1
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
2
|
Wu Z, Zhang L, Walker JT, Makar PA, Perlinger JA, Wang X. Extension of a gaseous dry deposition algorithm to oxidized volatile organic compounds and hydrogen cyanide for application in chemistry transport models. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2021; 14:5093-5105. [PMID: 34721762 PMCID: PMC8549847 DOI: 10.5194/gmd-14-5093-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dry deposition process refers to flux loss of an atmospheric pollutant due to uptake of the pollutant by the Earth's surfaces, including vegetation, underlying soil, and any other surface types. In chemistry transport models (CTMs), the dry deposition flux of a chemical species is typically calculated as the product of its surface layer concentration and its dry deposition velocity (V d); the latter is a variable that needs to be highly empirically parameterized due to too many meteorological, biological, and chemical factors affecting this process. The gaseous dry deposition scheme of Zhang et al. (2003) parameterizes V d for 31 inorganic and organic gaseous species. The present study extends the scheme of Zhang et al. (2003) to include an additional 12 oxidized volatile organic compounds (oVOCs) and hydrogen cyanide (HCN), while keeping the original model structure and formulas, to meet the demand of CTMs with increasing complexity. Model parameters for these additional chemical species are empirically chosen based on their physicochemical properties, namely the effective Henry's law constants and oxidizing capacities. Modeled V d values are compared against field flux measurements over a mixed forest in the southeastern US during June 2013. The model captures the basic features of the diel cycles of the observed V d. Modeled V d values are comparable to the measurements for most of the oVOCs at night. However, modeled V d values are mostly around 1 cm s-1 during daytime, which is much smaller than the observed daytime maxima of 2-5 cm s-1. Analysis of the individual resistance terms and uptake pathways suggests that flux divergence due to fast atmospheric chemical reactions near the canopy was likely the main cause of the large model-measurement discrepancies during daytime. The extended dry deposition scheme likely provides conservative V d values for many oVOCs. While higher V d values and bidirectional fluxes can be simulated by coupling key atmospheric chemical processes into the dry deposition scheme, we suggest that more experimental evidence of high oVOC V d values at additional sites is required to confirm the broader applicability of the high values studied here. The underlying processes leading to high measured oVOC V d values require further investigation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
- ORISE Fellow at the US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - John T. Walker
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| | - Paul A. Makar
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Judith A. Perlinger
- Civil and Environmental Engineering Department, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Zhang G, Xia L, Zang K, Xu W, Zhang F, Liang L, Yao B, Lin W, Mu Y. The abundance and inter-relationship of atmospheric peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), O 3, and NO y during the wintertime in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137388. [PMID: 32105937 DOI: 10.1016/j.scitotenv.2020.137388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Although atmospheric peroxyacetyl nitrate (PAN) and O3 have been extensively measured in Beijing during the summertime, the abundances of PAN, peroxypropionyl nitrate (PPN) and the total odd-reactive nitrogen budget (NOy) and their inter-relationship have been studied comparatively less in the winter. Here we measured atmospheric PAN, PPN, O3, NOx, and NOy in Beijing from Nov. 2012 to Jan. 2013. Compared with our previous results in the summertime, much lower levels were observed in the winter, with the mean and maximum values of 311.8 and 1465 pptv for PAN, 52.8 and 850.6 pptv for PPN, and 11.6 and 36.7 ppbv for O3. In contrast, high levels were found as 94.2 and 374.9 ppbv for NOy, with a major constituent of NOx (75.9%). The source to the west and northwest made the significant contribution to the relatively high O3 concentrations during nighttime. PAN concentrations were highly related with the PAN-rich air mass transported from the southeast during the nighttime, whereas predominated by local photochemical production during the daylight. The distributions of NOx and NOy were dominated by local emission and photochemical production during daylight but also influenced by air masses transported from south direction during nighttime. Significant positive correlation (R2 = 0.9, p < 0.0001) between PAN and PPN with a slope (∆PPN/∆PAN) of 0.17 indicated that anthropogenic volatile organic compounds (AVOCs) dominated the photochemical formation of PANs in Beijing, and the independent relationship between the PPN/PAN ratio and PAN (>500 pptv) implied a steady state between PAN and PPN achieving rapidly in the polluted air masses. Negative correlation and slopes between PAN and O3 likely resulted from their weak photochemical productions in the winter, coupled with the large NO sources which acted as a local sink for O3, but much less so for PAN due to its enhanced thermal stability under low temperature.
Collapse
Affiliation(s)
- Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lingjun Xia
- Jiangxi Ecological Meteorology Center, Nanchang 330096, Jiangxi, China
| | - Kunpeng Zang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Fang Zhang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Linlin Liang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Bo Yao
- Meteorological Observation Centre (MOC), China Meteorological Administration (CMA), Beijing 100081, China
| | - Weili Lin
- Minzu University of China, Beijing 100081, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK. Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:10.1029/2019RG000670. [PMID: 33748825 PMCID: PMC7970530 DOI: 10.1029/2019rg000670] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 05/21/2023]
Abstract
Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
Collapse
Affiliation(s)
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - William J Massman
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - Colleen B Baublitz
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Mhairi Coyle
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK and The James Hutton Institute, Craigibuckler, Aberdeen, UK
| | - Lisa Emberson
- Stockholm Environment Institute, Environment Department, University of York, York, UK
| | - Silvano Fares
- Council of Agricultural Research and Economics, Research Centre for Forestry and Wood, and National Research Council, Institute of Bioeconomy, Rome, Italy
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Giacomo Gerosa
- Dipartimento di Matematica e Fisica, Università Cattolica del S. C., Brescia, Italy
| | - Alex B Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Detlev Helmig
- Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO, USA
| | | | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Donna B Schwede
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Sam J Silva
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthias Sörgel
- Max Plank Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Allison L Steiner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Amos P K Tai
- Earth System Science Programme, Faculty of Science, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Walker JT, Beachley G, Zhang L, Benedict KB, Sive BC, Schwede DB. A review of measurements of air-surface exchange of reactive nitrogen in natural ecosystems across North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:133975. [PMID: 31499348 PMCID: PMC7032654 DOI: 10.1016/j.scitotenv.2019.133975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 04/13/2023]
Abstract
This review summarizes the state of the science of measurements of dry deposition of reactive nitrogen (Nr) compounds in North America, beginning with current understanding of the importance of dry deposition at the U.S. continental scale followed by a review of micrometeorological flux measurement methods. Measurements of Nr air-surface exchange in natural ecosystems of North America are then summarized, focusing on the U.S. and Canada. Drawing on this synthesis, research needed to address the incompleteness of dry deposition budgets, more fully characterize temporal and geographical variability of fluxes, and better understand air-surface exchange processes is identified. Our assessment points to several data and knowledge gaps that must be addressed to advance dry deposition budgets and air-surface exchange modeling for North American ecosystems. For example, recent studies of particulate (NO3-) and gaseous (NOx, HONO, peroxy nitrates) oxidized N fluxes challenge the fundamental framework of unidirectional flux from the atmosphere to the surface employed in most deposition models. Measurements in forest ecosystems document the importance of in-canopy chemical processes in regulating the net flux between the atmosphere and biosphere, which can result in net loss from the canopy. These results emphasize the need for studies to quantify within- and near-canopy sources and sinks of the full suite of components of the Nr chemical system under study (e.g., NOy or HNO3-NH3-NH4NO3). With respect to specific ecosystems and geographical locations, additional flux measurements are needed particularly in agricultural regions (NH3), coastal zones (NO3- and organic N), and arid ecosystems and along urban to rural gradients (NO2). Measurements that investigate non-stomatal exchange processes (e.g., deposition to wet surfaces) and the biogeochemical drivers of bidirectional exchange (e.g., NH3) are considered high priority. Establishment of long-term sites for process level measurements of reactive chemical fluxes should be viewed as a high priority long-term endeavor of the atmospheric chemistry and ecological communities.
Collapse
Affiliation(s)
- John T Walker
- U.S. EPA, Office of Research and Development, Durham, NC, USA.
| | | | - Leiming Zhang
- Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Katherine B Benedict
- Colorado State University, Department of Atmospheric Science, Fort Collins, CO, USA
| | - Barkley C Sive
- National Park Service, Air Resources Division, Lakewood, CO, USA
| | - Donna B Schwede
- U.S. EPA, Office of Research and Development, Durham, NC, USA
| |
Collapse
|
6
|
Abstract
The atmosphere is composed of nitrogen, oxygen and argon, a variety of trace gases, and particles or aerosols from a variety of sources. Reactive, trace gases have short mean residence time in the atmosphere and large spatial and temporal variations in concentration. Many trace gases are removed by reaction with hydroxyl radical and deposition in rainfall or dryfall at the Earth's surface. The upper atmosphere, the stratosphere, contains ozone that screens ultraviolet light from the Earth's surface. Chlorofluorocarbons released by humans lead to the loss of stratospheric ozone, which might eventually render the Earth's land surface uninhabitable. Changes in the composition of the atmosphere, especially rising concentrations of CO2, CH4, and N2O, will lead to climatic changes over much of the Earth's surface.
Collapse
|
7
|
Walker JT, Beachley G, Amos HM, Baron JS, Bash J, Baumgardner R, Bell MD, Benedict KB, Chen X, Clow DW, Cole A, Coughlin JG, Cruz K, Daly RW, Decina SM, Elliott EM, Fenn ME, Ganzeveld L, Gebhart K, Isil SS, Kerschner BM, Larson RS, Lavery T, Lear GG, Macy T, Mast MA, Mishoe K, Morris KH, Padgett PE, Pouyat RV, Puchalski M, Pye HOT, Rea AW, Rhodes MF, Rogers CM, Saylor R, Scheffe R, Schichtel BA, Schwede DB, Sexstone GA, Sive BC, Sosa Echeverría R, Templer PH, Thompson T, Tong D, Wetherbee GA, Whitlow TH, Wu Z, Yu Z, Zhang L. Toward the improvement of total nitrogen deposition budgets in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1328-1352. [PMID: 31466212 PMCID: PMC7724633 DOI: 10.1016/j.scitotenv.2019.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Frameworks for limiting ecosystem exposure to excess nutrients and acidity require accurate and complete deposition budgets of reactive nitrogen (Nr). While much progress has been made in developing total Nr deposition budgets for the U.S., current budgets remain limited by key data and knowledge gaps. Analysis of National Atmospheric Deposition Program Total Deposition (NADP/TDep) data illustrates several aspects of current Nr deposition that motivate additional research. Averaged across the continental U.S., dry deposition contributes slightly more (55%) to total deposition than wet deposition and is the dominant process (>90%) over broad areas of the Southwest and other arid regions of the West. Lack of dry deposition measurements imposes a reliance on models, resulting in a much higher degree of uncertainty relative to wet deposition which is routinely measured. As nitrogen oxide (NOx) emissions continue to decline, reduced forms of inorganic nitrogen (NHx = NH3 + NH4+) now contribute >50% of total Nr deposition over large areas of the U.S. Expanded monitoring and additional process-level research are needed to better understand NHx deposition, its contribution to total Nr deposition budgets, and the processes by which reduced N deposits to ecosystems. Urban and suburban areas are hotspots where routine monitoring of oxidized and reduced Nr deposition is needed. Finally, deposition budgets have incomplete information about the speciation of atmospheric nitrogen; monitoring networks do not capture important forms of Nr such as organic nitrogen. Building on these themes, we detail the state of the science of Nr deposition budgets in the U.S. and highlight research priorities to improve deposition budgets in terms of monitoring and flux measurements, leaf- to regional-scale modeling, source apportionment, and characterization of deposition trends and patterns.
Collapse
Affiliation(s)
- J T Walker
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America.
| | - G Beachley
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - H M Amos
- AAAS Science and Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States of America
| | - J S Baron
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States of America
| | - J Bash
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - R Baumgardner
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - M D Bell
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - K B Benedict
- Colorado State University, Department of Atmospheric Science, Fort Collins, CO, United States of America
| | - X Chen
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - D W Clow
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - A Cole
- Environment and Climate Change Canada, Air Quality Research Division, Toronto, ON, Canada
| | - J G Coughlin
- U.S. Environmental Protection Agency, Region 5, Chicago, IL, United States of America
| | - K Cruz
- U.S. Department of Agriculture, National Institute of Food and Agriculture, Washington, DC, United States of America
| | - R W Daly
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - S M Decina
- University of California, Department of Chemistry, Berkeley, CA, United States of America
| | - E M Elliott
- University of Pittsburgh, Department of Geology & Environmental Science, Pittsburgh, PA, United States of America
| | - M E Fenn
- U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, CA, United States of America
| | - L Ganzeveld
- Meteorology and Air Quality (MAQ), Wageningen University and Research Centre, Wageningen, Netherlands
| | - K Gebhart
- National Park Service, Air Resources Division, Fort Collins, CO, United States of America
| | - S S Isil
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - B M Kerschner
- Prairie Research Institute, University of Illinois, Champaign, IL, United States of America
| | - R S Larson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI, United States of America
| | - T Lavery
- Environmental Consultant, Cranston, RI, United States of America
| | - G G Lear
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - T Macy
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - M A Mast
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - K Mishoe
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - K H Morris
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - P E Padgett
- U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, CA, United States of America
| | - R V Pouyat
- U.S. Forest Service, Bethesda, MD, United States of America
| | - M Puchalski
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - H O T Pye
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - A W Rea
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - M F Rhodes
- D&E Technical, Urbana, IL, United States of America
| | - C M Rogers
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - R Saylor
- National Oceanic and Atmospheric Administration, Air Resources Laboratory, Oak Ridge, TN, United States of America
| | - R Scheffe
- U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Durham, NC, United States of America
| | - B A Schichtel
- National Park Service, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, United States of America
| | - D B Schwede
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - G A Sexstone
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - B C Sive
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - R Sosa Echeverría
- Centro de Ciencias de la Atmosfera, Universidad Nacional Autónoma de México, Mexico
| | - P H Templer
- Boston University, Department of Biology, Boston, MA, United States of America
| | - T Thompson
- AAAS Science and Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Policy, Washington, DC, United States of America
| | - D Tong
- George Mason University. National Oceanic and Atmospheric Administration, Air Resources Laboratory, College Park, MD, United States of America
| | - G A Wetherbee
- U.S. Geological Survey, Hydrologic Networks Branch, Denver, CO, United States of America
| | - T H Whitlow
- Cornell University, Department of Horticulture, Ithaca, NY, United States of America
| | - Z Wu
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - Z Yu
- University of Pittsburgh, Department of Geology & Environmental Science, Pittsburgh, PA, United States of America
| | - L Zhang
- Environment and Climate Change Canada, Air Quality Research Division, Toronto, ON, Canada
| |
Collapse
|
8
|
PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. ATMOSPHERE 2018. [DOI: 10.3390/atmos9100372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peroxy acetyl nitrate (PAN) is an important photochemical product formed from the reactions between volatile organic compounds (VOCs) and nitrogen oxides (NOx) under sunlight. In this study, a field measurement was conducted at a rural site (the backgarden site, or BGS) of the Pearl River Delta (PRD) region in 2006, with the 10 min maximum PAN mixing ratios of 3.9 ppbv observed. The factors influencing the abundance of PAN at the BGS site was evaluated by the process analysis through the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model. The results suggested that the increase of PAN abundance at the BGS site was mainly controlled by the gas-phase chemistry, followed by vertical transport, while its loss was modulated mainly by dry deposition and horizontal transport. As the dominant important role of gas-phase chemistry, to provide detailed information on the photochemical formation of PAN, a photochemical box model with near-explicit chemical mechanism (i.e., the master chemical mechanism, MCM) was used to explore the relationship of photochemical PAN formation with its precursors based on the measured data at the BGS site. It was found that PAN formation was VOC-limited at the BGS site, with the oxidation of acetaldehyde the most important pathway for photochemical PAN production, followed by the oxidation and photolysis of methylglyoxal (MGLY). Among all the primary VOC precursors, isoprene and xylenes were the main contributors to PAN formation. Overall, our study provides new insights into the PAN photochemical formation and its controlling factors, and highlighted the importance of gas chemistry on the PAN abundance in the PRD region.
Collapse
|
9
|
Benedict KB, Prenni AJ, Sullivan AP, Evanoski-Cole AR, Fischer EV, Callahan S, Sive BC, Zhou Y, Schichtel BA, Collett Jr JL. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park. PeerJ 2018; 6:e4759. [PMID: 29780668 PMCID: PMC5958887 DOI: 10.7717/peerj.4759] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Human influenced atmospheric reactive nitrogen (RN) is impacting ecosystems in Rocky Mountain National Park (ROMO). Due to ROMO's protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July-August 2014 the most comprehensive measurements (to date) of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ). Measurements included peroxyacetyl nitrate (PAN), C1-C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4) as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1-9/30) was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate). All three species are challenging to measure routinely, especially at high time resolution.
Collapse
Affiliation(s)
- Katherine B. Benedict
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States of America
| | - Anthony J. Prenni
- Air Resources Division, National Park Service, Lakewood, CO, United States of America
| | - Amy P. Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States of America
| | - Ashley R. Evanoski-Cole
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States of America
- Present address: Department of Chemistry, St. Bonaventure University, St. Bonaventure, NY, United States of America
| | - Emily V. Fischer
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States of America
| | - Sara Callahan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States of America
| | - Barkley C. Sive
- Air Resources Division, National Park Service, Lakewood, CO, United States of America
| | - Yong Zhou
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States of America
| | - Bret A. Schichtel
- Air Resources Division, National Park Service, Fort Collins, CO, United States of America
| | - Jeffrey L. Collett Jr
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
10
|
Wu Z, Schwede DB, Vet R, Walker JT, Shaw M, Staebler R, Zhang L. Evaluation and Intercomparison of Five North American Dry Deposition Algorithms at a Mixed Forest Site. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2018; 10:1571-1586. [PMID: 31666920 PMCID: PMC6820161 DOI: 10.1029/2017ms001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To quantify differences between dry deposition algorithms commonly used in North America, five models were selected to calculate dry deposition velocity (V d) for O3 and SO2 over a temperate mixed forest in southern Ontario, Canada, where a 5-year flux database had previously been developed. The models performed better in summer than in winter with correlation coefficients for hourly V d between models and measurements being approximately 0.6 and 0.3, respectively. Differences in mean V d values between models were on the order of a factor of 2 in both summer and winter. All models produced lower V d values than the measurements of O3 in summer and SO2 in summer and winter, although the measured V d may be biased. There was not a consistent tendency in the models to overpredict or underpredict for O3 in winter. Several models produced magnitudes of the diel variation of V d (O3) comparable to the measurements, while all models produced slightly smaller diel variations than the measurements of V d (SO2) in summer. A few models produced larger diel variations than the measurements of V d for O3 and SO2 in winter. Model differences were mainly due to different surface resistance parameterizations for stomatal and nonstomatal uptake pathways, while differences in aerodynamic and quasi-laminar resistances played only a minor role. It is recommended to use ensemble modeling results for ecosystem impact assessment studies, which provides mean values of all the used models and thus can avoid too much overestimations or underestimations.
Collapse
Affiliation(s)
- Zhiyong Wu
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
- Now an ORISE Fellow at U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park, NC, USA
| | - Donna B Schwede
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Robert Vet
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - John T Walker
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park, NC, USA
| | - Mike Shaw
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Ralf Staebler
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Liang T, Tong Y, Liu X, Xu W, Luo X, Christie P. High nitrogen deposition in an agricultural ecosystem of Shaanxi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13210-13221. [PMID: 27023807 DOI: 10.1007/s11356-016-6374-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Atmospheric nitrogen (N) deposition plays an important role in the global N cycle. Data for dry and wet N deposition in agricultural ecosystem of Shaanxi in China is still imperfect; in this study, we continuously measured concentrations and fluxes of dry N deposition from 2010 to 2013 in Yangling district of Shaanxi province and wet N deposition from 2010 to 2012. The average annual concentrations of NH3, NO2, HNO3, particulate ammonium, and nitrate (pNH4 (+) and pNO3 (-)) varied among 3.9-9.1, 6.6-8.0, 1.2-1.4, 3.1-4.3, and 3.3-4.8 μg N m(-3), respectively, with mean values of 6.0, 7.2, 1.3, 3.8, and 4.1 μg N m(-3), respectively, during the entire monitoring period. The annual NH4 (+)-N and NO3 (-)-N concentrations in precipitation ranged 3.9-4.3 and 2.8-3.4 mg N L(-1) with the mean values of 4.1 and 3.3 mg N L(-1). The NH4 (+)-N/NO3 (-)-N ratio in rainfall averaged 1.2. Dry N deposition flux was determined to be 19.2 kg N ha(-1) year(-1) and the wet N deposition flux was 27.2 kg N ha(-1) year(-1). The amount of total atmospheric N deposition (dry plus wet) reached 46.4 kg N ha(-1) year(-1), in which dry deposition accounted 41 %. Gaseous N deposition comprised over 75 % of the dry deposition, and the proportion of oxidized N in dry deposition was equal to the reduced N. Therefore, the results suggest that more stringent regional air pollution control policies are required in the target area and that N deposition is an important nutrient resource from the atmosphere that must be taken into consideration in nutrient management planning of agricultural ecosystems.
Collapse
Affiliation(s)
- Ting Liang
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Shaanxi, 712100, China
| | - Yan'an Tong
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Shaanxi, 712100, China.
| | - Xuejun Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wen Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaosheng Luo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Plant Nutrition, Resources and Environmental Sciences, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Peter Christie
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Zhang H, Xu X, Lin W, Wang Y. Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: role of photochemical and meteorological processes. J Environ Sci (China) 2014; 26:83-96. [PMID: 24649694 DOI: 10.1016/s1001-0742(13)60384-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Previous measurements of peroxyacetyl nitrate (PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NO(x), etc., made at an urban site (CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 x 10(-9) mol/mol (0.23 x 10(-9) -3.51 x 10(-9) mol/mol) and was well correlated with that of NO2 but not O3, indicating that the variations of the winter concentrations of PAN and 03 in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3 ratio smaller than 0.031, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3 ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3 decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl (PA) radical was estimated to be in the range of 0.0014 x 10(-12) -0.0042 x 10(-12) mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition.
Collapse
|
13
|
Dennis RL, Schwede DB, Bash JO, Pleim JE, Walker JT, Foley KM. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parametrizations. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130124. [PMID: 23713122 PMCID: PMC3682744 DOI: 10.1098/rstb.2013.0124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reactive nitrogen (Nr) is removed by surface fluxes (air-surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air-surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1-4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent.
Collapse
Affiliation(s)
- Robin L Dennis
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Marr LC, Moore TO, Klapmeyer ME, Killar MB. Comparison of NO(x) fluxes measured by eddy covariance to emission inventories and land use. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1800-1808. [PMID: 23316911 DOI: 10.1021/es303150y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Uncertainty in emission inventories remains a critical limitation of air quality modeling and management. Using eddy covariance, we measured surface-atmosphere exchange fluxes of nitrogen oxides (NO(x)) at the neighborhood scale at 13 sites in the Norfolk, Virginia area to estimate emissions, to evaluate official inventories, and to quantify relationships between emissions and land use. Average daytime fluxes ranged from 0.4 μg m(-2) s(-1) at a site near open water to 9.5 μg m(-2) s(-1) at a site dominated by vehicle traffic. NO(x) fluxes were correlated with both road density and medium- plus high-intensity development, confirming that both motor vehicles and sources associated with development are responsible for NO(x) emissions in urban areas. Spatially averaged NO(x) fluxes measured by eddy covariance agreed to within 3% with the National Emission Inventory (NEI) but were 2.8 times higher than those in the corresponding grid cell of an emission inventory developed for air quality modeling. These average fluxes were 4.6, 4.5, and 1.7 μg m(-2) s(-1), respectively. Uncertainty in the inventories appears to be dominated by the nonroad mobile source category. It is especially important to know NO(x) emissions accurately because in certain photochemical regimes, reducing NO(x) emissions can exacerbate secondary pollutant formation.
Collapse
Affiliation(s)
- Linsey C Marr
- Via Department of Civil and Environmental Engineering, Virginia Tech, 411 Durham Hall, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
15
|
Wu Z, Wang X, Turnipseed AA, Chen F, Zhang L, Guenther AB, Karl T, Huey LG, Niyogi D, Xia B, Alapaty K. Evaluation and improvements of two community models in simulating dry deposition velocities for peroxyacetyl nitrate (PAN) over a coniferous forest. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016751] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Schade GW, Khan S, Park C, Boedeker I. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:1070-1081. [PMID: 22070040 DOI: 10.1080/10473289.2011.608621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.
Collapse
Affiliation(s)
- Gunnar W Schade
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
17
|
Barkley MP, Palmer PI, Ganzeveld L, Arneth A, Hagberg D, Karl T, Guenther A, Paulot F, Wennberg PO, Mao J, Kurosu TP, Chance K, Müller JF, De Smedt I, Van Roozendael M, Chen D, Wang Y, Yantosca RM. Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry? ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015893] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
|
19
|
Paul D, Osthoff HD. Absolute Measurements of Total Peroxy Nitrate Mixing Ratios by Thermal Dissociation Blue Diode Laser Cavity Ring-Down Spectroscopy. Anal Chem 2010; 82:6695-703. [DOI: 10.1021/ac101441z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Dipayan Paul
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4, Canada
| | - Hans D. Osthoff
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4, Canada
| |
Collapse
|
20
|
Müller M, Graus M, Ruuskanen TM, Schnitzhofer R, Bamberger I, Kaser L, Titzmann T, Hörtnagl L, Wohlfahrt G, Karl T, Hansel A. First eddy covariance flux measurements by PTR-TOF. ATMOSPHERIC MEASUREMENT TECHNIQUES 2010; 3:387-395. [PMID: 24465280 PMCID: PMC3898015 DOI: 10.5194/amt-3-387-2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The recently developed PTR-TOF instrument was evaluated to measure methanol fluxes emitted from grass land using the eddy covariance method. The high time resolution of the PTR-TOF allowed storing full mass spectra up to m/z 315 with a frequency of 10 Hz. Three isobaric ions were found at a nominal mass of m/z 33 due to the high mass resolving power of the PTR-TOF. Only one of the three peaks contributed to eddy covariance fluxes. The exact mass of this peak agrees well with the exact mass of protonated methanol (m/z 33.0335). The eddy covariance methanol fluxes measured with PTR-TOF were compared to virtual disjunct eddy covariance methanol fluxes simultaneously measured with a conventional PTR-MS. The methanol fluxes from both instruments show excellent agreement.
Collapse
Affiliation(s)
- M. Müller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Ionicon Analytik, Innsbruck, Austria
| | - M. Graus
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - T. M. Ruuskanen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - R. Schnitzhofer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Ionicon Analytik, Innsbruck, Austria
| | - I. Bamberger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - L. Kaser
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - T. Titzmann
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - L. Hörtnagl
- Institut für Ökologie, Universität Innsbruck, Innsbruck, Austria
| | - G. Wohlfahrt
- Institut für Ökologie, Universität Innsbruck, Innsbruck, Austria
| | - T. Karl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - A. Hansel
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 2008; 159:1-13. [DOI: 10.1007/s00442-008-1188-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
22
|
Horowitz LW, Fiore AM, Milly GP, Cohen RC, Perring A, Wooldridge PJ, Hess PG, Emmons LK, Lamarque JF. Observational constraints on the chemistry of isoprene nitrates over the eastern United States. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007747] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Huey LG. Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. MASS SPECTROMETRY REVIEWS 2007; 26:166-84. [PMID: 17243143 DOI: 10.1002/mas.20118] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemical ionization mass spectrometry (CIMS) has proven to be a powerful method for sensitive, fast time response (t approximately 1 sec) measurements of various atmospheric compounds with limits of detection (LOD) of the order of tens of pptv and lower. The rapid time response of CIMS is particularly well suited for airborne measurements and its application has largely grown out of airborne measurements in the stratosphere and upper troposphere. This work reviews some of the advances in CIMS technology that have occurred in the past decade. In particular, CIMS methods for selective measurement of reactive nitrogen species (e.g., HNO3, HO2NO2, PAN, and NH3) in the lower atmosphere (altitudes approximately 0-8 km) are described. In addition, recent developments in CIMS technology for the selective measurement of gas-phase hydroperoxides and aerosol chemical composition are briefly described.
Collapse
Affiliation(s)
- L Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
24
|
Vallano DM, Sparks JP. Foliar δ15N Values as Indicators of Foliar Uptake of Atmospheric Nitrogen Pollution. STABLE ISOTOPES AS INDICATORS OF ECOLOGICAL CHANGE 2007. [DOI: 10.1016/s1936-7961(07)01007-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|