1
|
Steinbrecht W, Kubistin D, Plass‐Dülmer C, Davies J, Tarasick DW, von der Gathen P, Deckelmann H, Jepsen N, Kivi R, Lyall N, Palm M, Notholt J, Kois B, Oelsner P, Allaart M, Piters A, Gill M, Van Malderen R, Delcloo AW, Sussmann R, Mahieu E, Servais C, Romanens G, Stübi R, Ancellet G, Godin‐Beekmann S, Yamanouchi S, Strong K, Johnson B, Cullis P, Petropavlovskikh I, Hannigan JW, Hernandez J, Diaz Rodriguez A, Nakano T, Chouza F, Leblanc T, Torres C, Garcia O, Röhling AN, Schneider M, Blumenstock T, Tully M, Paton‐Walsh C, Jones N, Querel R, Strahan S, Stauffer RM, Thompson AM, Inness A, Engelen R, Chang K, Cooper OR. COVID-19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2020GL091987. [PMID: 33785974 PMCID: PMC7995013 DOI: 10.1029/2020gl091987] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 05/21/2023]
Abstract
Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000-2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any previous year since at least 2000. Atmospheric composition analyses from the Copernicus Atmosphere Monitoring Service and simulations from the NASA GMI model indicate that the large 2020 springtime ozone depletion in the Arctic stratosphere contributed less than one-quarter of the observed tropospheric anomaly. The observed anomaly is consistent with recent chemistry-climate model simulations, which assume emissions reductions similar to those caused by the COVID-19 crisis. COVID-19 related emissions reductions appear to be the major cause for the observed reduced free tropospheric ozone in 2020.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter von der Gathen
- Alfred Wegener InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungPotsdamGermany
| | - Holger Deckelmann
- Alfred Wegener InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungPotsdamGermany
| | - Nis Jepsen
- Danish Meteorological InstituteCopenhagenDenmark
| | - Rigel Kivi
- Finnish Meteorological InstituteSodankyläFinland
| | | | | | | | - Bogumil Kois
- Institute of Meteorology and Water ManagementLegionowoPoland
| | | | - Marc Allaart
- Royal Netherlands Meteorological InstituteDeBiltThe Netherlands
| | - Ankie Piters
- Royal Netherlands Meteorological InstituteDeBiltThe Netherlands
| | | | | | | | - Ralf Sussmann
- Karlsruhe Institute of TechnologyIMK‐IFUGarmisch‐PartenkirchenGermany
| | - Emmanuel Mahieu
- Institute of Astrophysics and GeophysicsUniversity of LiègeLiègeBelgium
| | - Christian Servais
- Institute of Astrophysics and GeophysicsUniversity of LiègeLiègeBelgium
| | - Gonzague Romanens
- Federal Office of Meteorology and ClimatologyMeteoSwissPayerneSwitzerland
| | - Rene Stübi
- Federal Office of Meteorology and ClimatologyMeteoSwissPayerneSwitzerland
| | | | | | | | | | | | - Patrick Cullis
- NOAA ESRL Global Monitoring LaboratoryBoulderCOUSA
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
| | - Irina Petropavlovskikh
- NOAA ESRL Global Monitoring LaboratoryBoulderCOUSA
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
| | | | | | | | | | - Fernando Chouza
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyTable Mountain FacilityWrightwoodCAUSA
| | - Thierry Leblanc
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyTable Mountain FacilityWrightwoodCAUSA
| | | | | | | | | | | | | | - Clare Paton‐Walsh
- Centre for Atmospheric ChemistryUniversity of WollongongWollongongAustralia
| | - Nicholas Jones
- Centre for Atmospheric ChemistryUniversity of WollongongWollongongAustralia
| | - Richard Querel
- National Institute of Water and Atmospheric ResearchLauderNew Zealand
| | - Susan Strahan
- NASA Goddard Space Flight CenterEarth Sciences DivisionGreenbeltMDUSA
- Universities Space Research AssociationColumbiaMDUSA
| | - Ryan M. Stauffer
- NASA Goddard Space Flight CenterEarth Sciences DivisionGreenbeltMDUSA
- Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkMDUSA
| | - Anne M. Thompson
- NASA Goddard Space Flight CenterEarth Sciences DivisionGreenbeltMDUSA
| | - Antje Inness
- European Centre for Medium‐Range Weather ForecastsReadingUK
| | | | - Kai‐Lan Chang
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Owen R. Cooper
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| |
Collapse
|
2
|
Sepúlveda E, Cordero RR, Damiani A, Feron S, Pizarro J, Zamorano F, Kivi R, Sánchez R, Yela M, Jumelet J, Godoy A, Carrasco J, Crespo JS, Seckmeyer G, Jorquera JA, Carrera JM, Valdevenito B, Cabrera S, Redondas A, Rowe PM. Evaluation of Antarctic Ozone Profiles derived from OMPS-LP by using Balloon-borne Ozonesondes. Sci Rep 2021; 11:4288. [PMID: 33619291 PMCID: PMC7900121 DOI: 10.1038/s41598-021-81954-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Predicting radiative forcing due to Antarctic stratospheric ozone recovery requires detecting changes in the ozone vertical distribution. In this endeavor, the Limb Profiler of the Ozone Mapping and Profiler Suite (OMPS-LP), aboard the Suomi NPP satellite, has played a key role providing ozone profiles over Antarctica since 2011. Here, we compare ozone profiles derived from OMPS-LP data (version 2.5 algorithm) with balloon-borne ozonesondes launched from 8 Antarctic stations over the period 2012-2020. Comparisons focus on the layer from 12.5 to 27.5 km and include ozone profiles retrieved during the Sudden Stratospheric Warming (SSW) event registered in Spring 2019. We found that, over the period December-January-February-March, the root mean square error (RMSE) tends to be larger (about 20%) in the lower stratosphere (12.5-17.5 km) and smaller (about 10%) within higher layers (17.5-27.5 km). During the ozone hole season (September-October-November), RMSE values rise up to 40% within the layer from 12.5 to 22 km. Nevertheless, relative to balloon-borne measurements, the mean bias error of OMPS-derived Antarctic ozone profiles is generally lower than 0.3 ppmv, regardless of the season.
Collapse
Affiliation(s)
- Edgardo Sepúlveda
- Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
| | - Raul R Cordero
- Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile.
| | | | - Sarah Feron
- Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile.
- Department of Earth System Science, Stanford University, Stanford, CA, 94305-2210, USA.
| | - Jaime Pizarro
- Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
| | | | - Rigel Kivi
- Space and Earth Observation Centre, Finnish Meteorological Institute (FMI), Sodankylä, Finland
| | | | - Margarita Yela
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Julien Jumelet
- LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
| | | | | | | | - Gunther Seckmeyer
- Leibniz Universität Hannover, Herrenhauser Strasse 2, Hannover, Germany
| | - Jose A Jorquera
- Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
| | - Juan M Carrera
- Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
| | | | - Sergio Cabrera
- Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Alberto Redondas
- Izaña Atmospheric Research Center (IARC), State Meteorological Agency (AEMET), Santa Cruz de Tenerife, Spain
| | - Penny M Rowe
- Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
- NorthWest Research Associates, Redmond, WA, USA
| |
Collapse
|
3
|
Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While the stratospheric ozone protects the biosphere against ultraviolet (UV) radiation, tropospheric ozone acts like a greenhouse gas and an indicator of anthropogenic pollution. In this paper, we combined ground-based and satellite ozone observations over Irene site (25.90° S, 28.22° E), one of the most ancient ozone-observing stations in the southern tropics. The dataset is made of daily total columns and weekly profiles of ozone collected over 20 years, from 1998 to 2017. In order to fill in some missing data and split the total column of ozone into a tropospheric and a stratospheric column, we used satellite observations from TOMS (Total Ozone Mapping Spectrometer), OMI (Ozone Monitoring Instrument), and MLS (Microwave Limb Sounder) experiments. The tropospheric column is derived by integrating ozone profiles from an ozonesonde experiment, while the stratospheric column is obtained by subtracting the tropospheric column from the total column (recorded by the Dobson spectrometer), and by assuming that the mesospheric contribution is negligible. Each of the obtained ozone time series was then analyzed by applying the method of wavelet transform, which permitted the determination of the main forcings that contribute to each ozone time series. We then applied the multivariate Trend-Run model and the Mann–Kendall test for trend analysis. Despite the different analytical approaches, the obtained results are broadly similar and consistent. They showed a decrease in the stratospheric column (−0.56% and −1.7% per decade, respectively, for Trend-Run and Mann–Kendall) and an increase in the tropospheric column (+2.37% and +3.6%, per decade, respectively, for Trend-Run and Mann–Kendall). Moreover, the results presented here indicated that the slowing down of the total ozone decline is somewhat due to the contribution of the tropospheric ozone concentration.
Collapse
|
4
|
Variations in Ozone Concentration over the Mid-Latitude Region Revealed by Ozonesonde Observations in Pohang, South Korea. ATMOSPHERE 2020. [DOI: 10.3390/atmos11070746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ozone absorbs harmful UV rays at high elevations but acts as a pollutant gas in the lower atmosphere. It is necessary to monitor both the vertical profile and the total column ozone. In this study, variations in the ozone concentration of Pohang were divided into three vertical layers: the stratospheric layer (STL), the second ozone peak layer (SOPL), and the tropospheric layer (TRL). Our results indicated that the ozone concentration in the STL, SOPL, TRL, and total column ozone increased by 0.45%, 2.64%, 5.26%, and 1.07% decade−1, respectively. The increase in the SOPL during springtime indicates that stratosphere–troposphere exchange is accelerating, while the increase during summertime appears to have been influenced by the lower layers. The growth of tropospheric ozone concentration is the result of both increased ozone precursors from industrialization in East Asia and the influx of stratospheric ozone. Our results reaffirmed the trend of ozone concentration in mid-latitudes of the northern hemisphere from vertical profiles in Pohang and, in particular, suggests that the recent changes of ozone in this region need to be carefully monitored.
Collapse
|
5
|
Wang H, Chai S, Tang X, Zhou B, Bian J, Vömel H, Yu K, Wang W. Verification of satellite ozone/temperature profile products and ozone effective height/temperature over Kunming, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:35-47. [PMID: 30665130 DOI: 10.1016/j.scitotenv.2019.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Ozonesonde data from November 2013 to April 2015 over Kunming, China are used to verify ozone and temperature profile retrievals from two spaceborne instruments, the version 4.2 product from the Microwave Limb Sounder (MLS) on the NASA Aura satellite and the version 6.0 product from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite. We calculated and compared the ozone effective height Heff and effective temperature Teff, which are two important parameters in ground-based total ozone retrieval through the use of various profile datasets. This is used to verify the accuracy of the operative values (Heff(0) = 23 km, Teff(0) = -46.3 °C (or -45 °C)) from the World Meteorological Organization. The results show that the deviation of MLS and AIRS ozone profiles from ozone sounding data has significant oscillation and scatter in the upper troposphere and lower stratosphere. The average difference of MLS at 82.5 hPa is (80.5 ± 65.1) %, and that of AIRS at 70 and 100 hPa are (105.6 ± 74.9) % and (107.0 ± 67.8) %, respectively. The two satellite temperature profiles have differences within ±3 °C and can effectively describe the vertical distribution and variation of temperature. When calculating the Heff and Teff, upper stratospheric data missing from the sounding data must be filled in by the satellite profile data; otherwise the calculated results will show large errors of 3.2 km and 3.3 °C. The Heff and Teff at Kunming are respectively 24.36 to 25.51 km and -48.3 to -43.6 °C. The operational Heff and Teff used at Kunming ozone observation station clearly do not conform to the actual situation and must be corrected.
Collapse
Affiliation(s)
- Haoyue Wang
- Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China; Department of Atmosphere Science, Yunnan University, Kunming, China
| | - Suying Chai
- Department of Atmosphere Science, Yunnan University, Kunming, China; Yunan Institute of Environmental Science, Kunming, China
| | - Xiao Tang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Beijing, China
| | - Bin Zhou
- Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai, China.
| | - Jianchun Bian
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Holger Vömel
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Ke Yu
- Meteorological Information Center of Yunnan Province, Kunming, China
| | - Weiguo Wang
- Department of Atmosphere Science, Yunnan University, Kunming, China.
| |
Collapse
|
6
|
Tarasick DW, Carey-Smith TK, Hocking WK, Moeini O, He H, Liu J, Osman M, Thompson AM, Johnson B, Oltmans SJ, Merrill JT. Quantifying stratosphere-troposphere transport of ozone using balloon-borne ozonesondes, radar windprofilers and trajectory models. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2019; 198:496-509. [PMID: 32457561 PMCID: PMC7250237 DOI: 10.1016/j.atmosenv.2018.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In a series of 10-day campaigns in Ontario and Quebec, Canada, between 2005 and 2007, ozonesondes were launched twice daily in conjunction with continuous high-resolution wind-profiling radar measurements. Windprofilers can measure rapid changes in the height of the tropopause, and in some cases follow stratospheric intrusions. Observed stratospheric intrusions were studied with the aid of a Lagrangian particle dispersion model and the Canadian operational weather forecast system. Definite stratosphere-troposphere transport (STT) events occurred approximately every 2-3 days during the spring and summer campaigns, whereas during autumn and winter, the frequency was reduced to every 4-5 days. Although most events reached the lower troposphere, only three events appear to have significantly contributed to ozone amounts in the surface boundary layer. Detailed calculations find that STT, while highly variable, is responsible for an average, over the seven campaigns, of 3.1% of boundary layer ozone (1.2 ppb), but 13% (5.4 ppb) in the lower troposphere and 34% (22 ppb) in the middle and upper troposphere, where these layers are defined as 0-1 km, 1-3 km, and 3-8 km respectively. Estimates based on counting laminae in ozonesonde profiles, with judicious choices of ozone and relative humidity thresholds, compare moderately well, on average, with these values. The lamina detection algorithm is then applied to a large dataset from four summer ozonesonde campaigns at 18 North American sites between 2006 and 2011. The results show some site-to-site and year-to-year variability, but stratospheric ozone contributions average 4.6% (boundary layer), 15% (lower troposphere) and 26% (middle/upper troposphere). Calculations were also performed based on the TOST global 3D trajectory-mapped ozone data product. Maps of STT in the same three layers of the troposphere suggest that the STT ozone flux is greater over the North American continent than Europe, and much greater in winter and spring than in summer or fall. When averaged over all seasons, magnitudes over North America show similar ratios between levels to the previous calculations, but are overall 3-4 times smaller. This may be because of limitations (trajectory length and vertical resolution) to the current TOST-based calculation.
Collapse
Affiliation(s)
- D W Tarasick
- Air Quality Research Division, Environment Canada, Downsview, ON, Canada M3H 5T4
| | - T K Carey-Smith
- National Institute of Water and Atmospheric Research Ltd., Private Bag 14901, Kilbirnie, Wellington, New Zealand
| | - W K Hocking
- Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 3K7
| | - O Moeini
- Air Quality Research Division, Environment Canada, Downsview, ON, Canada M3H 5T4
| | - H He
- Air Quality Research Division, Environment Canada, Downsview, ON, Canada M3H 5T4
| | - J Liu
- Department of Geography and Planning, University of Toronto, Canada, and School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - M Osman
- Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, OK, USA
| | - A M Thompson
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - B Johnson
- Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
| | - S J Oltmans
- Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
| | - J T Merrill
- Graduate School of Oceanography, University of Rhode Island, RI, USA
| |
Collapse
|
7
|
Thompson AM, Smit HGJ, Witte JC, Stauffer RM, Johnson BJ, Morris G, von der Gathen P, Van Malderen R, Davies J, Piters A, Allaart M, Posny F, Kivi R, Cullis P, Anh NTH, Corrales E, Machinini T, da Silva FR, Paiman G, Thiong’o K, Zainal Z, Brothers GB, Wolff KR, Nakano T, Stübi R, Romanens G, Coetzee GJR, Diaz JA, Mitro S, ‘bt Mohamad M, Ogino SY. Ozonesonde Quality Assurance: The JOSIE-SHADOZ (2017) Experience. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2019; 100:155-171. [PMID: 33005057 PMCID: PMC7526588 DOI: 10.1175/bams-d-17-0311.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ozonesonde is a small balloon-borne instrument that is attached to a standard radiosonde to measure profiles of ozone from the surface to 35 km with ~100-m vertical resolution. Ozonesonde data constitute a mainstay of satellite calibration and are used for climatologies and analysis of trends, especially in the lower stratosphere where satellites are most uncertain. The electrochemical-concentration cell (ECC) ozonesonde has been deployed at ~100 stations worldwide since the 1960s, with changes over time in manufacture and procedures, including details of the cell chemical solution and data processing. As a consequence, there are biases among different stations and discontinuities in profile time-series from individual site records. For 22 years the Jülich [Germany] Ozone Sonde Intercomparison Experiment (JOSIE) has periodically tested ozonesondes in a simulation chamber designated the World Calibration Centre for Ozonesondes (WCCOS) by WMO. In October-November 2017 a JOSIE campaign evaluated the sondes and procedures used in SHADOZ (Southern Hemisphere Additional Ozonesondes), a 14-station sonde network operating in the tropics and subtropics. A distinctive feature of the 2017 JOSIE was that the tests were conducted by operators from eight SHADOZ stations. Experimental protocols for the SHADOZ sonde configurations, which represent most of those in use today, are described, along with preliminary results. SHADOZ stations that follow WMO-recommended protocols record total ozone within 3% of the JOSIE reference instrument. These results and prior JOSIEs demonstrate that regular testing is essential to maintain best practices in ozonesonde operations and to ensure high-quality data for the satellite and ozone assessment communities.
Collapse
Affiliation(s)
| | - Herman G. J. Smit
- Institute of Chemistry and Dynamics of the Geosphere: Troposphere, Research Centre Jülich, Jülich, Germany
| | - Jacquelyn C Witte
- NASA Goddard Space Flight Center, Greenbelt, MD
- Science Systems and Applications Inc., Lanham, MD
| | - Ryan M. Stauffer
- NASA Goddard Space Flight Center, Greenbelt, MD
- Universities Space Research Association, Columbia, MD
| | - Bryan J. Johnson
- NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO
| | - Gary Morris
- St. Edwards University, Natural Sciences, Austin, TX
| | | | | | - Jonathan Davies
- Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Ankie Piters
- Royal Dutch Meteorological Institute, de Bilt, The Netherlands
| | - Marc Allaart
- Royal Dutch Meteorological Institute, de Bilt, The Netherlands
| | - Françoise Posny
- Laboratoire de l’Atmosphère et des Cyclones, UMR8105 (Université, Météo- France, CNRS), La Réunion, France
| | - Rigel Kivi
- Finnish Meteorological Institute, Sodankylä, Finland
| | - Patrick Cullis
- NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO
- Cooperative Institute for Research in Environmental Sciences, Boulder, CO
| | | | | | | | - Francisco R. da Silva
- Laboratory of Environmental and Tropical Variables, Brazilian Institute of Space Research, Natal, Brazil
| | - George Paiman
- Meteorological Service of Suriname, Paramaribo, Surinam
| | | | - Zamuna Zainal
- Malaysian Meteorological Department, Atmospheric Science and Cloud Seeding Division, Petaling Jaya, Selangor, Malaysia
| | | | - Katherine R. Wolff
- Science Systems and Applications Inc., Lanham, MD
- NASA Wallops Flight Facility, Wallops Is., VA
| | | | | | | | | | - Jorge A. Diaz
- University of Costa Rica, San José, San Pedro, Costa Rica
| | - Sukarni Mitro
- Meteorological Service of Suriname, Paramaribo, Surinam
| | - Maznorizan ‘bt Mohamad
- Malaysian Meteorological Department, Atmospheric Science and Cloud Seeding Division, Petaling Jaya, Selangor, Malaysia
| | - Shin-Ya Ogino
- Japan Agency for Marine-Earth Science and Technology, Department of Coupled Ocean-Atmosphere-Land Processes Research, Yokosuka, Japan
| |
Collapse
|
8
|
Witte JC, Thompson AM, Smit HGJ, Vömel H, Posny F, Stübi R. First Reprocessing of Southern Hemisphere ADditional OZonesondes (SHADOZ) Profile Records: 3. Uncertainty in Ozone Profile and Total Column. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:3243-3268. [PMID: 33154879 PMCID: PMC7641110 DOI: 10.1002/2017jd027791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/16/2018] [Indexed: 05/27/2023]
Abstract
Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow-rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15±3km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominate the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow-rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow [2012] 1-σ ozone mixing ratios. Overall, ΔTCO are within ±15 DU, representing ~5-6% of the TCO. TOMS and OMI satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998-2004/09) and OMI (2004/10-2016) TCO on the order of 10DU that accounts for the significant 16DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only ~4DU.
Collapse
Affiliation(s)
- Jacquelyn C Witte
- Science Systems and Applications Inc., Lanham, Maryland, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | - Herman G J Smit
- Institute of Chemistry and Dynamics of the Geosphere: Troposphere, Research Centre Juelich, Juelich, Germany
| | - Holger Vömel
- National Center for Atmospheric Research, Earth Observing Laboratory, Boulder, CO, USA
| | - Françoise Posny
- Laboratoire de l'Atmosphère et des Cyclones, UMR8105 (Université, Météo-France, CNRS), La Réunion, France
| | - Rene Stübi
- Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
| |
Collapse
|
9
|
Kuang S, Newchurch MJ, Thompson AM, Stauffer RM, Johnson BJ, Wang L. Ozone Variability and Anomalies Observed during SENEX and SEAC 4RS Campaigns in 2013. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:11227-11241. [PMID: 30057866 PMCID: PMC6058320 DOI: 10.1002/2017jd027139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper-tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anti-correlated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to mid-troposphere are within 3.0-4.1 ppbv·K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52±33% (35±24 ppbv) with a mean minimum relative humidity of 2.3±1.7%.
Collapse
Affiliation(s)
- Shi Kuang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Michael J Newchurch
- Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Anne M Thompson
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Ryan M Stauffer
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Bryan J Johnson
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO 80305, USA
| | - Lihua Wang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| |
Collapse
|
10
|
Wang L, Newchurch MJ, Alvarez RJ, Berkoff TA, Brown SS, Carrion W, De Young RJ, Johnson BJ, Ganoe R, Gronoff G, Kirgis G, Kuang S, Langford AO, Leblanc T, McDuffie EE, McGee TJ, Pliutau D, Senff CJ, Sullivan JT, Sumnicht G, Twigg LW, Weinheimer AJ. Quantifying TOLNet Ozone Lidar Accuracy during the 2014 DISCOVER-AQ and FRAPPÉ Campaigns. ATMOSPHERIC MEASUREMENT TECHNIQUES 2017; 10:3865-3876. [PMID: 32742525 PMCID: PMC7394036 DOI: 10.5194/amt-10-3865-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of cross-instrument calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the "Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ)mission and the "Front Range Air Pollution and Photochemistry Éxperiment" (FRAPPÉ)to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. In terms of the range-resolving capability, the TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15% within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5% for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate very good measurement accuracy for these three TOLNet lidars, making them suitable for use in air quality, satellite validation, and ozone modeling efforts.
Collapse
Affiliation(s)
- Lihua Wang
- University of Alabama in Huntsville, Huntsville, Alabama, USA
| | | | - Raul J. Alvarez
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
| | | | - Steven S. Brown
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
| | - William Carrion
- NASA Langley Research Center, Hampton, Virginia, USA
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | | | | | - Rene Ganoe
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | - Guillaume Gronoff
- NASA Langley Research Center, Hampton, Virginia, USA
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | - Guillaume Kirgis
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Shi Kuang
- University of Alabama in Huntsville, Huntsville, Alabama, USA
| | | | - Thierry Leblanc
- Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, California, USA
| | - Erin E. McDuffie
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | | | - Denis Pliutau
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | - Christoph J. Senff
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | | | - Grant Sumnicht
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | | | | |
Collapse
|
11
|
Comparison of Electrochemical Concentration Cell Ozonesonde and Microwave Limb Sounder Satellite Remote Sensing Ozone Profiles for the Center of the South Asian High. REMOTE SENSING 2017. [DOI: 10.3390/rs9101012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Kuttippurath J, Nair PJ. The signs of Antarctic ozone hole recovery. Sci Rep 2017; 7:585. [PMID: 28373709 PMCID: PMC5429648 DOI: 10.1038/s41598-017-00722-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Absorption of solar radiation by stratospheric ozone affects atmospheric dynamics and chemistry, and sustains life on Earth by preventing harmful radiation from reaching the surface. Significant ozone losses due to increases in the abundances of ozone depleting substances (ODSs) were first observed in Antarctica in the 1980s. Losses deepened in following years but became nearly flat by around 2000, reflecting changes in global ODS emissions. Here we show robust evidence that Antarctic ozone has started to recover in both spring and summer, with a recovery signal identified in springtime ozone profile and total column measurements at 99% confidence for the first time. Continuing recovery is expected to impact the future climate of that region. Our results demonstrate that the Montreal Protocol has indeed begun to save the Antarctic ozone layer.
Collapse
Affiliation(s)
- Jayanarayanan Kuttippurath
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. .,LATMOS/CNRS, UPMC University of Paris 06, Paris, France.
| | - Prijitha J Nair
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Centre for Earth Science Studies, Thiruvananthapuram, India
| |
Collapse
|
13
|
Hubert D, Lambert JC, Verhoelst T, Granville J, Keppens A, Baray JL, Cortesi U, Degenstein DA, Froidevaux L, Godin-Beekmann S, Hoppel KW, Kyrölä E, Leblanc T, Lichtenberg G, McElroy CT, Murtagh D, Nakane H, Querel R, Russell JM, Salvador J, Smit HGJ, Stebel K, Steinbrecht W, Strawbridge KB, Stübi R, Swart DPJ, Taha G, Thompson AM, Urban J, van Gijsel JAE, von der Gathen P, Walker KA, Wolfram E, Zawodny JM. Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records. ATMOSPHERIC MEASUREMENT TECHNIQUES 2016; 9:2497-2534. [PMID: 29743958 PMCID: PMC5937289 DOI: 10.5194/amtd-8-6661-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12% and the drifts are at most ±5% decade-1 (or even ±3 % decade-1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
Collapse
Affiliation(s)
- D. Hubert
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels,
Belgium
| | - J.-C. Lambert
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels,
Belgium
| | - T. Verhoelst
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels,
Belgium
| | - J. Granville
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels,
Belgium
| | - A. Keppens
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels,
Belgium
| | - J.-L. Baray
- Laboratoire de l’Atmosphère et des Cyclones
(Université de La Réunion, CNRS, Météo-France),
OSU-Réunion (Université de la Réunion, CNRS), La
Réunion, France
- Laboratoire de Météorologie Physique, Observatoire
de Physique du Globe de Clermont-Ferrand (Université Blaise Pascal, CNRS),
Clermont-Ferrand, France
| | - U. Cortesi
- Istituto di Fisica Applicata “Nello Carrara” del
Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | - D. A. Degenstein
- Institute of Space and Atmospheric Studies, University of
Saskatchewan, Saskatoon, SK, Canada
| | - L. Froidevaux
- Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
| | - S. Godin-Beekmann
- Laboratoire Atmosphère Milieux Observations Spatiales,
Université de Versailles Saint-Quentin en Yvelines, Centre National de la
Recherche Scientifique, Paris, France
| | | | - E. Kyrölä
- Finnish Meteorological Institute, Helsinki, Finland
| | - T. Leblanc
- Jet Propulsion Laboratory, California Institute of Technology,
Wrightwood, CA, USA
| | - G. Lichtenberg
- German Aerospace Center (DLR), Remote Sensing Technology Institute,
Oberpfaffenhofen, Germany
| | | | - D. Murtagh
- Department of Earth and Space Sciences, Chalmers University of
Technology, Göteborg, Sweden
| | - H. Nakane
- Kochi University of Technology, Kochi, Japan
- National Institute for Environmental Studies, Tsukuba, Ibaraki,
Japan
| | - R. Querel
- National Institute of Water and Atmospheric Research, Lauder, New
Zealand
| | - J. M. Russell
- Department of Atmospheric and Planetary Science, Hampton
University, VA, USA
| | - J. Salvador
- CEILAP-UNIDEF (MINDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa
Martelli, Argentina
| | - H. G. J. Smit
- Research Centre Jülich, Institute for Energy and Climate
Research: Troposphere (IEK-8), Jülich, Germany
| | - K. Stebel
- Norwegian Air Research Institute (NILU), Kjeller, Norway
| | - W. Steinbrecht
- Meteorologisches Observatorium, Deutscher Wetterdienst,
Hohenpeissenberg, Germany
| | - K. B. Strawbridge
- Air Quality Processes Research Section, Environment Canada,
Toronto, ON, Canada
| | - R. Stübi
- Payerne Aerological Station, MeteoSwiss, Payerne, Switzerland
| | - D. P. J. Swart
- National Institute for Public Health and the Environment (RIVM),
Bilthoven, the Netherlands
| | - G. Taha
- Universities Space Research Association, Greenbelt, MD, USA
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - J. Urban
- Department of Earth and Space Sciences, Chalmers University of
Technology, Göteborg, Sweden
| | | | - P. von der Gathen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
| | - K. A. Walker
- Department of Physics, University of Toronto, Toronto, ON,
Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON,
Canada
| | - E. Wolfram
- CEILAP-UNIDEF (MINDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa
Martelli, Argentina
| | | |
Collapse
|
14
|
Müller R, Kunz A, Hurst DF, Rolf C, Krämer M, Riese M. The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage. EARTH'S FUTURE 2016; 4:25-32. [PMID: 29264371 PMCID: PMC5734646 DOI: 10.1002/2015ef000321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water vapor is the most important greenhouse gas in the atmosphere although changes in carbon dioxide constitute the "control knob" for surface temperatures. While the latter fact is well recognized, resulting in extensive space-borne and ground-based measurement programs for carbon dioxide as detailed in the studies by Keeling et al. (1996), Kuze et al. (2009), and Liu et al. (2014), the need for an accurate characterization of the long-term changes in upper tropospheric and lower stratospheric (UTLS) water vapor has not yet resulted in sufficiently extensive long-term international measurement programs (although first steps have been taken). Here, we argue for the implementation of a long-term balloon-borne measurement program for UTLS water vapor covering the entire globe that will likely have to be sustained for hundreds of years.
Collapse
Affiliation(s)
- Rolf Müller
- Institute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anne Kunz
- Institute for Atmospheric and Climate Research, ETH Zurich, Zurich, Switzerland
| | - Dale F Hurst
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA
| | - Christian Rolf
- Institute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Martina Krämer
- Institute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Martin Riese
- Institute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
15
|
Ancellet G, Gaudel A, Godin-Beekmann S. Comparison of Long Term Tropospheric Ozone Trends Measured by Lidar and ECC Ozonesondes from 1991 to 2010 in Southern France. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201611920002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Davis SM, Rosenlof KH, Hassler B, Hurst DF, Read WG, Vömel H, Selkirk H, Fujiwara M, Damadeo R. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies. EARTH SYSTEM SCIENCE DATA 2016; 8:461-490. [PMID: 28966693 PMCID: PMC5619261 DOI: 10.5194/essd-8-461-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a "reference" satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at doi:10.7289/V5TD9VBX.
Collapse
Affiliation(s)
- Sean M. Davis
- NOAA Earth Systems Research Laboratory (ESRL), Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA
| | | | - Birgit Hassler
- NOAA Earth Systems Research Laboratory (ESRL), Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA
| | - Dale F. Hurst
- NOAA Earth Systems Research Laboratory (ESRL), Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA
| | - William G. Read
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Holger Vömel
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Henry Selkirk
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | | | | |
Collapse
|
17
|
Reed AJ, Thompson AM, Kollonige DE, Martins DK, Tzortziou MA, Herman JR, Berkoff TA, Abuhassan NK, Cede A. Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011. JOURNAL OF ATMOSPHERIC CHEMISTRY 2015; 72:455-482. [PMID: 26692598 PMCID: PMC4665808 DOI: 10.1007/s10874-013-9254-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/19/2013] [Indexed: 05/22/2023]
Abstract
An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of Deriving Information on Surface COnditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NOx Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.
Collapse
Affiliation(s)
- Andra J. Reed
- Department of Meteorology, The Pennsylvania State University, University Park, PA USA
| | - Anne M. Thompson
- Department of Meteorology, The Pennsylvania State University, University Park, PA USA
| | - Debra E. Kollonige
- Department of Meteorology, The Pennsylvania State University, University Park, PA USA
| | - Douglas K. Martins
- Department of Meteorology, The Pennsylvania State University, University Park, PA USA
| | - Maria A. Tzortziou
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| | - Jay R. Herman
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD USA
| | - Timothy A. Berkoff
- Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, MD USA
| | - Nader K. Abuhassan
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- LuftBlick, Kreith, Austria
| | - Alexander Cede
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- School of Engineering, Morgan State University, Baltimore, MD USA
| |
Collapse
|
18
|
Martins DK, Stauffer RM, Thompson AM, Halliday HS, Kollonige D, Joseph E, Weinheimer AJ. Ozone correlations between mid-tropospheric partial columns and the near-surface at two mid-atlantic sites during the DISCOVER-AQ campaign in July 2011. JOURNAL OF ATMOSPHERIC CHEMISTRY 2015; 72:373-391. [PMID: 26692596 PMCID: PMC4665824 DOI: 10.1007/s10874-013-9259-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/25/2013] [Indexed: 05/22/2023]
Abstract
The current network of ground-based monitors for ozone (O3) is limited due to the spatial heterogeneity of O3 at the surface. Satellite measurements can provide a solution to this limitation, but the lack of sensitivity of satellites to O3 within the boundary layer causes large uncertainties in satellite retrievals at the near-surface. The vertical variability of O3 was investigated using ozonesondes collected as part of NASA's Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign during July 2011 in the Baltimore, MD/Washington D.C. metropolitan area. A subset of the ozonesonde measurements was corrected for a known bias from the electrochemical solution strength using new procedures based on laboratory and field tests. A significant correlation of O3 over the two sites with ozonesonde measurements (Edgewood and Beltsville, MD) was observed between the mid-troposphere (7-10 km) and the near-surface (1-3 km). A linear regression model based on the partial column amounts of O3 within these subregions was developed to calculate the near-surface O3 using mid-tropospheric satellite measurements from the Tropospheric Emission Spectrometer (TES) onboard the Aura spacecraft. The uncertainties of the calculated near-surface O3 using TES mid-tropospheric satellite retrievals and a linear regression model were less than 20 %, which is less than that of the observed variability of O3 at the surface in this region. These results utilize a region of the troposphere to which existing satellites are more sensitive compared to the boundary layer and can provide information of O3 at the near-surface using existing satellite infrastructure and algorithms.
Collapse
Affiliation(s)
- Douglas K. Martins
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802 USA
| | - Ryan M. Stauffer
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802 USA
| | - Anne M. Thompson
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802 USA
| | - Hannah S. Halliday
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802 USA
| | - Debra Kollonige
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802 USA
| | - Everette Joseph
- Department of Physics and Astronomy, Howard University, 2355 6th St. NW, Washington, DC 20059 USA
| | - Andrew J. Weinheimer
- National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 USA
| |
Collapse
|
19
|
Thompson AM, Stauffer RM, Miller SK, Martins DK, Joseph E, Weinheimer AJ, Diskin GS. Ozone profiles in the Baltimore-Washington region (2006-2011): satellite comparisons and DISCOVER-AQ observations. JOURNAL OF ATMOSPHERIC CHEMISTRY 2014; 72:393-422. [PMID: 26692597 PMCID: PMC4665809 DOI: 10.1007/s10874-014-9283-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/11/2014] [Indexed: 05/22/2023]
Abstract
Much progress has been made in creating satellite products for tracking the pollutants ozone and NO2 in the troposphere. Yet, in mid-latitude regions where meteorological interactions with pollutants are complex, accuracy can be difficult to achieve, largely due to persistent layering of some constituents. We characterize the layering of ozone soundings and related species measured from aircraft over two ground sites in suburban Washington, DC (Beltsville, MD, 39.05 N; 76.9 W) and Baltimore (Edgewood, MD, 39.4 N; 76.3 W) during the July 2011 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiment. First, we compare column-ozone amounts from the Beltsville and Edgewood sondes with data from overpassing satellites. Second, processes influencing ozone profile structure are analyzed using Laminar Identification and tracers: sonde water vapor, aircraft CO and NOy. Third, Beltsville ozone profiles and meteorological influences in July 2011 are compared to those from the summers of 2006-2010. Sonde-satellite offsets in total ozone during July 2011 at Edgewood and Beltsville, compared to the Ozone Monitoring Instrument (OMI), were 3 % mean absolute error, not statistically significant. The disagreement between an OMI/Microwave Limb Sounder-based tropospheric ozone column and the sonde averaged 10 % at both sites, with the sonde usually greater than the satellite. Laminar Identification (LID), that distinguishes ozone segments influenced by convective and advective transport, reveals that on days when both stations launched ozonesondes, vertical mixing was stronger at Edgewood. Approximately half the lower free troposphere sonde profiles have very dry laminae, with coincident aircraft spirals displaying low CO (80-110 ppbv), suggesting stratospheric influence. Ozone budgets at Beltsville in July 2011, determined with LID, as well as standard meteorological indicators, resemble those of 4 of the previous 5 summers. The penetration of stratospheric air throughout the troposphere appears to be typical for summer conditions in the Baltimore-Washington region.
Collapse
Affiliation(s)
- Anne M. Thompson
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013 USA
- Present Address: NASA/Goddard Space Flight Center, Code 614, Greenbelt, MD 20771 USA
| | - Ryan M. Stauffer
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013 USA
| | - Sonya K. Miller
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013 USA
| | - Douglas K. Martins
- Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013 USA
| | - Everette Joseph
- Department of Physics and Astronomy, Howard University, 2355 Sixth Street NW, Washington, DC 20059 USA
| | | | - Glenn S. Diskin
- NASA Langley Research Center, MS 401B, Hampton, VA 23681 USA
| |
Collapse
|
20
|
Kuang S, Newchurch MJ, Burris J, Liu X. Ground-based lidar for atmospheric boundary layer ozone measurements. APPLIED OPTICS 2013; 52:3557-3566. [PMID: 23736241 DOI: 10.1364/ao.52.003557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
Collapse
Affiliation(s)
- Shi Kuang
- Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama 35805, USA.
| | | | | | | |
Collapse
|
21
|
Thompson AM, Miller SK, Tilmes S, Kollonige DW, Witte JC, Oltmans SJ, Johnson BJ, Fujiwara M, Schmidlin FJ, Coetzee GJR, Komala N, Maata M, bt Mohamad M, Nguyo J, Mutai C, Ogino SY, Da Silva FR, Leme NMP, Posny F, Scheele R, Selkirk HB, Shiotani M, Stübi R, Levrat G, Calpini B, Thouret V, Tsuruta H, Canossa JV, Vömel H, Yonemura S, Diaz JA, Tan Thanh NT, Thuy Ha HT. Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016911] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Cooper OR, Gao RS, Tarasick D, Leblanc T, Sweeney C. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990-2010. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018261] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Kuang S, Newchurch MJ, Burris J, Wang L, Knupp K, Huang G. Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017695] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Logan JA, Staehelin J, Megretskaia IA, Cammas JP, Thouret V, Claude H, De Backer H, Steinbacher M, Scheel HE, Stübi R, Fröhlich M, Derwent R. Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016952] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Oltmans SJ, Johnson BJ, Harris JM. Springtime boundary layer ozone depletion at Barrow, Alaska: Meteorological influence, year-to-year variation, and long-term change. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016889] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Martins DK, Stauffer RM, Thompson AM, Knepp TN, Pippin M. Surface ozone at a coastal suburban site in 2009 and 2010: Relationships to chemical and meteorological processes. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016828] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Jensen AA, Thompson AM, Schmidlin FJ. Classification of Ascension Island and Natal ozonesondes using self-organizing maps. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Cooper OR, Oltmans SJ, Johnson BJ, Brioude J, Angevine W, Trainer M, Parrish DD, Ryerson TR, Pollack I, Cullis PD, Ives MA, Tarasick DW, Al-Saadi J, Stajner I. Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016095] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- O. R. Cooper
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - S. J. Oltmans
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - B. J. Johnson
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - J. Brioude
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - W. Angevine
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - M. Trainer
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - D. D. Parrish
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - T. R. Ryerson
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - I. Pollack
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - P. D. Cullis
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - M. A. Ives
- Trinidad Head Observatory, ESRL; NOAA; Trinidad Head California USA
| | - D. W. Tarasick
- Experimental Studies Research Division, MSC; Environment Canada; Downsview, Ontario Canada
| | - J. Al-Saadi
- Tropospheric Chemistry Program, Earth Science Division, Science Mission Directorate; NASA; Washington D. C. USA
| | - I. Stajner
- Noblis; Falls Church Virginia USA
- Office of Science and Technology, National Weather Service; NOAA; Silver Spring Maryland USA
| |
Collapse
|
29
|
Manney GL, Santee ML, Rex M, Livesey NJ, Pitts MC, Veefkind P, Nash ER, Wohltmann I, Lehmann R, Froidevaux L, Poole LR, Schoeberl MR, Haffner DP, Davies J, Dorokhov V, Gernandt H, Johnson B, Kivi R, Kyrö E, Larsen N, Levelt PF, Makshtas A, McElroy CT, Nakajima H, Parrondo MC, Tarasick DW, von der Gathen P, Walker KA, Zinoviev NS. Unprecedented Arctic ozone loss in 2011. Nature 2011; 478:469-75. [DOI: 10.1038/nature10556] [Citation(s) in RCA: 472] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/07/2011] [Indexed: 11/09/2022]
|
30
|
Pour-Biazar A, Khan M, Wang L, Park YH, Newchurch M, McNider RT, Liu X, Byun DW, Cameron R. Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Srivastava S, Lal S, Venkataramani S, Gupta S, Acharya YB. Vertical distribution of ozone in the lower troposphere over the Bay of Bengal and the Arabian Sea during ICARB-2006: Effects of continental outflow. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Doughty DC, Thompson AM, Schoeberl MR, Stajner I, Wargan K, Hui WCJ. An intercomparison of tropospheric ozone retrievals derived from two Aura instruments and measurements in western North America in 2006. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Thompson AM, Allen AL, Lee S, Miller SK, Witte JC. Gravity and Rossby wave signatures in the tropical troposphere and lower stratosphere based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998–2007. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2009jd013429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Thompson AM, MacFarlane AM, Morris GA, Yorks JE, Miller SK, Taubman BF, Verver G, Vömel H, Avery MA, Hair JW, Diskin GS, Browell EV, Canossa JV, Kucsera TL, Klich CA, Hlavka DL. Convective and wave signatures in ozone profiles over the equatorial Americas: Views from TC4 2007 and SHADOZ. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012909] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Tarasick DW, Jin JJ, Fioletov VE, Liu G, Thompson AM, Oltmans SJ, Liu J, Sioris CE, Liu X, Cooper OR, Dann T, Thouret V. High-resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Lee S, Shelow DM, Thompson AM, Miller SK. QBO and ENSO variability in temperature and ozone from SHADOZ, 1998–2005. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013320] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Pierce RB, Al-Saadi J, Kittaka C, Schaack T, Lenzen A, Bowman K, Szykman J, Soja A, Ryerson T, Thompson AM, Bhartia P, Morris GA. Impacts of background ozone production on Houston and Dallas, Texas, air quality during the Second Texas Air Quality Study field mission. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011337] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Pan LL, Randel WJ, Gille JC, Hall WD, Nardi B, Massie S, Yudin V, Khosravi R, Konopka P, Tarasick D. Tropospheric intrusions associated with the secondary tropopause. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011374] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Liu G, Tarasick DW, Fioletov VE, Sioris CE, Rochon YJ. Ozone correlation lengths and measurement uncertainties from analysis of historical ozonesonde data in North America and Europe. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010576] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Yang Q, Fu Q, Austin J, Gettelman A, Li F, Vömel H. Observationally derived and general circulation model simulated tropical stratospheric upward mass fluxes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009945] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Rappenglück B, Perna R, Zhong S, Morris GA. An analysis of the vertical structure of the atmosphere and the upper-level meteorology and their impact on surface ozone levels in Houston, Texas. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009745] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Stübi R, Levrat G, Hoegger B, Viatte P, Staehelin J, Schmidlin FJ. In-flight comparison of Brewer-Mast and electrochemical concentration cell ozonesondes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Nardi B, Gille JC, Barnett JJ, Randall CE, Harvey VL, Waterfall A, Reburn WJ, Leblanc T, McGee TJ, Twigg LW, Thompson AM, Godin-Beekmann S, Bernath PF, Bojkov BR, Boone CD, Cavanaugh C, Coffey MT, Craft J, Craig C, Dean V, Eden TD, Francis G, Froidevaux L, Halvorson C, Hannigan JW, Hepplewhite CL, Kinnison DE, Khosravi R, Krinsky C, Lambert A, Lee H, Loh J, Massie ST, McDermid IS, Packman D, Torpy B, Valverde-Canossa J, Walker KA, Whiteman DN, Witte JC, Young G. Initial validation of ozone measurements from the High Resolution Dynamics Limb Sounder. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008837] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Nassar R, Logan JA, Worden HM, Megretskaia IA, Bowman KW, Osterman GB, Thompson AM, Tarasick DW, Austin S, Claude H, Dubey MK, Hocking WK, Johnson BJ, Joseph E, Merrill J, Morris GA, Newchurch M, Oltmans SJ, Posny F, Schmidlin FJ, Vömel H, Whiteman DN, Witte JC. Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008819] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Kroon M, Petropavlovskikh I, Shetter R, Hall S, Ullmann K, Veefkind JP, McPeters RD, Browell EV, Levelt PF. OMI total ozone column validation with Aura-AVE CAFS observations. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008795] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Deshler T, Mercer JL, Smit HGJ, Stubi R, Levrat G, Johnson BJ, Oltmans SJ, Kivi R, Thompson AM, Witte J, Davies J, Schmidlin FJ, Brothers G, Sasaki T. Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strengths: The Balloon Experiment on Standards for Ozonesondes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008975] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Jiang YB, Froidevaux L, Lambert A, Livesey NJ, Read WG, Waters JW, Bojkov B, Leblanc T, McDermid IS, Godin-Beekmann S, Filipiak MJ, Harwood RS, Fuller RA, Daffer WH, Drouin BJ, Cofield RE, Cuddy DT, Jarnot RF, Knosp BW, Perun VS, Schwartz MJ, Snyder WV, Stek PC, Thurstans RP, Wagner PA, Allaart M, Andersen SB, Bodeker G, Calpini B, Claude H, Coetzee G, Davies J, De Backer H, Dier H, Fujiwara M, Johnson B, Kelder H, Leme NP, König-Langlo G, Kyro E, Laneve G, Fook LS, Merrill J, Morris G, Newchurch M, Oltmans S, Parrondos MC, Posny F, Schmidlin F, Skrivankova P, Stubi R, Tarasick D, Thompson A, Thouret V, Viatte P, Vömel H, von Der Gathen P, Yela M, Zablocki G. Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008776] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Kley D, Smit HGJ, Nawrath S, Luo Z, Nedelec P, Johnson RH. Tropical Atlantic convection as revealed by ozone and relative humidity measurements. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Cooper OR, Trainer M, Thompson AM, Oltmans SJ, Tarasick DW, Witte JC, Stohl A, Eckhardt S, Lelieveld J, Newchurch MJ, Johnson BJ, Portmann RW, Kalnajs L, Dubey MK, Leblanc T, McDermid IS, Forbes G, Wolfe D, Carey-Smith T, Morris GA, Lefer B, Rappenglück B, Joseph E, Schmidlin F, Meagher J, Fehsenfeld FC, Keating TJ, Van Curen RA, Minschwaner K. Evidence for a recurring eastern North America upper tropospheric ozone maximum during summer. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008710] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|