulated SOA concentration is comparable in magnitude to primary organic aerosol (POA) concentration, and the SOA/OA ratio is around 50% in most areas of the BTH region. In terms of domain average, the percentage contributions to SOA mass concentration from anthropogenic volatile organic compounds (AVOCs), SVOCs, IVOCs and biogenic VOCs are estimated to be 46.1%, 40.1%, 9.4% and 4.4%, respectively, in the BTH region during the study period, which indicates an important role of S/IVOCs in SOA formation. From clean to haze periods, both POA and SOA concentrations apparently increase, with an increasing (decreasing) trend of the SOA/OA (POA/OA) ratio. SOA dominates over POA in fine organic aerosols during the haze periods. The increase of POA in hazy days is mainly due to the weakened vertical diffusion and accumulation near the surface, whereas the increase of SOA is likely attributed to both the reduced diffusivity and a series of competing chemical processes, in which the decreased photolysis rate by aerosol attenuation tends to decrease SOA concentration by about 6% during the most severe haze day, whereas the lower surface air temperature and higher POA and S/IVOC concentrations in haze days both enhance gas to particle partition, and consequently lead to higher SOA concentration.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Han
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiawei Li
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| | - Ruiting Liu
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Yunfei Wu
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| | - Lin Liang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjian Zhang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| |
Collapse
|
13
|
Li J, Han Z, Yao X, Xie Z, Tan S. The distributions and direct radiative effects of marine aerosols over East Asia in springtime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1913-1925. [PMID: 30317178 DOI: 10.1016/j.scitotenv.2018.09.368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
The characteristics, distributions, and direct radiative effects (DRE) of marine aerosols in the western Pacific Ocean over East Asia during the period from 17 March to 22 April 2014 were investigated by an online-coupled regional atmospheric chemistry/aerosol-climate model RIEMS-Chem (Regional Integrated Environmental Model System with Chemistry). The emissions and relevant processes of sea salt, marine primary organic aerosol (MPOA), sulfate and Methyl sulfonic acid (MSA) produced from dimethylsulfide (DMS) were parameterized and coupled with RIEMS-Chem. The model results for total aerosol masses (PM10 and PM2.5), inorganic and carbonaceous aerosols, gas precursors, and aerosol optical depth (AOD) were compared with various observational data sets including a research cruise Dongfanghong II from the Yellow Sea to the open oceans, near-surface aerosol and gas concentrations from the Acid Deposition Monitoring Network in East Asia (EANET) and China National Environmental Monitoring Center (CNEMC), and AOD from the Aerosol Robotic Network (AERONET). Model comparisons demonstrated a generally good skill of the RIEMS-Chem in representing the temporal and spatial variations of these variables. The distributions of marine aerosols were characterized by the maximum sea salt concentration up to 70 μg m-3 in the ocean northeast of Japan, the maximum concentration of MPOA >2 μg m-3 in the East China Sea and in portions of the northwest Pacific (NWP) region, and the maximum DMS-produced aerosol concentration >0.3 μg m-3 in the southern parts of the ocean. It was noteworthy that marine aerosols can be easily transported to the inland areas of south China. The clear-sky DREs by sea salt ranging from -9 to -17 W/m2 occurred in the open oceans northeast of Japan, comparable to the DREs of -10 ~ -20 W/m2 by anthropogenic aerosols, whereas the DREs by MPOA were strongest (up to -1.3 Wm-2) in the East China Sea and the oceans northeast of Japan due to active phytoplankton blooms there and comparable in magnitude to the DREs by sea salt (around -3 Wm-2) in the East China Sea. The maximum DRE by the DMS-produced aerosols was -0.4 Wm-2 mainly in the northern parts of the South China Sea. Sea salt exhibited an increasing radiative importance from the China marginal seas to the open oceans, accounting for 10% and 33% of the DREs by all aerosols, respectively. Under all-sky conditions, the sum of DREs by all the marine aerosols were estimated to be -2.2 W/m2, -3.5 W/m2, -2.3 W/m2, and -4.3 W/m2 averaged over the entire domain, ocean, East China Sea, and the NWP region, accounting for 20%, 27%, 13%, and 36% of the DREs by all aerosols, respectively, which demonstrated the important role of marine aerosols in modulating shortwave radiation in springtime in the western Pacific Ocean which was just downwind of the Asian continent with large amounts of anthropogenic and dust emissions.
Collapse
Affiliation(s)
- Jiawei Li
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhiwei Han
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaohong Yao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zuxin Xie
- Fujian Meteorological Science Institute, Fuzhou 350001, China
| | - Saichun Tan
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
14
|
Dust Vortex in the Taklimakan Desert by Himawari-8 High Frequency and Resolution Observation. Sci Rep 2019; 9:1209. [PMID: 30718748 PMCID: PMC6362108 DOI: 10.1038/s41598-018-37861-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/12/2018] [Indexed: 11/15/2022] Open
Abstract
The Taklimakan Desert is known to be one of the world’s major sources of aeolian dust particles. Continuous images with 10-min temporal and 2-km spatial resolutions from a new-generation geostationary meteorological satellite captured the lifecycle (generation, evolution and outflow) of a previously unrecognized type of Taklimakan dust storm. The dust storm showed an anti-clockwise spiral structure and a clear core and behaved like a “dust vortex”. From image analysis, the horizontal scale and temporal lifetime of the dust vortex were estimated to be 600 km and 36 hours, respectively. We found that a strong pressure trough (cut-off low), along with a cold air mass located on the northwestern side of the Taklimakan Desert and the high mountains surrounding the Taklimakan Desert, played important roles in the formation and evolution of the dust vortex.
Collapse
|
15
|
Li J, Zhang M, Tang G, Wu F, Alvarado LMA, Vrekoussis M, Richter A, Burrows JP. Investigating missing sources of glyoxal over China using a regional air quality model (RAMS-CMAQ). J Environ Sci (China) 2018; 71:108-118. [PMID: 30195669 DOI: 10.1016/j.jes.2018.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Currently, modeling studies tend to significantly underestimate observed space-based glyoxal (CHOCHO) vertical column densities (VCDs), implying the existence of missing sources of glyoxal. Several recent studies suggest that the emissions of aromatic compounds and molar yields of glyoxal in the chemical mechanisms may both be underestimated, which can affect the simulated glyoxal concentrations. In this study, the influences of these two factors on glyoxal amounts over China were investigated using the RAMS-CMAQ modeling system for January and July 2014. Four sensitivity simulations were performed, and the results were compared to satellite observations. These results demonstrated significant impacts on glyoxal concentrations from these two factors. In case 1, where the emissions of aromatic compounds were increased three-fold, improvements to glyoxal VCDs were seen in high anthropogenic emissions regions. In case 2, where molar yields of glyoxal from isoprene were increased five-fold, the resulted concentrations in July were 3-5-fold higher, achieving closer agreement between the modeled and measured glyoxal VCDs. The combined changes from both cases 1 and 2 were applied in case 3, and the model succeeded in further reducing the underestimations of glyoxal VCDs. However, the results over most of the regions with pronounced anthropogenic emissions were still underestimated. So the molar yields of glyoxal from anthropogenic precursors were considered in case 4. With these additional mole yield changes (a two-fold increase), the improved concentrations agreed better with the measurements in regions of the lower reaches of the Yangtze River and Yellow River in January but not in July.
Collapse
Affiliation(s)
- Jialin Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meigen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| | - Fangkun Wu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| | - Leonardo M A Alvarado
- Institute of Environmental Physics and Remote Sensing, IUP, University of Bremen, D-28203 Bremen, Germany
| | - Mihalis Vrekoussis
- Institute of Environmental Physics and Remote Sensing, IUP, University of Bremen, D-28203 Bremen, Germany; Center of Marine Environmental Sciences, MARUM, University of Bremen, D-28203 Bremen, Germany; Energy, Environment and Water Research Center, the Cyprus Institute, CY2121 Nicosia, Cyprus
| | - Andreas Richter
- Institute of Environmental Physics and Remote Sensing, IUP, University of Bremen, D-28203 Bremen, Germany
| | - John P Burrows
- Institute of Environmental Physics and Remote Sensing, IUP, University of Bremen, D-28203 Bremen, Germany
| |
Collapse
|
16
|
Aerosol Optical Properties over China from RAMS-CMAQ Model Compared with CALIOP Observations. ATMOSPHERE 2017. [DOI: 10.3390/atmos8100201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia. ATMOSPHERE 2016. [DOI: 10.3390/atmos7080105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Yan H, Liu X, Qi J, Gao H. Dry deposition of PM10 over the Yellow Sea during Asian dust events from 2001 to 2007. J Environ Sci (China) 2014; 26:54-64. [PMID: 24649691 DOI: 10.1016/s1001-0742(13)60380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dry deposition velocities and fluxes of PM10 during Asian dust events over the Yellow Sea from 2001 to 2007 were investigated using observation data in Qingdao, China and Jeju, Korea. The dry deposition velocities of PM10 during dust events over the Yellow Sea ranged from 0.19 to 8.17 cm/sec, with an average of 3.38 cm/sec. Dry deposition fluxes of PM10 during dust events over the Yellow Sea were in the range of 68.5-2647.1 mg/(m2 x day), with an average of 545.4 mg/(m2 x day), which is 2-10 times higher than those reported by other studies for both dust and non-dust periods. It was estimated that 2.6 x 10(11) -48.7 x 10(11) g dust particles deposit to the Yellow Sea during dust events through dry deposition every year. Compared with the results in previous studies, it was found that the dry deposition of PM10 over the Yellow Sea during dust events in the years with high frequency of dust could account for a large or overwhelming fraction of the annual total dry deposition. Backward air mass trajectory analysis showed that dust events influenced Jeju mainly originated from the desert regions located in Mongolia and Inner Mongolia, China. There were 119 backward trajectories influenced both Qingdao and Jeju during 15 dust events from 2001 to 2007, accounting for 61.3% of the total trajectories of 194, indicating that Qingdao and Jeju were usually on the same pathway of dust transport downwind from source areas.
Collapse
|
19
|
Inomata Y, Kajino M, Sato K, Ohara T, Kurokawa JI, Ueda H, Tang N, Hayakawa K, Ohizumi T, Akimoto H. Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source-receptor relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:324-334. [PMID: 23973884 DOI: 10.1016/j.envpol.2013.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
We analyzed the source-receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40 °N, 40-60%) and central China (30-40 °N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.
Collapse
Affiliation(s)
- Yayoi Inomata
- Asia Center for Air Pollution Research, 1182, Sowa, Nishi-ku, Niigatashi, Niigata 950-2144, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qu Y, An J, Li J. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia. J Environ Sci (China) 2013; 25:520-530. [PMID: 23923425 DOI: 10.1016/s1001-0742(12)60069-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.
Collapse
Affiliation(s)
- Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | | | | |
Collapse
|
21
|
Ge C, Zhang M, Zhu L, Han X, Wang J. Simulated seasonal variations in wet acid depositions over East Asia. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:1246-1261. [PMID: 22168108 DOI: 10.1080/10473289.2011.596741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The air quality modeling system Regional Atmospheric Modeling System-Community Multi-scale Air Quality (RAMS-CMAQ) was applied to analyze temporospatial variations in wet acid deposition over East Asia in 2005, and model results obtained on a monthly basis were evaluated against extensive observations, including precipitation amounts at 704 stations and SO4(2-), NO3-, and NH4+ concentrations in the atmosphere and rainwater at 18 EANET (the Acid Deposition Monitoring Network in East Asia) stations. The comparison shows that the modeling system can reasonably reproduce seasonal precipitation patterns, especially the extensive area of dry conditions in northeast China and north China and the major precipitation zones. For ambient concentrations and wet depositions, the simulated results are in reasonable agreement (within a factor of 2) with observations in most cases, and the major observed features are mostly well reproduced. The analysis of modeled wet deposition distributions indicates that East Asia experiences noticeable variations in its wet deposition patterns throughout the year. In winter, southern China and the coastal areas of the Japan Sea report higher S04(2-) and NO3- wet depositions. In spring, elevated SO4(2-) and NO3-wet depositions are found in northeastern China, southern China, and around the Yangtze River. In summer, a remarkable rise in precipitation in northeastern China, the valleys of the Huaihe and Yangtze rivers, Korea, and Japan leads to a noticeable increase in SO4(2-) and NO3- wet depositions, whereas in autumn, higher SO4(2-) and NO3-wet depositions are found around Sichuan Province. Meanwhile, due to the high emission of SO2, high wet depositions of SO4(2-) are found throughout the entire year in the area surrounding Sichuan Province. There is a tendency toward decreasing NO3- concentrations in rainwater from China through Korea to Japan in both observed and simulated results, which is a consequence of the influence of the continental outflow from Eurasia. The same tendency is not found for SO4(2-).
Collapse
Affiliation(s)
- Cui Ge
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Yu Y, Schleicher N, Norra S, Fricker M, Dietze V, Kaminski U, Cen K, Stüben D. Dynamics and origin of PM2.5 during a three-year sampling period in Beijing, China. ACTA ACUST UNITED AC 2010; 13:334-46. [PMID: 21180709 DOI: 10.1039/c0em00467g] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic sampling and analysis were performed to investigate the dynamics and the origin of suspended particulate matter smaller than 2.5 μm in diameter (PM(2.5)), in Beijing, China from 2005 to 2008. Identifying the source of PM(2.5) was the main goal of this project, which was funded by the German Research Foundation (DFG). The concentrations of 19 elements, black carbon (BC) and the total mass in 158 weekly PM(2.5) samples were measured. The statistical evaluation of the data from factor analysis (FA) identifies four main sources responsible for PM(2.5) in Beijing: (1) a combination of long-range transport geogenic soil particles, geogenic-like particles from construction sites and the anthropogenic emissions from steel factories; (2) road traffic, industry emissions and domestic heating; (3) local re-suspended soil particles; (4) re-suspended particles from refuse disposal/landfills and uncontrolled dumped waste. Special attention has been paid to seven high concentration "episodes", which were further analyzed by FA, enrichment factor analysis (EF), elemental signatures and backward-trajectory analysis. These results suggest that long-range transport soil particles contribute much to the high concentration of PM(2.5) during dust days. This is supported by mineral analysis which showed a clear imprint of component in PM(2.5). Furthermore, the ratios of Mg/Al have been proved to be a good signature to trace back different source areas. The Pb/Ti ratio allows the distinction between periods of predominant anthropogenic and geogenic sources during high concentration episodes. Backward-trajectory analysis clearly shows the origins of these episodes, which partly corroborate the FA and EF results. This study is only a small contribution to the understanding of the meteorological and source driven dynamics of PM(2.5) concentrations.
Collapse
Affiliation(s)
- Yang Yu
- China University of Geosciences, Beijing Xueyuan Road No 29, Haidian District, 100083 Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang R, Ho KF, Cao J, Han Z, Zhang M, Cheng Y, Lee SC. Organic carbon and elemental carbon associated with PM(10) in Beijing during spring time. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:970-977. [PMID: 19733974 DOI: 10.1016/j.jhazmat.2009.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 05/28/2023]
Abstract
A continuous observation of organic carbon (OC) and elemental carbon (EC), and PM(10) was conducted at an urban site of Beijing to investigate the characterization of carbonaceous aerosols during spring time. The mean value and standard deviations of OC, EC, PM(10) concentration, and OC/EC ratio were 13.5+/-7.0 microg m(-3), 7.1+/-4.1 microg m(-3), 187.8+/-136.9 microg m(-3), and 2.0+/-0.4, respectively. OC, EC, and total carbonaceous aerosols (TCA) in PM(10) account for 9.3+/-5.7%, 4.7+/-2.7%, and 19.6+/-11.6%, respectively. Good correlations (R(2)=0.7) between OC and EC were observed in spring season. Average OC concentrations are 13.5 microg m(-3) in both daytime and nighttime. Average EC concentrations in daytime (7.4 microg m(-3)) are slightly higher than those in nighttime (6.8 microg m(-3)). Both OC and EC concentrations reach maximum value in morning time (07:30-10:30) due to motor vehicles during the traffic rush hour. PM(10), OC, and EC concentration increase while PM(2.5) concentration, OC/EC ratio, PM(2.5)/PM(10), and TCA/PM(10) ratio decrease in dust period in Beijing. During the observation period, the carbonaceous aerosols from motor vehicle and coal combustion accounted for 76% and 24%, respectively. It shows that the motor vehicle represents the dominant emitter of carbonaceous aerosols associated with PM(10) in Beijing during spring time.
Collapse
Affiliation(s)
- Renjian Zhang
- Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Han Z, Zhang R, Wang Q, Wang W, Cao J, Xu J. Regional modeling of organic aerosols over China in summertime. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009436] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Menut L, Forêt G, Bergametti G. Sensitivity of mineral dust concentrations to the model size distribution accuracy. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007766] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Menut
- Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace; Ecole Polytechnique; Palaiseau France
| | - Gilles Forêt
- Laboratoire Inter-Universitaire des Systèmes Atmosphériques; Universités Paris7-Paris 12-CNRS; Créteil France
| | - Gilles Bergametti
- Laboratoire Inter-Universitaire des Systèmes Atmosphériques; Universités Paris7-Paris 12-CNRS; Créteil France
| |
Collapse
|
26
|
Shao Y, Leys JF, McTainsh GH, Tews K. Numerical simulation of the October 2002 dust event in Australia. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007767] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Zhang L, Vet R. A review of current knowledge concerning size-dependent aerosol removal. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1672-2515(07)60276-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Zhao TL, Gong SL, Zhang XY, Abdel-Mawgoud A, Shao YP. An assessment of dust emission schemes in modeling east Asian dust storms. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2004jd005746] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|