1
|
Lamour J, Davidson KJ, Ely KS, Le Moguédec G, Anderson JA, Li Q, Calderón O, Koven CD, Wright SJ, Walker AP, Serbin SP, Rogers A. The effect of the vertical gradients of photosynthetic parameters on the CO 2 assimilation and transpiration of a Panamanian tropical forest. THE NEW PHYTOLOGIST 2023; 238:2345-2362. [PMID: 36960539 DOI: 10.1111/nph.18901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Terrestrial biosphere models (TBMs) include the representation of vertical gradients in leaf traits associated with modeling photosynthesis, respiration, and stomatal conductance. However, model assumptions associated with these gradients have not been tested in complex tropical forest canopies. We compared TBM representation of the vertical gradients of key leaf traits with measurements made in a tropical forest in Panama and then quantified the impact of the observed gradients on simulated canopy-scale CO2 and water fluxes. Comparison between observed and TBM trait gradients showed divergence that impacted canopy-scale simulations of water vapor and CO2 exchange. Notably, the ratio between the dark respiration rate and the maximum carboxylation rate was lower near the ground than at the top-of-canopy, leaf-level water-use efficiency was markedly higher at the top-of-canopy, and the decrease in maximum carboxylation rate from the top-of-canopy to the ground was less than TBM assumptions. The representation of the gradients of leaf traits in TBMs is typically derived from measurements made within-individual plants, or, for some traits, assumed constant due to a lack of experimental data. Our work shows that these assumptions are not representative of the trait gradients observed in species-rich, complex tropical forests.
Collapse
Affiliation(s)
- Julien Lamour
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kenneth J Davidson
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11974, USA
| | - Kim S Ely
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Gilles Le Moguédec
- AMAP, Université Montpellier, INRAE, Cirad CNRS, IRD, Montpellier, 34000, France
| | - Jeremiah A Anderson
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qianyu Li
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Osvaldo Calderón
- Smithsonian Tropical Research Institute, Balboa, 0843-03092, Republic of Panama
| | - Charles D Koven
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, 0843-03092, Republic of Panama
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
2
|
Implications of seasonal changes in photosynthetic traits and leaf area index for canopy CO2 and H2O fluxes in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Flack-Prain S, Meir P, Malhi Y, Smallman TL, Williams M. Does economic optimisation explain LAI and leaf trait distributions across an Amazon soil moisture gradient? GLOBAL CHANGE BIOLOGY 2021; 27:587-605. [PMID: 32979883 DOI: 10.1111/gcb.15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Leaf area index (LAI) underpins terrestrial ecosystem functioning, yet our ability to predict LAI remains limited. Across Amazon forests, mean LAI, LAI seasonal dynamics and leaf traits vary with soil moisture stress. We hypothesise that LAI variation can be predicted via an optimality-based approach, using net canopy C export (NCE, photosynthesis minus the C cost of leaf growth and maintenance) as a fitness proxy. We applied a process-based terrestrial ecosystem model to seven plots across a moisture stress gradient with detailed in situ measurements, to determine nominal plant C budgets. For each plot, we then compared observations and simulations of the nominal (i.e. observed) C budget to simulations of alternative, experimental budgets. Experimental budgets were generated by forcing the model with synthetic LAI timeseries (across a range of mean LAI and LAI seasonality) and different leaf trait combinations (leaf mass per unit area, lifespan, photosynthetic capacity and respiration rate) operating along the leaf economic spectrum. Observed mean LAI and LAI seasonality across the soil moisture stress gradient maximised NCE, and were therefore consistent with optimality-based predictions. Yet, the predictive power of an optimality-based approach was limited due to the asymptotic response of simulated NCE to mean LAI and LAI seasonality. Leaf traits fundamentally shaped the C budget, determining simulated optimal LAI and total NCE. Long-lived leaves with lower maximum photosynthetic capacity maximised simulated NCE under aseasonal high mean LAI, with the reverse found for short-lived leaves and higher maximum photosynthetic capacity. The simulated leaf trait LAI trade-offs were consistent with observed distributions. We suggest that a range of LAI strategies could be equally economically viable at local level, though we note several ecological limitations to this interpretation (e.g. between-plant competition). In addition, we show how leaf trait trade-offs enable divergence in canopy strategies. Our results also allow an assessment of the usefulness of optimality-based approaches in simulating primary tropical forest functioning, evaluated against in situ data.
Collapse
Affiliation(s)
| | - Patrick Meir
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Thomas L Smallman
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK
| | - Mathew Williams
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Kramer RD, Ishii HR, Carter KR, Miyazaki Y, Cavaleri MA, Araki MG, Azuma WA, Inoue Y, Hara C. Predicting effects of climate change on productivity and persistence of forest trees. Ecol Res 2020. [DOI: 10.1111/1440-1703.12127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Russell D. Kramer
- School of Environmental and Forest Science, College of the Environment University of Washington Seattle Washington USA
| | - H. Roaki Ishii
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kelsey R. Carter
- College of Forest Resources & Environmental Science Michigan Technological University Houghton Michigan USA
- Earth and Environmental Science Division Los Alamos National Laboratory Los Alamos New Mexico USA
| | - Yuko Miyazaki
- Graduate School of Environmental and Life Science Okayama University Okayama Japan
| | - Molly A. Cavaleri
- College of Forest Resources & Environmental Science Michigan Technological University Houghton Michigan USA
| | - Masatake G. Araki
- Department of Plant Ecology, Forestry and Forest Products Research Institute Tsukuba Japan
| | - Wakana A. Azuma
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Yuta Inoue
- Department of Plant Ecology, Forestry and Forest Products Research Institute Tsukuba Japan
| | - Chinatsu Hara
- Graduate School of Agricultural Science Kobe University Kobe Japan
| |
Collapse
|
5
|
Wu J, Serbin SP, Xu X, Albert LP, Chen M, Meng R, Saleska SR, Rogers A. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests. GLOBAL CHANGE BIOLOGY 2017; 23:4814-4827. [PMID: 28418158 DOI: 10.1111/gcb.13725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/09/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.
Collapse
Affiliation(s)
- Jin Wu
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, New York, NY, USA
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, New York, NY, USA
| | - Xiangtao Xu
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Loren P Albert
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Min Chen
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
| | - Ran Meng
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, New York, NY, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, New York, NY, USA
| |
Collapse
|
6
|
Evaluation of modeled global vegetation carbon dynamics: Analysis based on global carbon flux and above-ground biomass data. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Miner GL, Bauerle WL, Baldocchi DD. Estimating the sensitivity of stomatal conductance to photosynthesis: a review. PLANT, CELL & ENVIRONMENT 2017; 40:1214-1238. [PMID: 27925232 DOI: 10.1111/pce.12871] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 05/27/2023]
Abstract
A common approach for estimating fluxes of CO2 and water in canopy models is to couple a model of photosynthesis (An ) to a semi-empirical model of stomatal conductance (gs ) such as the widely validated and utilized Ball-Berry (BB) model. This coupling provides an effective way of predicting transpiration at multiple scales. However, the designated value of the slope parameter (m) in the BB model impacts transpiration estimates. There is a lack of consensus regarding how m varies among species or plant functional types (PFTs) or in response to growth conditions. Literature values are highly variable, with inter-species and intra-species variations of >100%, and comparisons are made more difficult because of differences in collection techniques. This paper reviews the various methods used to estimate m and highlights how variations in measurement techniques or the data utilized can influence the resultant m. Additionally, this review summarizes the reported responses of m to [CO2 ] and water stress, collates literature values by PFT and compiles nearly three decades of values into a useful compendium.
Collapse
Affiliation(s)
- Grace L Miner
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - William L Bauerle
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dennis D Baldocchi
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
8
|
Ghimire B, Riley WJ, Koven CD, Kattge J, Rogers A, Reich PB, Wright IJ. A global trait-based approach to estimate leaf nitrogen functional allocation from observations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1421-1434. [PMID: 28370740 DOI: 10.1002/eap.1542] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/13/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types (PFTs) is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained "residual" nitrogen pool. Based on our analysis, crops partition the largest fraction of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73%, respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple PFTs, and report substantial differences in nitrogen allocation across different PFTs. The resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.
Collapse
Affiliation(s)
- Bardan Ghimire
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - William J Riley
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Charles D Koven
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jens Kattge
- Max Plank Institute for Biogeochemistry, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, Minnesota, 55455, USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
9
|
Bahar NHA, Ishida FY, Weerasinghe LK, Guerrieri R, O'Sullivan OS, Bloomfield KJ, Asner GP, Martin RE, Lloyd J, Malhi Y, Phillips OL, Meir P, Salinas N, Cosio EG, Domingues TF, Quesada CA, Sinca F, Escudero Vega A, Zuloaga Ccorimanya PP, Del Aguila-Pasquel J, Quispe Huaypar K, Cuba Torres I, Butrón Loayza R, Pelaez Tapia Y, Huaman Ovalle J, Long BM, Evans JR, Atkin OK. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. THE NEW PHYTOLOGIST 2017; 214:1002-1018. [PMID: 27389684 DOI: 10.1111/nph.14079] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/23/2016] [Indexed: 05/24/2023]
Abstract
We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax ), and the maximum rate of electron transport (Jmax )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma , Na and Pa , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests.
Collapse
Affiliation(s)
- Nur H A Bahar
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - F Yoko Ishida
- Centre for Tropical Environmental and Sustainability Science, College of Marine and Environmental Sciences, James Cook University, Cairns, Qld, Australia
| | - Lasantha K Weerasinghe
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rossella Guerrieri
- Centre for Ecological Research and Forestry Applications (CREAF), Universidad Autonoma de Barcelona, Edificio C, 08290, Cerdanyola, Barcelona Spain
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| | - Odhran S O'Sullivan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Keith J Bloomfield
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Gregory P Asner
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Roberta E Martin
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Jon Lloyd
- Centre for Tropical Environmental and Sustainability Science, College of Marine and Environmental Sciences, James Cook University, Cairns, Qld, Australia
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| | - Oliver L Phillips
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS9 2JT, UK
| | - Patrick Meir
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
- Seccion Quimica, Pontificia Universidad Católica del Perú, Av Universitaria 1801, San Miguel, Lima, Perú
| | - Eric G Cosio
- Seccion Quimica, Pontificia Universidad Católica del Perú, Av Universitaria 1801, San Miguel, Lima, Perú
| | - Tomas F Domingues
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Sao Paulo, Brazil
| | - Carlos A Quesada
- Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, Brazil
| | - Felipe Sinca
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Alberto Escudero Vega
- Seccion Quimica, Pontificia Universidad Católica del Perú, Av Universitaria 1801, San Miguel, Lima, Perú
| | - Paola P Zuloaga Ccorimanya
- Escuela Profesional de Biologia, Universidad Nacional de San Antonio Abad del Cusco, Av de la Cultura, No. 733, Cusco, Perú
| | - Jhon Del Aguila-Pasquel
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Av. José A. Quiñones km. 2.5, Apartado Postal 784, Iquitos, Perú
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Katherine Quispe Huaypar
- Escuela Profesional de Biologia, Universidad Nacional de San Antonio Abad del Cusco, Av de la Cultura, No. 733, Cusco, Perú
| | - Israel Cuba Torres
- Escuela Profesional de Biologia, Universidad Nacional de San Antonio Abad del Cusco, Av de la Cultura, No. 733, Cusco, Perú
| | - Rosalbina Butrón Loayza
- Museo de Historia Natural, Universidad Nacional de San Antonio Abad del Cusco, Av de la Cultura, No. 733, Cusco, Perú
| | - Yulina Pelaez Tapia
- Escuela Profesional de Biologia, Universidad Nacional de San Antonio Abad del Cusco, Av de la Cultura, No. 733, Cusco, Perú
| | - Judit Huaman Ovalle
- Escuela Profesional de Biologia, Universidad Nacional de San Antonio Abad del Cusco, Av de la Cultura, No. 733, Cusco, Perú
| | - Benedict M Long
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
10
|
Nagai S, Ichie T, Yoneyama A, Kobayashi H, Inoue T, Ishii R, Suzuki R, Itioka T. Usability of time-lapse digital camera images to detect characteristics of tree phenology in a tropical rainforest. ECOL INFORM 2016. [DOI: 10.1016/j.ecoinf.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production. Oecologia 2015; 180:601-18. [DOI: 10.1007/s00442-015-3481-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/10/2015] [Indexed: 11/26/2022]
|
12
|
Kumagai T, Mudd RG, Miyazawa Y, Liu W, Giambelluca TW, Kobayashi N, Lim TK, Jomura M, Matsumoto K, Huang M, Chen Q, Ziegler A, Yin S. Simulation of canopy CO2/H2O fluxes for a rubber (Hevea brasiliensis) plantation in central Cambodia: The effect of the regular spacing of planted trees. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2013.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Katayama A, Kume T, Komatsu H, Saitoh TM, Ohashi M, Nakagawa M, Suzuki M, Otsuki K, Kumagai T. Carbon allocation in a Bornean tropical rainforest without dry seasons. JOURNAL OF PLANT RESEARCH 2013; 126:505-515. [PMID: 23283581 DOI: 10.1007/s10265-012-0544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.
Collapse
Affiliation(s)
- Ayumi Katayama
- Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka, 811-2415, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumagai T, Kume T. Influences of diurnal rainfall cycle on CO2 exchange over Bornean tropical rainforests. Ecol Modell 2012. [DOI: 10.1016/j.ecolmodel.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Kosugi Y, Takanashi S, Yokoyama N, Philip E, Kamakura M. Vertical variation in leaf gas exchange parameters for a Southeast Asian tropical rainforest in Peninsular Malaysia. JOURNAL OF PLANT RESEARCH 2012; 125:735-748. [PMID: 22644315 DOI: 10.1007/s10265-012-0495-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Vertical variation in leaf gas exchange characteristics of trees grown in a lowland dipterocarp forest in Peninsular Malaysia was investigated. Maximum net photosynthetic rate, stomatal conductance, and electron transport rate of leaves at the upper canopy, lower canopy, and forest floor were studied in situ with saturated condition photosynthetic photon flux density. The dark respiration rate of leaves at the various heights was also studied. Relationships among gas exchange characteristics, and also with nitrogen content per unit leaf area and leaf dry matter per area were clearly detected, forming general equations representing the vertical profile of several important parameters related to gas exchange. Numerical analysis revealed that the vertical distribution of gas exchange parameters was well determined showing both larger carbon gain for the whole canopy and at the same time positive carbon gain for the leaves of the lowest layer. For correct estimation of gas exchange at both leaf and canopy scales using multi-layer models, it is essential to consider the vertical distribution of gas exchange parameters with proper scaling coefficients.
Collapse
Affiliation(s)
- Yoshiko Kosugi
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | | | | | | | | |
Collapse
|
16
|
Kumagai T, Porporato A. Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? PLANT, CELL & ENVIRONMENT 2012; 35:61-71. [PMID: 21933196 DOI: 10.1111/j.1365-3040.2011.02428.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although Bornean tropical rainforests are among the moistest biomes in the world, they sporadically experience periods of water stress. The observations indicate that these ecosystems tend to have little regulation of water use, despite episodes of relatively severe drought. This water-use behaviour is often referred to as anisohydric behaviour, as opposed to isohydric plants that regulate stomatal movement to prevent hydraulic failure. Although it is generally thought that anisohydric behaviour is an adaptation to more drought-prone habitats, we show that anisohydric plants may also be more favoured than isohydric plants under very moist environments where there is little risk of hydraulic failure. To explore this subject, we examined the advantages of isohydric and anisohydric species as a function of the hydroclimatic environment using a stochastic model of soil moisture and carbon assimilation dynamics parameterized by field observations. The results showed that under very moist conditions, anisohydric species tend to have higher productivity than isohydric plants, despite the fact that the two plant types show almost the same drought-induced mortality. As precipitation decreases, the mortality of anisohydric plants drastically increases whereas that of isohydric plants remains relatively constant and low; in these conditions, isohydric plants surpass anisohydric plants in their productivity.
Collapse
Affiliation(s)
- Tomo'omi Kumagai
- Hydrospheric Atmospheric Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | |
Collapse
|
17
|
Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 2011; 168:23-34. [PMID: 21833645 DOI: 10.1007/s00442-011-2068-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
Few data are available describing the photosynthetic parameters of the leaves of tropical montane cloud forests (TMCF). Here, we present a study of photosynthetic leaf traits (V(cmax) and J(max)), foliar dark respiration (R(d)), foliar nitrogen (N) and phosphorus (P), and leaf mass per area (LMA) throughout the canopy for five different TMCF species at 3025 m a.s.l. in Andean Peru. All leaf traits showed a significant relationship with canopy height when expressed on an area basis, and V(cmax-area) and J(max-area) almost halved when descending through the TMCF canopy. When corrected to a common temperature, average V(cmax) and J(max) on a leaf area basis were similar to lowland tropical values, but lower when expressed on a mass basis, because of the higher TMCF LMA values. By contrast, R(d) on an area basis was higher than found in tropical lowland forests at a common temperature, and similar to lowland forests on a mass basis. The TMCF J(max)-V(cmax) relationship was steeper than in other tropical biomes, and we propose that this can be explained by either the light conditions or the relatively low VPD in the studied TMCF. Furthermore, V(cmax) had a significant-though relatively weak and shallow-relationship with N on an area basis, but not with P, which is consistent with the general hypothesis that TMCFs are N rather than P limited. Finally, the observed V(cmax)-N relationship (i.e., maximum photosynthetic nitrogen use efficiency) was distinctly different from those in tropical and temperate regions, probably because the TMCF leaves compensate for reduced Rubisco activity in cool environments.
Collapse
|
18
|
Xue BL, Kumagai T, Iida S, Nakai T, Matsumoto K, Komatsu H, Otsuki K, Ohta T. Influences of canopy structure and physiological traits on flux partitioning between understory and overstory in an eastern Siberian boreal larch forest. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
|
20
|
Kosugi Y, Takanashi S, Matsuo N, Nik AR. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia. TREE PHYSIOLOGY 2009; 29:505-515. [PMID: 19203974 DOI: 10.1093/treephys/tpn041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We observed diurnal and seasonal patterns of leaf-scale gas exchange within the crown of a Dipterocarpus sublamellatus Foxw. tree growing in a lowland dipterocarp forest at Pasoh, Peninsular Malaysia. Observations were carried out nine times over 6 years, from September 2002 to December 2007. Observation periods included both wet and mild-dry periods, and natural and saturated photosynthetic photon flux density (PPFD) light conditions. In situ measurements of the diurnal change in net photosynthetic rate and in stomatal conductance were carried out on canopy leaves of a 40-m-tall D. sublamellatus tree, which was accessed from a canopy corridor. A diurnal change in electron transport rate was observed under saturated PPFD conditions. The maximum net assimilation rate was approximately 10 micromol m(-2) s(-1). There was a clear inhibition of the net assimilation rate coupled with stomatal closure after late morning and this inhibition occurred year-round. Although the electron transport rate decreased alongside this inhibition, it sometimes followed on. Numerical analysis showed that the main factor in the inhibition of the net assimilation rate was patchy bimodal stomatal closure, which occurred in both mild-dry and wet periods. The midday depression occurred year-round, though there are fluctuations in soil moisture during the mild-dry and wet periods. The magnitude of the inhibition was not related to soil water content but was related to vapor pressure deficit (VPD): that is, whether the days were sunny and hot or cloudy and cool. On cloudy, cool days in the wet period, the net photosynthesis was only moderately inhibited, but it still decreased in the afternoon and was coupled with patchy stomatal closure, even in quite moderate VPD, leaf temperature and PPFD conditions. Our results suggest that patchy stomatal closure signaled by the increase in VPD, in transpiration and by circadian rhythms, was the key factor in constraining midday leaf gas exchange of the D. sublamellatus canopy leaves.
Collapse
Affiliation(s)
- Yoshiko Kosugi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
21
|
Effects of Coniferous Plantation Thinning on Annual Interception Evaporation:. ACTA ACUST UNITED AC 2008. [DOI: 10.4005/jjfs.91.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|