1
|
Palmer PI, Woodwark AJP, Finch DP, Taylor TE, Butz A, Tamminen J, Bösch H, Eldering A, Vincent-Bonnieu S. Role of space station instruments for improving tropical carbon flux estimates using atmospheric data. NPJ Microgravity 2022; 8:51. [PMID: 36404345 PMCID: PMC9676185 DOI: 10.1038/s41526-022-00231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
The tropics is the nexus for many of the remaining gaps in our knowledge of environmental science, including the carbon cycle and atmospheric chemistry, with dire consequences for our ability to describe the Earth system response to a warming world. Difficulties associated with accessibility, coordinated funding models and economic instabilities preclude the establishment of a dense pan-tropical ground-based atmospheric measurement network that would otherwise help to describe the evolving state of tropical ecosystems and the associated biosphere-atmosphere fluxes on decadal timescales. The growing number of relevant sensors aboard sun-synchronous polar orbiters provide invaluable information over the remote tropics, but a large fraction of the data collected along their orbits is from higher latitudes. The International Space Station (ISS), which is in a low-inclination, precessing orbit, has already demonstrated value as a proving ground for Earth observing atmospheric sensors and as a testbed for new technology. Because low-inclination orbits spend more time collecting data over the tropics, we argue that the ISS and its successors, offer key opportunities to host new Earth-observing atmospheric sensors that can lead to a step change in our understanding of tropical carbon fluxes.
Collapse
Affiliation(s)
- Paul I Palmer
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
- National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK.
| | | | - Douglas P Finch
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Thomas E Taylor
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - André Butz
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | | | - Hartmut Bösch
- National Centre for Earth Observation, University of Leicester, Leicester, UK
- Earth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UK
| | - Annmarie Eldering
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sebastien Vincent-Bonnieu
- Directorate of Human and Robotic Exploration Programmes, European Space Agency - ESTEC, Noordwijk-ZH, The Netherlands
| |
Collapse
|
2
|
Choi J, Henze DK, Cao H, Nowlan CR, González Abad G, Kwon H, Lee H, Oak YJ, Park RJ, Bates KH, Maasakkers JD, Wisthaler A, Weinheimer AJ. An Inversion Framework for Optimizing Non-Methane VOC Emissions Using Remote Sensing and Airborne Observations in Northeast Asia During the KORUS-AQ Field Campaign. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD035844. [PMID: 35865789 PMCID: PMC9285978 DOI: 10.1029/2021jd035844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
We aim to reduce uncertainties in CH2O and other volatile organic carbon (VOC) emissions through assimilation of remote sensing data. We first update a three-dimensional (3D) chemical transport model, GEOS-Chem with the KORUSv5 anthropogenic emission inventory and inclusion of chemistry for aromatics and C2H4, leading to modest improvements in simulation of CH2O (normalized mean bias (NMB): -0.57 to -0.51) and O3 (NMB: -0.25 to -0.19) compared against DC-8 aircraft measurements during KORUS-AQ; the mixing ratio of most VOC species are still underestimated. We next constrain VOC emissions using CH2O observations from two satellites (OMI and OMPS) and the DC-8 aircraft during KORUS-AQ. To utilize data from multiple platforms in a consistent manner, we develop a two-step Hybrid Iterative Finite Difference Mass Balance and four-dimensional variational inversion system (Hybrid IFDMB-4DVar). The total VOC emissions throughout the domain increase by 47%. The a posteriori simulation reduces the low biases of simulated CH2O (NMB: -0.51 to -0.15), O3 (NMB: -0.19 to -0.06), and VOCs. Alterations to the VOC speciation from the 4D-Var inversion include increases of biogenic isoprene emissions in Korea and anthropogenic emissions in Eastern China. We find that the IFDMB method alone is adequate for reducing the low biases of VOCs in general; however, 4D-Var provides additional refinement of high-resolution emissions and their speciation. Defining reasonable emission errors and choosing optimal regularization parameters are crucial parts of the inversion system. Our new hybrid inversion framework can be applied for future air quality campaigns, maximizing the value of integrating measurements from current and upcoming geostationary satellite instruments.
Collapse
Affiliation(s)
- Jinkyul Choi
- Environmental Engineering ProgramUniversity of ColoradoBoulderCOUSA
| | - Daven K. Henze
- Department of Mechanical EngineeringUniversity of ColoradoBoulderCOUSA
| | - Hansen Cao
- Department of Mechanical EngineeringUniversity of ColoradoBoulderCOUSA
| | | | | | | | - Hyung‐Min Lee
- Department of Environmental Science and EngineeringEwha Womans UniversitySeoulSouth Korea
| | - Yujin J. Oak
- School of Earth and Environmental SciencesSeoul National UniversitySeoulSouth Korea
| | - Rokjin J. Park
- School of Earth and Environmental SciencesSeoul National UniversitySeoulSouth Korea
| | - Kelvin H. Bates
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | | | - Armin Wisthaler
- Institute for Ion Physics and Applied PhysicsUniversity of InnsbruckInnsbruckAustria
- Department of ChemistryUniversity of OsloOsloNorway
| | - Andrew J. Weinheimer
- Atmospheric Chemistry Observations and Modeling LaboratoryNational Center for Atmospheric ResearchBoulderCOUSA
| |
Collapse
|
3
|
Simulation of Isoprene Emission with Satellite Microwave Emissivity Difference Vegetation Index as Water Stress Factor in Southeastern China during 2008. REMOTE SENSING 2022. [DOI: 10.3390/rs14071740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Isoprene is one of the most important biogenic volatile organic compounds (BVOCs) emitted by vegetation. The biogenic isoprene emissions are widely estimated by the Model of Emission of Gases and Aerosols from Nature (MEGAN) considering different environmental stresses. The response of isoprene emission to the water stress is usually parameterized using soil moisture in previous studies. In this study, we designed a new parameterization scheme of water stress in MEGAN as a function of a novel, satellite, passive microwave-based vegetation index, Emissivity Difference Vegetation Index (EDVI), which indicates the vegetation inner water content. The isoprene emission rates in southeastern China were simulated with different water stress indicators including soil moisture, EDVI, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Then the simulated isoprene emission rates were compared to associated satellite top-down estimations. The results showed that in southeastern China, the spatiotemporal correlations between those simulations and top-down retrieval are all high with different biases. The simulated isoprene emission rates with EDVI-based water stress factor are most consistent with top-down estimation with higher temporal correlation, lower bias and lower RMSE, while soil moisture alters the emission rates little, and optical vegetation indices (NDVI and EVI) slightly increase the correlation with top-down. The temporal correlation coefficients are increased after applied with EDVI water stress factor in most areas; especially in the Yunnan-Guizhou Plateau and Yangtze River Delta (>0.12). Overall, higher consistency of simulation and top-down estimation is shown when EDVI is applied, which indicates the possibility of estimating the effect of vegetation water stress on biogenic isoprene emission using microwave observations.
Collapse
|
4
|
Palmer PI, Marvin MR, Siddans R, Kerridge BJ, Moore DP. Nocturnal survival of isoprene linked to formation of upper tropospheric organic aerosol. Science 2022; 375:562-566. [PMID: 35113698 DOI: 10.1126/science.abg4506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Isoprene is emitted mainly by terrestrial vegetation and is the dominant volatile organic compound (VOC) in Earth's atmosphere. It plays key roles in determining the oxidizing capacity of the troposphere and the formation of organic aerosol. Daytime infrared satellite observations of isoprene reported here broadly agree with emission inventories, but we found substantial differences in the locations and magnitudes of isoprene hotspots, consistent with a recent study. The corresponding nighttime infrared observations reveal unexpected hotspots over tropical South America, the Congo basin, and Southeast Asia. We used an atmospheric chemistry model to link these nighttime isoprene measurements to low-NOx regions with high biogenic VOC emissions; at sunrise the remaining isoprene can lead to the production of epoxydiols and subsequently to the widespread seasonal production of organic aerosol in the tropical upper troposphere.
Collapse
Affiliation(s)
- Paul I Palmer
- National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK.,School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Margaret R Marvin
- National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK.,School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Richard Siddans
- National Centre for Earth Observation, STFC Rutherford Appleton Laboratory, Chilton, UK.,Remote Sensing Group, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - Brian J Kerridge
- National Centre for Earth Observation, STFC Rutherford Appleton Laboratory, Chilton, UK.,Remote Sensing Group, STFC Rutherford Appleton Laboratory, Chilton, UK
| | - David P Moore
- National Centre for Earth Observation, University of Leicester, Leicester, UK.,School of Physics and Astronomy, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Li B, Ho SSH, Li X, Guo L, Chen A, Hu L, Yang Y, Chen D, Lin A, Fang X. A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. ENVIRONMENT INTERNATIONAL 2021; 156:106710. [PMID: 34144364 DOI: 10.1016/j.envint.2021.106710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Accurate measurement and estimation on the trends and spatial distributions of VOCs emissions in China are critical to establishing efficient local or regional pollution control measures, while less is known about the discrepancies on VOCs emissions estimated by previous studies. In this study, two of the estimation approaches including the bottom-up and top-down methods have been reviewed with the data collected from many studies. The approaches demonstrated that the total anthropogenic VOCs emissions in China have been increasing since 1949. The contributions of industrial and solvent use to total VOCs emissions have been increasing since 2000, whereas the contributions of transportation sector have shown a decreasing trend since 2000. The contributions of fuel combustion have also been decreasing since 1950. The gaps of emission estimates for the industry and solvent use were 99.3 ± 22.7% and 81.5 ± 41.8%, respectively, which distributed in much wider ranges than other sources (e.g. 28.9 ± 16.7% for fuel combustion). In comparison to the top-down method, larger variations on the annual VOCs emission estimates were seen using the bottom-up method that comprised different data sources. For the view of spatial pattern, most hot emission estimate spots were concentrated in the eastern China, consistent to their relatively stronger strengths in the industrialization and urbanization. Although the total VOCs emission in China has been continuously increasing during 2008-2016, the VOCs emissions per gross domestic production (GDP) showed a decreasing trend. As for individual compounds, large discrepancy was seen on formaldehyde, with the coefficient of variation (CV) ranged from 37% to 128% over the years. In overall of view, the importance of industrial process and solvent use is increasing. More focuses must be made to these two sources. Emissions of individual compound, particularly those of oxygenated VOCs, were not completely determined and should be better quantified.
Collapse
Affiliation(s)
- Bowei Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, USA
| | - Xinhe Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liya Guo
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ao Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liting Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Yang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Di Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Anan Lin
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuekun Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
6
|
Wells KC, Millet DB, Payne VH, Deventer MJ, Bates KH, de Gouw JA, Graus M, Warneke C, Wisthaler A, Fuentes JD. Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature 2020; 585:225-233. [PMID: 32908268 PMCID: PMC7490801 DOI: 10.1038/s41586-020-2664-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 07/14/2020] [Indexed: 11/09/2022]
Abstract
Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.
Collapse
Affiliation(s)
- Kelley C Wells
- Department of Soil, Water, and Climate, University of Minnesota, St Paul, MN, USA
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota, St Paul, MN, USA.
| | - Vivienne H Payne
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - M Julian Deventer
- Department of Soil, Water, and Climate, University of Minnesota, St Paul, MN, USA
- Bioclimatology, University of Göttingen, Göttingen, Germany
| | - Kelvin H Bates
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Martin Graus
- Department of Atmospheric and Cryogenic Sciences, University of Innsbruck, Innsbruck, Austria
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
| | - Armin Wisthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Jose D Fuentes
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Chaliyakunnel S, Millet DB, Chen X. Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Space-Based Formaldehyde Measurements. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:10525-10545. [PMID: 33614368 PMCID: PMC7894393 DOI: 10.1029/2019jd031262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
India is an air pollution mortality hot spot, but regional emissions are poorly understood. We present a high-resolution nested chemical transport model (GEOS-Chem) simulation for the Indian subcontinent and use it to interpret formaldehyde (HCHO) observations from two satellite sensors (OMI and GOME-2A) in terms of constraints on regional volatile organic compound (VOC) emissions. We find modeled biogenic VOC emissions to be overestimated by ~30-60% for most locations and seasons, and derive a best estimate biogenic flux of 16 Tg C/year subcontinent-wide for year 2009. Terrestrial vegetation provides approximately half the total VOC flux in our base-case inversions (full uncertainty range: 44-65%). This differs from prior understanding, in which biogenic emissions represent >70% of the total. Our derived anthropogenic VOC emissions increase slightly (13-16% in the base case, for a subcontinent total of 15 Tg C/year in 2009) over RETRO year 2000 values, with some larger regional discrepancies. The optimized anthropogenic emissions agree well with the more recent CEDS inventory, both subcontinent-wide (within 2%) and regionally. An exception is the Indo-Gangetic Plain, where we find an underestimate for both RETRO and CEDS. Anthropogenic emissions thus constitute 37-50% of the annual regional VOC source in our base-case inversions and exceed biogenic emissions over the Indo-Gangetic Plain, West India, and South India, and over the entire subcontinent during winter and post-monsoon. Fires are a minor fraction (<7%) of the total regional VOC source in the prior and optimized model. However, evidence suggests that VOC emissions in the fire inventory used here (GFEDv4) are too low over the Indian subcontinent.
Collapse
Affiliation(s)
- Sreelekha Chaliyakunnel
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| |
Collapse
|
8
|
Assessing Ecosystem Isoprene Emissions by Hyperspectral Remote Sensing. REMOTE SENSING 2018. [DOI: 10.3390/rs10071086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
A MODIS Photochemical Reflectance Index (PRI) as an Estimator of Isoprene Emissions in a Temperate Deciduous Forest. REMOTE SENSING 2018. [DOI: 10.3390/rs10040557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Zoogman P, Liu X, Suleiman RM, Pennington WF, Flittner DE, Al-Saadi JA, Hilton BB, Nicks DK, Newchurch MJ, Carr JL, Janz SJ, Andraschko MR, Arola A, Baker BD, Canova BP, Chan Miller C, Cohen RC, Davis JE, Dussault ME, Edwards DP, Fishman J, Ghulam A, González Abad G, Grutter M, Herman JR, Houck J, Jacob DJ, Joiner J, Kerridge BJ, Kim J, Krotkov NA, Lamsal L, Li C, Lindfors A, Martin RV, McElroy CT, McLinden C, Natraj V, Neil DO, Nowlan CR, O'Sullivan EJ, Palmer PI, Pierce RB, Pippin MR, Saiz-Lopez A, Spurr RJD, Szykman JJ, Torres O, Veefkind JP, Veihelmann B, Wang H, Wang J, Chance K. Tropospheric Emissions: Monitoring of Pollution (TEMPO). JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 2017; 186:17-39. [PMID: 32817995 PMCID: PMC7430511 DOI: 10.1016/j.jqsrt.2016.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.
Collapse
Affiliation(s)
- P Zoogman
- Harvard-Smithsonian Center for Astrophysics
| | - X Liu
- Harvard-Smithsonian Center for Astrophysics
| | | | | | | | | | | | | | | | | | - S J Janz
- NASA Goddard Space Flight Center
| | | | - A Arola
- Finnish Meteorological Institute
| | | | | | | | - R C Cohen
- University of California at Berkeley
| | - J E Davis
- Harvard-Smithsonian Center for Astrophysics
| | | | | | | | | | | | - M Grutter
- Universidad Nacional Autónoma de México
| | - J R Herman
- University of Maryland, Baltimore County
| | - J Houck
- Harvard-Smithsonian Center for Astrophysics
| | | | - J Joiner
- NASA Goddard Space Flight Center
| | | | | | | | - L Lamsal
- NASA Goddard Space Flight Center
- GESTAR, University Space Research Association
| | - C Li
- NASA Goddard Space Flight Center
- University of Maryland, Baltimore County
| | | | - R V Martin
- Harvard-Smithsonian Center for Astrophysics
- Dalhousie University
| | | | | | | | | | - C R Nowlan
- Harvard-Smithsonian Center for Astrophysics
| | | | | | - R B Pierce
- National Oceanic and Atmospheric Administration
| | | | - A Saiz-Lopez
- Instituto de Química Física Rocasolano, CSIC, Spain
| | | | | | - O Torres
- NASA Goddard Space Flight Center
| | | | | | - H Wang
- Harvard-Smithsonian Center for Astrophysics
| | | | - K Chance
- Harvard-Smithsonian Center for Astrophysics
| |
Collapse
|
11
|
Wang X, Situ S, Chen W, Zheng J, Guenther A, Fan Q, Chang M. Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study. J Environ Sci (China) 2016; 46:72-82. [PMID: 27521938 DOI: 10.1016/j.jes.2015.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 06/06/2023]
Abstract
This article compiles the actual knowledge of the biogenic volatile organic compound (BVOC) emissions estimated using model methods in the Pearl River Delta (PRD) region, one of the most developed regions in China. The developed history of BVOC emission models is presented briefly and three typical emission models are introduced and compared. The results from local studies related to BVOC emissions have been summarized. Based on this analysis, it is recommended that local researchers conduct BVOC emission studies systematically, from the assessment of model inputs, to compiling regional emission inventories to quantifying the uncertainties and evaluating the model results. Beyond that, more basic researches should be conducted in the future to close the gaps in knowledge on BVOC emission mechanisms, to develop the emission models and to refine the inventory results. This paper can provide a perspective on these aspects in the broad field of research associated with BVOC emissions in the PRD region.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shuping Situ
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Foshan Environmental Monitoring Center, Foshan 528000, China
| | - Weihua Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junyu Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA
| | - Qi Fan
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ming Chang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Wolfe GM, Kaiser J, Hanisco TF, Keutsch FN, de Gouw JA, Gilman JB, Graus M, Hatch CD, Holloway J, Horowitz LW, Lee BH, Lerner BM, Lopez-Hilifiker F, Mao J, Marvin MR, Peischl J, Pollack IB, Roberts JM, Ryerson TB, Thornton JA, Veres PR, Warneke C. Formaldehyde production from isoprene oxidation across NO x regimes. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:2597-2610. [PMID: 29619046 PMCID: PMC5879783 DOI: 10.5194/acp-16-2597-2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv-1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.
Collapse
Affiliation(s)
- G. M. Wolfe
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J. Kaiser
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - T. F. Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - F. N. Keutsch
- School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - J. A. de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J. B. Gilman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - M. Graus
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C. D. Hatch
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - J. Holloway
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - L. W. Horowitz
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | - B. H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - B. M. Lerner
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - F. Lopez-Hilifiker
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - J. Mao
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ
| | - M. R. Marvin
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - J. Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - I. B. Pollack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J. M. Roberts
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - T. B. Ryerson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J. A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - P. R. Veres
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C. Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| |
Collapse
|
13
|
Harris A, Owen SM, Sleep D, Pereira MDGDS. Constitutive changes in pigment concentrations: implications for estimating isoprene emissions using the photochemical reflectance index. PHYSIOLOGIA PLANTARUM 2016; 156:190-200. [PMID: 26249646 DOI: 10.1111/ppl.12361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
The photochemical reflectance index (PRI), through its relationship with light use efficiency (LUE) and xanthophyll cycle activity, has recently been shown to hold potential for tracking isoprene emissions from vegetation. However, both PRI and isoprene emissions can also be influenced by changes in carotenoid pigment concentrations. Xanthophyll cycle activity and changes in carotenoid concentrations operate over different timescales, but the importance of constitutive changes in pigment concentrations for accurately estimating isoprene emissions using PRI is unknown. To clarify the physiological mechanisms behind the PRI-isoprene relationship, the light environment of potted Salix viminalis (osier willow) trees was modified to induce acclimation in photosynthetic rates, phytopigments, isoprene emissions and PRI. Acclimation resulted in differences in pigment concentrations, isoprene emissions and PRI. Constitutive changes in carotenoid concentration were significantly correlated with both isoprene emissions and PRI, suggesting that the relationship between PRI and isoprene emissions is significantly influenced by constitutive pigment changes. Consequently knowledge regarding how isoprene emissions are affected by both longer term changes in total carotenoid concentrations and shorter term dynamic adjustments of LUE is required to facilitate interpretation of PRI for monitoring isoprene emissions.
Collapse
Affiliation(s)
- Angela Harris
- Geography, School of Education, Environment and Development, The University of Manchester, Manchester M13 9PL, UK
| | | | - Darren Sleep
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
14
|
Wolfe GM, Kaiser J, Hanisco TF, Keutsch FN, de Gouw JA, Gilman JB, Graus M, Hatch CD, Holloway J, Horowitz LW, Lee BH, Lerner BM, Lopez-Hilifiker F, Mao J, Marvin MR, Peischl J, Pollack IB, Roberts JM, Ryerson TB, Thornton JA, Veres PR, Warneke C. Formaldehyde production from isoprene oxidation across NO x regimes. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016. [PMID: 29619046 DOI: 10.5194/acp-16-2597-] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv-1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.
Collapse
Affiliation(s)
- G M Wolfe
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J Kaiser
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - T F Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - F N Keutsch
- School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - J A de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J B Gilman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - M Graus
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C D Hatch
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - J Holloway
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - L W Horowitz
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | - B H Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - B M Lerner
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - F Lopez-Hilifiker
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - J Mao
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ
| | - M R Marvin
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - J Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - I B Pollack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J M Roberts
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - T B Ryerson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - P R Veres
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| |
Collapse
|
15
|
Wells KC, Millet DB, Cady-Pereira KE, Shephard MW, Henze DK, Bousserez N, Apel EC, de Gouw J, Warneke C, Singh HB. Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. ATMOSPHERIC CHEMISTRY AND PHYSICS 2014; 14:2555-2570. [PMID: 33758587 PMCID: PMC7983851 DOI: 10.5194/acp-14-2555-2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We employ new global space-based measurements of atmospheric methanol from the Tropospheric Emission Spectrometer (TES) with the adjoint of the GEOS-Chem chemical transport model to quantify terrestrial emissions of methanol to the atmosphere. Biogenic methanol emissions in the model are based on version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1), using leaf area data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOS-5 assimilated meteorological fields. We first carry out a pseudo observation test to validate the overall approach, and find that the TES sampling density is sufficient to accurately quantify regional- to continental-scale methanol emissions using this method. A global inversion of two years of TES data yields an optimized annual global surface flux of 122 Tg yr-1 (including biogenic, pyrogenic, and anthropogenic sources), an increase of 60 % from the a priori global flux of 76 Tg yr-1. Global terrestrial methanol emissions are thus nearly 25 % those of isoprene (~540 Tg yr-1), and are comparable to the combined emissions of all anthropogenic volatile organic compounds (~100-200 Tg yr-1). Our a posteriori terrestrial methanol source leads to a strong improvement of the simulation relative to an ensemble of airborne observations, and corroborates two other recent top-down estimates (114-120 Tg yr-1) derived using in situ and space-based measurements. Inversions testing the sensitivity of optimized fluxes to model errors in OH, dry deposition, and oceanic uptake of methanol, as well as to the assumed a priori constraint, lead to global fluxes ranging from 118 to 126 Tg yr-1. The TES data imply a relatively modest revision of model emissions over most of the tropics, but a significant upward revision in midlatitudes, particularly over Europe and North America. We interpret the inversion results in terms of specific source types using the methanol : CO correlations measured by TES, and find that biogenic emissions are overestimated relative to biomass burning and anthropogenic emissions in central Africa and southeastern China, while they are underestimated in regions such as Brazil and the US. Based on our optimized emissions, methanol accounts for > 25 % of the photochemical source of CO and HCHO over many parts of the northern extratropics during springtime, and contributes ~6 % of the global secondary source of those compounds annually.
Collapse
Affiliation(s)
- K. C. Wells
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - D. B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - K. E. Cady-Pereira
- Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
| | | | - D. K. Henze
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
| | - N. Bousserez
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
| | - E. C. Apel
- Atmospheric Chemistry Division, NCAR, Boulder, Colorado, USA
| | - J. de Gouw
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - H. B. Singh
- NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
16
|
Ocean–Atmosphere Interactions of Particles. OCEAN-ATMOSPHERE INTERACTIONS OF GASES AND PARTICLES 2014. [DOI: 10.1007/978-3-642-25643-1_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Peñuelas J, Marino G, LLusia J, Morfopoulos C, Farré-Armengol G, Filella I. Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level. Nat Commun 2013; 4:2604. [DOI: 10.1038/ncomms3604] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/12/2013] [Indexed: 11/09/2022] Open
|
18
|
Barkley MP, Kurosu TP, Chance K, De Smedt I, Van Roozendael M, Arneth A, Hagberg D, Guenther A. Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016827] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Marais EA, Jacob DJ, Kurosu TP, Chance K, Murphy JG, Reeves C, Mills G, Casadio S, Millet DB, Barkley MP, Paulot F, Mao J. Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:6219-6235. [PMID: 33688332 PMCID: PMC7939075 DOI: 10.5194/acp-12-6219-2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We use 2005-2009 satellite observations of formaldehyde (HCHO) columns from the OMI instrument to infer biogenic isoprene emissions at monthly 1 × 1° resolution over the African continent. Our work includes new approaches to remove biomass burning influences using OMI absorbing aerosol optical depth data (to account for transport of fire plumes) and anthropogenic influences using AATSR satellite data for persistent small-flame fires (gas flaring). The resulting biogenic HCHO columns (ΩHCHO) from OMI follow closely the distribution of vegetation patterns in Africa. We infer isoprene emission (E ISOP) from the local sensitivity S = ΔΩHCHO / ΔE ISOP derived with the GEOS-Chem chemical transport model using two alternate isoprene oxidation mechanisms, and verify the validity of this approach using AMMA aircraft observations over West Africa and a longitudinal transect across central Africa. Displacement error (smearing) is diagnosed by anomalously high values of S and the corresponding data are removed. We find significant sensitivity of S to NOx under low-NOx conditions that we fit to a linear function of tropospheric column NO2. We estimate a 40% error in our inferred isoprene emissions under high-NOx conditions and 40-90% under low-NOx conditions. Our results suggest that isoprene emission from the central African rainforest is much lower than estimated by the state-of-the-science MEGAN inventory.
Collapse
Affiliation(s)
- E. A. Marais
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D. J. Jacob
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - T. P. Kurosu
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - K. Chance
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - J. G. Murphy
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - C. Reeves
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - G. Mills
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - S. Casadio
- Instrument Data quality Evaluation and Analysis (IDEAS), Serco Spa Via Sciadonna 24, 00044 Frascati (Roma), Italy
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA
| | - M. P. Barkley
- Space Research Centre, University of Leicester, Leicester, UK
| | - F. Paulot
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - J. Mao
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
20
|
Enami S, Mishra H, Hoffmann MR, Colussi AJ. Protonation and oligomerization of gaseous isoprene on mildly acidic surfaces: implications for atmospheric chemistry. J Phys Chem A 2012; 116:6027-32. [PMID: 22356588 DOI: 10.1021/jp2110133] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In a global process linking the Earth's climate with its ecosystems, massive photosynthetic isoprene (ISOP) emissions are converted to light-scattering haze. This phenomenon is imperfectly captured by atmospheric chemistry models: predicted ISOP emissions atop forest canopies would deplete the oxidizing capacity of the overhead atmosphere, at variance with field observations. Here we address this key issue in novel laboratory experiments where we apply electrospray mass spectrometry to detect online the products of the reactive uptake of gaseous ISOP on the surface of aqueous jets as a function of acidity. We found that ISOP is already protonated to ISOPH(+) and undergoes cationic oligomerization to (ISOP)(2)H(+) and (ISOP)(3)H(+) on the surface of pH < 4 water jets. We estimate uptake coefficients, γ(ISOP) = (0.5 - 2.0) × 10(-6) on pH = 3 water, which translate into the significant reuptake of leaf-level ISOP emissions in typical (surface-to-volume ∼5 m(-1)) forests during realistic (a few minutes) in-canopy residence times. Our findings may also account for the rapid decay of ISOP in forests after sunset and help bring the global budget of volatile organic compounds closer to balance.
Collapse
Affiliation(s)
- Shinichi Enami
- Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, United States
| | | | | | | |
Collapse
|
21
|
Whalley L, Stone D, Heard D. New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Top Curr Chem (Cham) 2012; 339:55-95. [DOI: 10.1007/128_2012_359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
22
|
Barkley MP, Palmer PI, Ganzeveld L, Arneth A, Hagberg D, Karl T, Guenther A, Paulot F, Wennberg PO, Mao J, Kurosu TP, Chance K, Müller JF, De Smedt I, Van Roozendael M, Chen D, Wang Y, Yantosca RM. Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry? ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015893] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Boeke NL, Marshall JD, Alvarez S, Chance KV, Fried A, Kurosu TP, Rappenglück B, Richter D, Walega J, Weibring P, Millet DB. Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. ACTA ACUST UNITED AC 2011; 116. [PMID: 33716354 DOI: 10.1029/2010jd014870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
[1] We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (ΩHCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ΩHCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived ΩHCHO (-17% where ΩHCHO > 5 × 1015 molecules cm-2) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ΩHCHO variability across the United States, smaller anthropogenic ΩHCHO gradients are detectable at finer spatial scales (∼20-200 km) near many urban areas.
Collapse
Affiliation(s)
- Nicholas L Boeke
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julian D Marshall
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sergio Alvarez
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA
| | - Kelly V Chance
- Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Alan Fried
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Thomas P Kurosu
- Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Bernhard Rappenglück
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA
| | - Dirk Richter
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - James Walega
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Petter Weibring
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Dylan B Millet
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|