1
|
Dyonisius MN, Petrenko VV, Smith AM, Hua Q, Yang B, Schmitt J, Beck J, Seth B, Bock M, Hmiel B, Vimont I, Menking JA, Shackleton SA, Baggenstos D, Bauska TK, Rhodes RH, Sperlich P, Beaudette R, Harth C, Kalk M, Brook EJ, Fischer H, Severinghaus JP, Weiss RF. Old carbon reservoirs were not important in the deglacial methane budget. Science 2020; 367:907-910. [PMID: 32079770 DOI: 10.1126/science.aax0504] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 01/06/2020] [Indexed: 11/02/2022]
Abstract
Permafrost and methane hydrates are large, climate-sensitive old carbon reservoirs that have the potential to emit large quantities of methane, a potent greenhouse gas, as the Earth continues to warm. We present ice core isotopic measurements of methane (Δ14C, δ13C, and δD) from the last deglaciation, which is a partial analog for modern warming. Our results show that methane emissions from old carbon reservoirs in response to deglacial warming were small (<19 teragrams of methane per year, 95% confidence interval) and argue against similar methane emissions in response to future warming. Our results also indicate that methane emissions from biomass burning in the pre-Industrial Holocene were 22 to 56 teragrams of methane per year (95% confidence interval), which is comparable to today.
Collapse
Affiliation(s)
- M N Dyonisius
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA.
| | - V V Petrenko
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
| | - A M Smith
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Q Hua
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - B Yang
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - J Schmitt
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland
| | - J Beck
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland
| | - B Seth
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland
| | - M Bock
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland
| | - B Hmiel
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
| | - I Vimont
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
| | - J A Menking
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - S A Shackleton
- Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USA
| | - D Baggenstos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland.,Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USA
| | - T K Bauska
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA.,British Antarctic Survey High Cross, Cambridge CB3 0ET, UK
| | - R H Rhodes
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA.,Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - P Sperlich
- National Institute of Water and Atmospheric Research (NIWA), 6021 Wellington, New Zealand
| | - R Beaudette
- Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USA
| | - C Harth
- Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USA
| | - M Kalk
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - E J Brook
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - H Fischer
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland
| | - J P Severinghaus
- Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USA
| | - R F Weiss
- Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Hopcroft PO, Valdes PJ, Kaplan JO. Bayesian Analysis of the Glacial-Interglacial Methane Increase Constrained by Stable Isotopes and Earth System Modeling. GEOPHYSICAL RESEARCH LETTERS 2018; 45:3653-3663. [PMID: 29937607 PMCID: PMC6001704 DOI: 10.1002/2018gl077382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
The observed rise in atmospheric methane (CH4) from 375 ppbv during the Last Glacial Maximum (LGM: 21,000 years ago) to 680 ppbv during the late preindustrial era is not well understood. Atmospheric chemistry considerations implicate an increase in CH4 sources, but process-based estimates fail to reproduce the required amplitude. CH4 stable isotopes provide complementary information that can help constrain the underlying causes of the increase. We combine Earth System model simulations of the late preindustrial and LGM CH4 cycles, including process-based estimates of the isotopic discrimination of vegetation, in a box model of atmospheric CH4 and its isotopes. Using a Bayesian approach, we show how model-based constraints and ice core observations may be combined in a consistent probabilistic framework. The resultant posterior distributions point to a strong reduction in wetland and other biogenic CH4 emissions during the LGM, with a modest increase in the geological source, or potentially natural or anthropogenic fires, accounting for the observed enrichment of δ13CH4.
Collapse
Affiliation(s)
- Peter O. Hopcroft
- Bristol Research Initiative for the Dynamic Global Environment, School of Geographical SciencesUniversity of BristolBristolUK
- Cabot InstituteUniversity of BristolBristolUK
- Now at the School of Geography, Earth and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Paul J. Valdes
- Bristol Research Initiative for the Dynamic Global Environment, School of Geographical SciencesUniversity of BristolBristolUK
- Cabot InstituteUniversity of BristolBristolUK
| | - Jed O. Kaplan
- Max Planck Institute for the Science of Human HistoryJenaGermany
- ARVE Research SARLPullySwitzerland
| |
Collapse
|
4
|
Abstract
Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375 p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680 p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28–46%, and the lifetime increased by 2–8%, with a best-estimate LGM CH4 concentration of 463–480 p.p.b.v. Simulating the observed LGM concentration requires a 46–49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources. The cause of the increase in atmospheric methane from 375 p.p.b.v. during the last ice age to 680 p.p.b.v. at the onset of Industrialization remains uncertain. Here, using an Earth system model, the authors show that we cannot reconcile this rise based on our current understanding of natural methane sources.
Collapse
|
5
|
Boardman CP, Gauci V, Watson JS, Blake S, Beerling DJ. Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens. THE NEW PHYTOLOGIST 2011; 192:898-911. [PMID: 21899554 DOI: 10.1111/j.1469-8137.2011.03849.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Wetlands were the largest source of atmospheric methane (CH(4) ) during the Last Glacial Maximum (LGM), but the sensitivity of this source to exceptionally low atmospheric CO(2) concentration ([CO(2) ]) at the time has not been examined experimentally. We tested the hypothesis that LGM atmospheric [CO(2) ] reduced CH(4) emissions as a consequence of decreased photosynthate allocation to the rhizosphere. We exposed minerotrophic fen and ombrotrophic bog peatland mesocosms to simulated LGM (c. 200 ppm) or ambient (c. 400 ppm) [CO(2) ] over 21 months (n = 8 per treatment) and measured gaseous CH(4) flux, pore water dissolved CH(4) and volatile fatty acid (VFA; an indicator of plant carbon supply to the rhizosphere) concentrations. Cumulative CH(4) flux from fen mesocosms was suppressed by 29% (P < 0.05) and rhizosphere pore water [CH(4) ] by c. 50% (P < 0.01) in the LGM [CO(2) ], variables that remained unaffected in bog mesocosms. VFA analysis indicated that changes in plant root exudates were not the driving mechanism behind these results. Our data suggest that the LGM [CO(2) ] suppression of wetland CH(4) emissions is contingent on trophic status. The heterogeneous response may be attributable to differences in species assemblage that influence the dominant CH(4) production pathway, rhizosphere supplemented photosynthesis and CH(4) oxidation.
Collapse
Affiliation(s)
- Carl P Boardman
- Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Milton Keynes MK7 6AA, UK
| | - Vincent Gauci
- Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Milton Keynes MK7 6AA, UK
| | - Jonathan S Watson
- Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Milton Keynes MK7 6AA, UK
| | - Stephen Blake
- Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Milton Keynes MK7 6AA, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|