1
|
Yang J, Qu Y, Chen Y, Zhang J, Liu X, Niu H, An J. Dominant physical and chemical processes impacting nitrate in Shandong of the North China Plain during winter haze events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169065. [PMID: 38065496 DOI: 10.1016/j.scitotenv.2023.169065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Nitrate has been a dominant component of PM2.5 since the stringent emission control measures implemented in China in 2013. Clarifying key physical and chemical processes influencing nitrate concentrations is crucial for eradicating heavy air pollution in China. In this study, we explored dominant processes impacting nitrate concentrations in Shandong of the North China Plain during three haze events from 9 to 25 December 2021, named cases P1 (94.46 (30.85) μg m-3 for PM2.5 (nitrate)), P2 (148.95 (50.12) μg m-3) and P3 (88.03 (29.21) μg m-3), by using the Weather Research and Forecasting/Chemistry model with an integrated process rate analysis scheme and updated heterogeneous hydrolysis of dinitrogen pentoxide on the wet aerosol surface (HET-N2O5) and additional nitrous acid (HONO) sources (AS-HONO). The results showed that nitrate increases in the three cases were attributed to aerosol chemistry, whereas nitrate decreases were due mainly to the vertical mixing process in cases P1 and P2 and to the advection process in case P3. HET-N2O5 (the reaction of OH + NO2) contributed 45 % (51 %) of the HNO3 production rate during the study period. AS-HONO produced a nitrate enhancement of 24 % in case P1, 12 % in case P2 and 19 % in case P3, and a HNO3 production rate enhancement of 0.79- 0.97 (0.18- 0.60) μg m-3 h-1 through the reaction of OH + NO2 (HET-N2O5) in the three cases. This study implies that using suitable parameterization schemes for heterogeneous reactions on aerosol and ground surfaces and nitrate photolysis is vital in simulations of HONO and nitrate, and the MOSAIC module for aerosol water simulations needs to be improved.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Zhang
- Department of Atmospheric Sciences, Yunnan University, Kunming 650091, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongya Niu
- School of Earth Sciences and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhao X, Zhao X, Liu P, Chen D, Zhang C, Xue C, Liu J, Xu J, Mu Y. Transport Pathways of Nitrate Formed from Nocturnal N 2O 5 Hydrolysis Aloft to the Ground Level in Winter North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2715-2725. [PMID: 36722840 DOI: 10.1021/acs.est.3c00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particulate nitrate (NO3-) has currently become the major component of fine particles in the North China Plain (NCP) during winter haze episodes. However, the contributions of formation pathways to ground NO3- in the NCP are not fully understood. Herein, the NO3- formation pathways were comprehensively investigated based on model simulations combined with two-month field measurements at a rural site in the winter NCP. The results indicated that the nocturnal chemistry of N2O5 hydrolysis aloft could contribute evidently to ground NO3- at the rural site during the pollution episodes with high aerosol water contents, achieving the contribution percentages of 25.2-30.4% of the total. In addition to the commonly proposed vertical mixing of breaking nocturnal boundary layer in the early morning, two additional transport pathways (frontal downdrafts and downslope mountain breezes) in the nighttime were found to make higher contributions to ground NO3-. Considering the dominant role (69.6-74.8%) of diurnal chemistry in NO3- formation, reduction of NOx emissions in the daytime may be an effective control measure for reducing regional NO3- in the NCP.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiujuan Zhao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dan Chen
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, CEDEX 2, Orléans45071, France
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jing Xu
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
3
|
Xie X, Hu J, Qin M, Guo S, Hu M, Wang H, Lou S, Li J, Sun J, Li X, Sheng L, Zhu J, Chen G, Yin J, Fu W, Huang C, Zhang Y. Modeling particulate nitrate in China: Current findings and future directions. ENVIRONMENT INTERNATIONAL 2022; 166:107369. [PMID: 35772313 DOI: 10.1016/j.envint.2022.107369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Particulate nitrate (pNO3) is now becoming the principal component of PM2.5 during severe winter haze episodes in many cities of China. To gain a comprehensive understanding of the key factors controlling pNO3 formation and driving its trends, we reviewed the recent pNO3 modeling studies which mainly focused on the formation mechanism and recent trends of pNO3 as well as its responses to emission controls in China. The results indicate that although recent chemical transport models (CTMs) can reasonably capture the spatial-temporal variations of pNO3, model-observation biases still exist due to large uncertainties in the parameterization of dinitrogen pentoxide (N2O5) uptake and ammonia (NH3) emissions, insufficient heterogeneous reaction mechanism, and the predicted low sulfate concentrations in current CTMs. The heterogeneous hydrolysis of N2O5 dominates nocturnal pNO3 formation, however, the contribution to total pNO3 varies among studies, ranging from 21.0% to 51.6%. Moreover, the continuously increasing PM2.5 pNO3 fraction in recent years is mainly due to the decreased sulfur dioxide emissions, the enhanced atmospheric oxidation capacity (AOC), and the weakened nitrate deposition. Reducing NH3 emissions is found to be the most effective control strategy for mitigating pNO3 pollution in China. This review suggests that more field measurements are needed to constrain the parameterization of heterogeneous N2O5 and nitrogen dioxide (NO2) uptake. Future studies are also needed to quantify the relationships of pNO3 to AOC, O3, NOx, and volatile organic compounds (VOCs) in different regions of China under different meteorological conditions. Research on multiple-pollutant control strategies involving NH3, NOX, and VOCs is required to mitigate pNO3 pollution, especially during severe winter haze events.
Collapse
Affiliation(s)
- Xiaodong Xie
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Momei Qin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jingyi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jinjin Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Li Sheng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianlan Zhu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ganyu Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Junjie Yin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenxing Fu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen 361021, China.
| |
Collapse
|
4
|
Zhang S, Sarwar G, Xing J, Chu B, Xue C, Sarav A, Ding D, Zheng H, Mu Y, Duan F, Ma T, He H. Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:15809-15826. [PMID: 34804135 PMCID: PMC8597575 DOI: 10.5194/acp-21-15809-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We compare Community Multiscale Air Quality (CMAQ) model predictions with measured nitrous acid (HONO) concentrations in Beijing, China for December 2015. The model with the existing HONO chemistry in CMAQ severely under-estimates the observed HONO concentrations with a normalized mean bias of -97%. We revise the HONO chemistry in the model by implementing six additional heterogeneous reactions in the model: reaction of nitrogen dioxide (NO2) on ground surfaces, reaction of NO2 on aerosol surfaces, reaction of NO2 on soot surfaces, photolysis of aerosol nitrate, nitric acid displacement reaction, and hydrochloric acid displacement reaction. The model with the revised chemistry substantially increases HONO predictions and improves the comparison with observed data with a normalized mean bias of -5%. The photolysis of HONO enhances day-time hydroxyl radical by almost a factor of two. The enhanced hydroxyl radical concentrations compare favourably with observed data and produce additional sulfate via the reaction with sulfur dioxide, aerosol nitrate via the reaction with nitrogen dioxide, and secondary organic aerosols via the reactions with volatile organic compounds. The additional sulfate stemming from revised HONO chemistry improves the comparison with observed concentration; however, it does not close the gap between model prediction and the observation during polluted days.
Collapse
Affiliation(s)
- Shuping Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Golam Sarwar
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Jia Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chaoyang Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Arunachalam Sarav
- Institute for the Environment, The University of North Carolina at Chapel Hill, 100 Eurpoa Drive, Chapel Hill, NC 27514, USA
| | - Dian Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haotian Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
5
|
Zhou Y, Gong S, Zhou C, Zhang L, He J, Wang Y, Ji D, Feng J, Mo J, Ke H. A new parameterization of uptake coefficients for heterogeneous reactions on multi-component atmospheric aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146372. [PMID: 33784528 DOI: 10.1016/j.scitotenv.2021.146372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Based on laboratory studies and field observations, a new parameterization of uptake coefficients for heterogeneous reactions on multi-component aerosols is developed in this work. The equivalent ratio (ER) of inorganic aerosol is used to establish the quantitative relationship between the heterogeneous uptake coefficients and the composition of aerosols. Incorporating the new ER-dependent scheme, the WRF-CUACE model has been applied to simulate sulfate mass concentrations during December 2017 in the Beijing-Tianjin-Hebei region and evaluate the role of aerosol chemical components played in the sulfate formation. Simulated temporal variations and magnitudes of sulfate show good agreement with the observations by using this new scheme. From clean to polluted cases, although both dominant cations and anions increase significantly, the equivalent ratio decreases gradually and is closer to unity, representing the variation of aerosol compositions, which inhibits the heterogeneous uptake of SO2, with the uptake coefficient decreasing from 1 × 10-4 to 5.3 × 10-5. Based on this phenomenon, a self-limitation process for heterogeneous reactions with the increasing secondary inorganic aerosol from clean to polluted cases is proposed.
Collapse
Affiliation(s)
- Yike Zhou
- Climate and Weather Disasters Collaborative Innovation Center, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Sunling Gong
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Chunhong Zhou
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Lei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Jianjun He
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jianing Feng
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jingyue Mo
- Climate and Weather Disasters Collaborative Innovation Center, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Huabing Ke
- Climate and Weather Disasters Collaborative Innovation Center, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Abstract
Aerosol particles are ubiquitous in the atmosphere and play an important role in air quality and the climate system. These particles can contain mixtures of primary organic aerosol, secondary organic aerosol, and secondary inorganic aerosol. We show that such internally mixed particles can contain three liquid phases. We also demonstrate that the presence of three liquid phases impacts the time needed for the particles to reach equilibrium with the surrounding gas phase and likely impacts the ability of the particles to activate into cloud droplets. A framework is presented for predicting conditions needed for the formation of three liquid phases in the atmosphere. These results will lead to improved representations of aerosols in models for air quality and climate predictions. Individual atmospheric particles can contain mixtures of primary organic aerosol (POA), secondary organic aerosol (SOA), and secondary inorganic aerosol (SIA). To predict the role of such complex multicomponent particles in air quality and climate, information on the number and types of phases present in the particles is needed. However, the phase behavior of such particles has not been studied in the laboratory, and as a result, remains poorly constrained. Here, we show that POA+SOA+SIA particles can contain three distinct liquid phases: a low-polarity organic-rich phase, a higher-polarity organic-rich phase, and an aqueous inorganic-rich phase. Based on our results, when the elemental oxygen-to-carbon (O:C) ratio of the SOA is less than 0.8, three liquid phases can coexist within the same particle over a wide relative humidity range. In contrast, when the O:C ratio of the SOA is greater than 0.8, three phases will not form. We also demonstrate, using thermodynamic and kinetic modeling, that the presence of three liquid phases in such particles impacts their equilibration timescale with the surrounding gas phase. Three phases will likely also impact their ability to act as nuclei for liquid cloud droplets, the reactivity of these particles, and the mechanism of SOA formation and growth in the atmosphere. These observations provide fundamental information necessary for improved predictions of air quality and aerosol indirect effects on climate.
Collapse
|
7
|
Liu L, Bei N, Hu B, Wu J, Liu S, Li X, Wang R, Liu Z, Shen Z, Li G. Wintertime nitrate formation pathways in the north China plain: Importance of N 2O 5 heterogeneous hydrolysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115287. [PMID: 32805595 DOI: 10.1016/j.envpol.2020.115287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/05/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Strict emission control measures have been implemented in the North China Plain (NCP) to improve air quality since 2013. However, heavy particulate matter (PM) pollution still frequently occurs in the region especially during wintertime, and the nitrate contribution to fine PM (PM2.5) has substantially increased in recent several years. Nitrate aerosols, which are formed via nitric acid (HNO3) to balance inorganic cations in the particle phase, have become a major fraction of PM2.5 during wintertime haze events in the NCP. HNO3 is mainly produced through homogeneous (NO2+OH, NO3+VOCs) and heterogeneous pathways (N2O5 heterogeneous hydrolysis) in the atmosphere, but the contribution of the two pathways to the nitrate formation remains elusive. In this study, the Weather Research and Forecasting model with Chemistry (WRF-Chem) was applied to simulate a heavy haze episode from 16 to December 31, 2016 in the North China Plain, and the source-oriented method (SOM) and brute force method (BFM) were both used to evaluate contributions of the heterogeneous pathway to the nitrate formation. The results demonstrated that the near-surface nitrate contributions of the heterogeneous pathway were about 30.8% based on the BFM, and 51.6% based on the SOM, indicating that the BFM might be subject to underestimating importance of the heterogeneous pathway to the nitrate formation. The SOM simulations further showed that the heterogeneous pathway dominated the nighttime HNO3 production in the planetary boundary layer, with an average contribution of 83.0%. Although N2O5 was photolytically liable during daytime, the heterogeneous N2O5 hydrolysis still contributed 10.1% of HNO3, which was caused by substantial attenuation of incident solar radiation by clouds and high PM2.5 mass loading. Our study highlighted the significantly important role of N2O5 heterogeneous hydrolysis in the nitrate formation during wintertime haze days.
Collapse
Affiliation(s)
- Lang Liu
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Naifang Bei
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiarui Wu
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Xia Li
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Ruonan Wang
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zhenxing Shen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guohui Li
- Key Lab of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
8
|
Li Z, Xie P, Hu R, Wang D, Jin H, Chen H, Lin C, Liu W. Observations of N 2O 5 and NO 3 at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N 2O 5 uptake coefficients. J Environ Sci (China) 2020; 95:248-255. [PMID: 32653187 DOI: 10.1016/j.jes.2020.04.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The nitrate radical (NO3) and dinitrogen pentoxide (N2O5) play an important role in the nocturnal atmosphere chemistry. Observations of NO3 radicals and N2O5 were performed in a semirural ground site at Tai'Zhou in polluted southern China using cavity ring down spectroscopy (CRDS) from 23 May to 15 June 2018. The observed NO3 and N2O5 concentrations were relatively low, with 1 min average value of 4.4 ± 2.2 and 26.0 ± 35.7 pptV, respectively. The N2O5 uptake coefficient was determined to be from 0.027 to 0.107 based on steady state lifetime method. Fast N2O5 hydrolysis was the largest contributor to the loss of NO3 and contributed to substantial nitrate formation, with an average value of 14.83 ± 6.01 µg/m3. Further analysis shows that the N2O5 heterogeneous reactions dominated the nocturnal NOx loss and the nocturnal NOx loss rate is 0.14 ± 0.02 over this region.
Collapse
Affiliation(s)
- Zhiyan Li
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China; Department of Optoelectronic Engineering, School of Mathematics and Physics, Anhui University of Technology, Ma'an Shan 243032, China
| | - Pinhua Xie
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China; CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renzhi Hu
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China.
| | - Dan Wang
- Department of Optoelectronic Engineering, School of Mathematics and Physics, Anhui University of Technology, Ma'an Shan 243032, China
| | - Huawei Jin
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China
| | - Hao Chen
- College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chuan Lin
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China
| | - Wenqing Liu
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China
| |
Collapse
|
9
|
Schmedding R, Rasool QZ, Zhang Y, Pye HOT, Zhang H, Chen Y, Surratt JD, Lopez-Hilfiker FD, Thornton JA, Goldstein AH, Vizuete W. Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:8201-8225. [PMID: 32983235 PMCID: PMC7510956 DOI: 10.5194/acp-20-8201-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature (T g), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 102-1012 Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 102 Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM2.5) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights.
Collapse
Affiliation(s)
- Ryan Schmedding
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Quazi Z. Rasool
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Yue Zhang
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
- Aerodyne Research, Inc., Billerica, MA 01821, USA
| | - Havala O. T. Pye
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
- Office of Research and Development, Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA
| | - Haofei Zhang
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Yuzhi Chen
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Jason D. Surratt
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | | | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - Allen H. Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - William Vizuete
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
10
|
Wintertime N 2O 5 uptake coefficients over the North China Plain. Sci Bull (Beijing) 2020; 65:765-774. [PMID: 36659110 DOI: 10.1016/j.scib.2020.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/21/2023]
Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) plays an important role in regulating NOx. The N2O5 uptake coefficient, γ(N2O5), was determined using an iterative box model that was constrained to observational data obtained in suburban Beijing from February to March 2016. The box model determined 2289 individual γ(N2O5) values that varied from <0.001 to 0.02 with an average value of 0.0046 ± 0.0039 (and a median value of 0.0032). We found the derived winter γ(N2O5) values in Beijing were relatively low as compared to values reported in previous field studies conducted during winter in Hong Kong (average value of 0.014) and the eastern U.S. coast (median value of 0.0143). In our study, field evidence of the suppression of γ(N2O5) values due to pNO3- content, organics and the enhancement by aerosol liquid water content (ALWC) is in line with previous laboratory study results. Low ALWC, high pNO3- content, and particle morphology (inorganic core with an organic shell) accounted for the low γ(N2O5) values in the North China Plain (NCP) during wintertime. The field-derived γ(N2O5) values are well reproduced by a revised parameterization method, which includes the aerosol size distribution, ALWC, nitrate and organic coating, suggesting the feasibility of comprehensive parameterization in the NCP during wintertime.
Collapse
|
11
|
Heterogeneous Uptake of N2O5 in Sand Dust and Urban Aerosols Observed during the Dry Season in Beijing. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The uptake of dinitrogen pentoxide (N2O5) on aerosols affects the nocturnal removal of NOx and particulate nitrate formation in the atmosphere. This study investigates N2O5 uptake processes using field observations from an urban site in Beijing during April–May 2017, a period characterized by dry weather conditions. For the first time, a very large N2O5 uptake rate (k(N2O5) up to ~0.01 s−1) was observed during a sand storm event, and the uptake coefficient (γ(N2O5)) was estimated to be 0.044. The γ(N2O5) in urban air masses was also determined and exhibited moderate correlation (r = 0.68) with aerosol volume to surface ratio (Va/Sa), but little relation to aerosol water, nitrate, and chloride, a finding that contrasts with previous results. Several commonly used parameterizations of γ(N2O5) underestimated the field-derived γ(N2O5). A new parameterization is suggested for dry conditions, which considers the effect of Va/Sa, temperature, and relative humidity.
Collapse
|
12
|
Abstract
Aerosol mixing state significantly affects concentrations of cloud condensation nuclei (CCN), wet removal rates, thermodynamic properties, heterogeneous chemistry, and aerosol optical properties, with implications for human health and climate. Over the last two decades, significant research effort has gone into finding computationally-efficient methods for representing the most important aspects of aerosol mixing state in air pollution, weather prediction, and climate models. In this review, we summarize the interactions between mixing-state and aerosol hygroscopicity, optical properties, equilibrium thermodynamics and heterogeneous chemistry. We focus on the effects of simplified assumptions of aerosol mixing state on CCN concentrations, wet deposition, and aerosol absorption. We also summarize previous approaches for representing aerosol mixing state in atmospheric models, and we make recommendations regarding the representation of aerosol mixing state in future modelling studies.
Collapse
|
13
|
Kelly JT, Parworth CL, Zhang Q, Miller DJ, Sun K, Zondlo MA, Baker KR, Wisthaler A, Nowak JB, Pusede SE, Cohen RC, Weinheimer AJ, Beyersdorf AJ, Tonnesen GS, Bash JO, Valin LC, Crawford JH, Fried A, Walega JG. Modeling NH 4NO 3 Over the San Joaquin Valley During the 2013 DISCOVER-AQ Campaign. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:4727-4745. [PMID: 30245954 PMCID: PMC6145493 DOI: 10.1029/2018jd028290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/12/2018] [Indexed: 05/06/2023]
Abstract
The San Joaquin Valley (SJV) of California experiences high concentrations of particulate matter NH4NO3 during episodes of meteorological stagnation in winter. A rich data set of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign in SJV in January and February 2013. Here NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model, diagnostic model evaluation is performed using the DISCOVER-AQ data set, and integrated reaction rate analysis is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-hr average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3 + NO3-) and NHx (NH3 + NH4+) generally agree well with measurements in Fresno, although partitioning of total nitrate to HNO3 is sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and additional work on the spatial allocation of NH3 emissions is warranted. During a period of elevated NH4NO3, the model predicted that the OH + NO2 pathway contributed 46% to total HNO3production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH + NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease.
Collapse
Affiliation(s)
- James T Kelly
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Caroline L Parworth
- Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA, USA
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA, USA
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, CA, USA
| | | | - Kang Sun
- Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Mark A Zondlo
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
| | - Kirk R Baker
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Armin Wisthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - John B Nowak
- Langley Research Center, National Aeronautics and Space Administration, Hampton, VA, USA
| | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ronald C Cohen
- Department of Earth and Planetary Sciences, University of California at Berkeley, Berkeley, CA, USA
| | | | - Andreas J Beyersdorf
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA, USA
| | - Gail S Tonnesen
- Region 8, U.S. Environmental Protection Agency, Denver, CO, USA
| | - Jesse O Bash
- Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Luke C Valin
- Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - James H Crawford
- Langley Research Center, National Aeronautics and Space Administration, Hampton, VA, USA
| | - Alan Fried
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - James G Walega
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
14
|
Yu Z, Elliott EM. Novel Method for Nitrogen Isotopic Analysis of Soil-Emitted Nitric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6268-6278. [PMID: 28467082 DOI: 10.1021/acs.est.7b00592] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The global inventory of NOx (NOx = NO + NO2) emissions is poorly constrained, with a large portion of the uncertainty attributed to soil NO emissions that result from soil abiotic and microbial processes. While natural abundance stable N isotopes (δ15N) in various soil N-containing compounds have proven to be a robust tracer of soil N cycling, soil δ15N-NO is rarely quantified due to the measurement difficulties. Here, we present a new method that collects soil-emitted NO through NO conversion to NO2 in excess ozone (O3) and subsequent NO2 collection in a 20% triethanolamine (TEA) solution as nitrite and nitrate for δ15N analysis using the denitrifier method. The precision and accuracy of the method were quantified through repeated collection of an analytical NO tank and intercalibration with a modified EPA NOx collection method. The results show that the efficiency of NO conversion to NO2 and subsequent NO2 collection in the TEA solution is >98% under a variety of controlled conditions. The method precision (1σ) and accuracy across the entire analytical procedure are ±1.1‰. We report the first analyses of soil δ15N-NO (-59.8‰ to -23.4‰) from wetting-induced NO pulses at both laboratory and field scales that have important implications for understanding soil NO dynamics.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Geology and Environmental Science, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Emily M Elliott
- Department of Geology and Environmental Science, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
15
|
Su X, Tie X, Li G, Cao J, Huang R, Feng T, Long X, Xu R. Effect of hydrolysis of N 2O 5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:221-229. [PMID: 27890411 DOI: 10.1016/j.scitotenv.2016.11.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Beijing, the capital of China, is a mega city with a population of >20 million. In recent years, the city has experienced heavy air pollution, with particulate matter (PM) being one of its top pollutants. In the last decade, extensive efforts have been made to characterize the sources, properties, and processes of PM in Beijing. Despite progress made by previous studies, there are still some important questions to be answered and addressed. The focus of this research is to study the impact of the heterogeneous hydrolysis of N2O5 on the formation of nitrate (NO3-) and ammonium (NH4+) in Beijing. The results show that during heavy pollution days (e.g., during 14-17 September 2015, with PM2.5 concentration over 100μg/m3), the concentrations of NO2 and O3 were high, with maxima of 90 and 240μg/m3, respectively, providing high precursors for the formation of N2O5. In addition, the aerosol and sulfate concentrations were also high, with maxima of 201μg/m3 and 23μg/m3 respectively, providing reacting surface for the heterogeneous reaction. As a result, the hydrolysis of N2O5 led to 21.0% enhancement of nitrate (NO3-) and 7.5% enhancement of ammonium (NH4+). It is worth to note that this important effect only occurred in high pollution days (PM2.5 concentration over 100μg/m3). During low-pollution periods (PM2.5 concentration <100μg/m3), the effect of hydrolysis of N2O5 on the formation of nitrate and ammonium was insignificant (variation rate <5%). This study suggests that during heavy pollution periods, the hydrolysis of N2O5 enhances the level of aerosol pollution in Beijing, and needs to be further studied in order to perform efficient air pollution control and mitigation strategies.
Collapse
Affiliation(s)
- Xing Su
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexi Tie
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Center for Atmospheric Research (NCAR), Boulder 80303, USA.
| | - Guohui Li
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Rujin Huang
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
| | - Tian Feng
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Long
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ruiguang Xu
- Key Laboratory of Aerosol Science and Technology, State Key Laboratory of Loess Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Finlayson-Pitts BJ. Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discuss 2017; 200:11-58. [DOI: 10.1039/c7fd00161d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.
Collapse
|
17
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
18
|
Van Wyngarden AL, Pérez-Montaño S, Bui JVH, Li ESW, Nelson TE, Ha KT, Leong L, Iraci LT. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities. ATMOSPHERIC CHEMISTRY AND PHYSICS 2015; 15:4225-4239. [PMID: 27212937 PMCID: PMC4874526 DOI: 10.5194/acp-15-4225-2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.
Collapse
Affiliation(s)
| | - S. Pérez-Montaño
- Department of Chemistry, San José State University, San José, CA 95192, USA
| | - J. V. H. Bui
- Department of Chemistry, San José State University, San José, CA 95192, USA
| | - E. S. W. Li
- Department of Chemistry, San José State University, San José, CA 95192, USA
| | - T. E. Nelson
- Department of Chemistry, San José State University, San José, CA 95192, USA
| | - K. T. Ha
- Department of Chemistry, San José State University, San José, CA 95192, USA
| | - L. Leong
- Department of Chemistry, San José State University, San José, CA 95192, USA
| | - L. T. Iraci
- Atmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
19
|
Gaston CJ, Riedel TP, Zhang Z, Gold A, Surratt JD, Thornton JA. Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11178-86. [PMID: 25207961 DOI: 10.1021/es5034266] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The reactive uptake of isoprene-derived epoxydiols (IEPOX) is thought to be a significant source of atmospheric secondary organic aerosol (SOA). However, the IEPOX reaction probability (γIEPOX) and its dependence upon particle composition remain poorly constrained. We report measurements of γIEPOX for trans-β-IEPOX, the predominant IEPOX isomer, on submicron particles as a function of composition, acidity, and relative humidity (RH). Particle acidity had the strongest effect. γIEPOX is more than 500 times greater on ammonium bisulfate (γ ∼ 0.05) than on ammonium sulfate (γ ≤ 1 × 10(-4)). We could accurately predict γIEPOX using an acid-catalyzed, epoxide ring-opening mechanism and a high Henry's law coefficient (1.7 × 10(8) M/atm). Suppression of γIEPOX was observed on particles containing both ammonium bisulfate and poly(ethylene glycol) (PEG-300), likely due to diffusion and solubility limitations within a PEG-300 coating, suggesting that IEPOX uptake could be self-limiting. Using the measured uptake kinetics, the predicted atmospheric lifetime of IEPOX is a few hours in the presence of highly acidic particles (pH < 0) but is greater than 25 h on less acidic particles (pH > 3). This work highlights the importance of aerosol acidity for accurately predicting the fate of IEPOX and anthropogenically influenced biogenic SOA formation.
Collapse
Affiliation(s)
- Cassandra J Gaston
- Department of Atmospheric Sciences, University of Washington , Seattle, Washington 98195 United States
| | | | | | | | | | | |
Collapse
|
20
|
You Y, Smith ML, Song M, Martin ST, Bertram AK. Liquid–liquid phase separation in atmospherically relevant particles consisting of organic species and inorganic salts. INT REV PHYS CHEM 2014. [DOI: 10.1080/0144235x.2014.890786] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Smith ML, You Y, Kuwata M, Bertram AK, Martin ST. Phase Transitions and Phase Miscibility of Mixed Particles of Ammonium Sulfate, Toluene-Derived Secondary Organic Material, and Water. J Phys Chem A 2013; 117:8895-906. [DOI: 10.1021/jp405095e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yuan You
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | - Allan K. Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | |
Collapse
|
22
|
|
23
|
Images reveal that atmospheric particles can undergo liquid-liquid phase separations. Proc Natl Acad Sci U S A 2012; 109:13188-93. [PMID: 22847443 DOI: 10.1073/pnas.1206414109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).
Collapse
|
24
|
|
25
|
Escorcia EN, Sjostedt SJ, Abbatt JPD. Kinetics of N2O5 Hydrolysis on Secondary Organic Aerosol and Mixed Ammonium Bisulfate−Secondary Organic Aerosol Particles. J Phys Chem A 2010; 114:13113-21. [DOI: 10.1021/jp107721v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Egda N. Escorcia
- Department of Chemistry, University of Toronto, Toronto, and Science and Technology Branch, Environment Canada, North York, Ontario, Canada
| | - Steven J. Sjostedt
- Department of Chemistry, University of Toronto, Toronto, and Science and Technology Branch, Environment Canada, North York, Ontario, Canada
| | - Jonathan P. D. Abbatt
- Department of Chemistry, University of Toronto, Toronto, and Science and Technology Branch, Environment Canada, North York, Ontario, Canada
| |
Collapse
|