1
|
Hernández-Medina ME, Montiel Pimentel JV, Castellanos I, Zuria I, Sánchez-Rojas G, Gaytán Oyarzun JC. Metal concentration in honeybees along an urbanization gradient in Central Mexico. ENVIRONMENTAL RESEARCH 2025; 264:120199. [PMID: 39427947 DOI: 10.1016/j.envres.2024.120199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Urbanization is rapidly increasing worldwide, leading to rising levels of pollution, one of the major drivers of environmental change; yet little is known about the relationship between urbanization intensity and pollution levels in pollinator taxa. Toxic metals are among the most common contaminants in urban environments, but few data exist on their presence in the flora and fauna of cities in Latin America, one of the world's most urbanized and biologically diverse regions. In this study, we used an urban-rural gradient approach to analyze the relationship between the concentrations of eleven metals present in adult honeybees (Apis mellifera) and the degree of urbanization within twelve landscapes in the metropolitan area of Pachuca, Hidalgo, which forms part of the megalopolis of Mexico City. Metal concentrations were compared with previously reported values contrasting honeybees from urban and rural areas after standardizing urbanization levels among published reports. The concentrations of Ag, Cr, Cu, and Zn in honeybees increased significantly with the degree of urbanization. Urbanization was not found to influence the levels of Al, Ba, Cd, Mn, and Sr in honeybees. The maximum concentrations of six metals in our urban sites (Al, Ba, Cd, Cu, Mn, and Sr) were higher than the maximum values reported for bees in other urban areas. The concentrations of two metals measured in our study (Cr and Zn) were within the range of values previously published for urban areas. Compared to other studies, we did not detect Pb in the body of honeybees. We conclude that the concentrations of Ag, Cr, Cu, and Zn present in honeybees are a quantitative reflection of the degree of urbanization in central Mexico. Our results highlight the need to monitor metal emission sources in this and other areas and investigate their effects on bees and other pollinator taxa.
Collapse
Affiliation(s)
- María Eyenith Hernández-Medina
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Janice V Montiel Pimentel
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Ignacio Castellanos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico.
| | - Iriana Zuria
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Gerardo Sánchez-Rojas
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Juan Carlos Gaytán Oyarzun
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| |
Collapse
|
2
|
Hoppstock-Mattson B, Weis D, Maton J, Hublet G, Mattielli N. Local honey reflects environmental changes in metal concentrations and lead isotope ratios during COVID-19 restrictions in Brussels, Belgium, and Vancouver, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178077. [PMID: 39721527 DOI: 10.1016/j.scitotenv.2024.178077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Effective methods for measuring sudden environmental changes are crucial for understanding how cities respond to shifts in human activity. This study examines atmospheric metal outputs during the COVID-19 restrictions using honey samples collected from three land use types in Brussels Capital Region (BCR), Belgium, and Metro Vancouver Regional District (MVRD), Canada to study changes as the result of restrictions. By comparing these cities with distinct sizes, ages, and structures, we assess how urban environments responded to pandemic-induced restrictions. We present honey samples, analyzed for metal concentration and Pb isotope ratios, to provide insights into the impacts of reduced human activity in different land use types. In BCR, significant increases of Al, Cd, Cr, Cu, Fe, Ni, Pb, Ti, and V were observed in suburban sites, while in MVRD, significant decreases of Cr, Pb, Sb, Ti, and V were observed in suburban sites. The increase in metal concentrations in BCR suburban sites indicates a shift in metal emission patterns due to changes in human activity during the restrictions. Conversely, the decrease in metal concentrations in MVRD suburban areas aligns with expectations of reduced pollution during restrictions. Pb isotope ratios of BCR vary more widely and do not show any spatial trends by land use, suggesting that Pb concentrations in BCR may be more homogenized. In MVRD, significant differences in 208Pb/206Pb were observed during the restrictions, wherein honey sampled from rural sites had more radiogenic (lower 208Pb/206Pb) Pb isotope ratios. This difference suggests that honey may be more sensitive to Pb isotope ratio changes in environments with a less extensive history of metal use, such as rural British Columbia. This research demonstrates the potential of honey as a biomonitor for sudden environmental shifts. This study contributes to a global geochemical honey database, enabling tracking of environmental trends across diverse urban settings worldwide.
Collapse
Affiliation(s)
- Brooke Hoppstock-Mattson
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Dominique Weis
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Joséphine Maton
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Geneviève Hublet
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Nadine Mattielli
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| |
Collapse
|
3
|
Knoll S, Cappai MG. Foraging Activity of Honey Bees (Apis mellifera L., 1758) and Exposure to Cadmium: a Review. Biol Trace Elem Res 2024; 202:5733-5742. [PMID: 38443599 PMCID: PMC11502587 DOI: 10.1007/s12011-024-04118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Honey bees are commonly exposed to a broad spectrum of xenobiotics, including heavy metals. Heavy metal toxicity is of concern in the context of global pollinator declines, especially since honey bees seem to be particularly susceptible to xenobiotics in general. Here we summarize current knowledge on the interplay between cadmium, one of the most toxic and mobile elements in the environment, and honey bees, the primary managed pollinator species worldwide. Overall, cadmium pollution has been shown to be ubiquitous, affecting industrial, urban and rural areas alike. Uptake of this heavy metal by plants serves as the primary route of exposure for bees (through pollen and nectar). Reported cadmium toxicity consists of lethal and sublethal effects (reduced development and growth) in both adult and larval stages, as well as various molecular responses related to detoxification and cellular antioxidant defence systems. Other effects of cadmium in honey bees include the disruption of synaptic signalling, calcium metabolism and muscle function.
Collapse
Affiliation(s)
- Stephane Knoll
- Institute of Animal Productions of the Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Maria Grazia Cappai
- Institute of Animal Productions of the Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
4
|
Liebmann J, Ware B, Mole DR, Kirkland CL, Fraser G, Waltenberg K, Bodorkos S, Huston DL, Evans NJ, McDonald BJ, Rankenburg K, Datta P, Tessalina S. A crustal Pb isotope map of southeastern Australia. Sci Data 2024; 11:1222. [PMID: 39532888 PMCID: PMC11557938 DOI: 10.1038/s41597-024-03996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lead isotopes are a powerful geochemical tracer and a popular tool applied across a broad range of scientific fields, e.g., earth sciences, archaeology, and forensic sciences. Here we present a Pb isotope dataset collected from 232 igneous samples, spanning a ca. 2.3 million km2 area in southeastern Australia, and over 3 billion years of Earth history. This contribution provides a range of isotopic maps showing the spatial variability of Pb isotopes (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb), magma source U/Pb and Th/U, and model ages. The samples selected for this study encompass U- and Th-poor media (i.e., K-feldspar), and U- and Th-bearing sampling media (i.e., whole-rock), providing a temporally and spatially resolved image of U and Th distribution in the crust, and their influence on crustal Pb through radiogenic ingrowth. This dataset has the potential to benefit a wide variety of different disciplines and is an important resource for addressing earth science questions ranging from unravelling crustal differentiation and architecture, through tracing magma source U- and Th-enrichment, to mineral deposit genesis.
Collapse
Affiliation(s)
- J Liebmann
- Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Perth, WA, 6102, Australia.
| | - B Ware
- John de Laeter Centre, Curtin University, Perth, WA, 6102, Australia
| | - D R Mole
- Geoscience Australia, Canberra, ACT 2601, Australia
- Research School of Earth Sciences, Australian National University, Acton, ACT 2601, Australia
- School of Earth Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - C L Kirkland
- Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Perth, WA, 6102, Australia
| | - G Fraser
- Geoscience Australia, Canberra, ACT 2601, Australia
| | - K Waltenberg
- Geoscience Australia, Canberra, ACT 2601, Australia
| | - S Bodorkos
- Geoscience Australia, Canberra, ACT 2601, Australia
| | - D L Huston
- Geoscience Australia, Canberra, ACT 2601, Australia
| | - N J Evans
- John de Laeter Centre, Curtin University, Perth, WA, 6102, Australia
| | - B J McDonald
- John de Laeter Centre, Curtin University, Perth, WA, 6102, Australia
| | - K Rankenburg
- John de Laeter Centre, Curtin University, Perth, WA, 6102, Australia
| | - P Datta
- Timescales of Mineral Systems Group, School of Earth and Planetary Sciences, Curtin University, Perth, WA, 6102, Australia
| | - S Tessalina
- John de Laeter Centre, Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
5
|
Flamminii F, Consalvo A, Cichelli A, Chiaudani A. Assessing Mineral Content and Heavy Metal Exposure in Abruzzo Honey and Bee Pollen from Different Anthropic Areas. Foods 2024; 13:1930. [PMID: 38928872 PMCID: PMC11202465 DOI: 10.3390/foods13121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Honey and bee pollen offer potential health benefits due to their nutrient and bioactive molecules, but they may also harbor contaminants such as heavy metals. This study aimed to assess the content of different metals, including Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Rb, Sr, Cd, Cs, Tl, Pb and U, in honey and bee pollen collected from different Abruzzo region (Italy) areas (A1, A2, A3, A4), characterized by different anthropic influences described by Corine Land Cover maps. Differences were observed in the mineral and heavy metal content associated with the influence of biotic and abiotic factors. Honeys were found to be safe in regard to non-carcinogenic risk in all the consumer categories (THQm < 1). A particular carcinogenic risk concern was identified for toddlers associated with Cr (LCTR > 1 × 10-4) in A1, A2 and A3 apiaries. Pb and Ni represent potential non-carcinogenic and carcinogenic health risks in children and adults due to bee pollen consumption, showing high values of THQm and LCTR. The results suggest the advantages of utilizing bee products to screen mineral and heavy metal content, providing valuable insights into environmental quality and potential health risks.
Collapse
Affiliation(s)
- Federica Flamminii
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.C.); (A.C.)
| | - Ada Consalvo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Via Luigi Polacchi, 11, 66100 Chieti, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.C.); (A.C.)
| | - Alessandro Chiaudani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.C.); (A.C.)
| |
Collapse
|
6
|
Taylor MP, Gillings MM, Fry KL, Barlow CF, Gunkel-Grillion P, Gueyte R, Camoin M. Tracing nickel smelter emissions using European honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122257. [PMID: 37506807 DOI: 10.1016/j.envpol.2023.122257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This study investigated trace element contamination in honey bees inhabiting urban areas around the South Pacific's largest and longest operating nickel smelter in Nouméa, New Caledonia. There remains a paucity of research on the environmental impact of nickel smelting, and to date, there has been no assessment of its effects on the popular practice of beekeeping, or whether honey bees are a suitable tracer for nickel smelting emissions. Honey bees and honey were sampled from 15 hives across Nouméa to ascertain linkages between nickel smelter emissions, environmental contamination, and trace element uptake by bees. Comparison of washed and unwashed bees revealed no significant difference in trace element concentrations, indicating trace elements bioaccumulate within the internal tissues of bees over time. Accordingly, trace element concentrations were higher in dead bees than those that were sampled live, with smelter related elements chromium, cobalt and nickel being significantly different at p < 0.05. Except for boron, trace element concentrations were consistently higher in bees than in honey, suggesting that the transfer of trace elements from bees during honey production is negligible. Elevated concentrations of potentially toxic trace elements including cobalt, chromium and nickel in bees declined with distance from smelting operations (Spearman's Rho, p < 0.05), indicating the relationship between environmental contamination and the uptake of trace elements by bees. The findings of this study emphasise potential environmental and human health risks associated with trace element contamination from nickel smelting operations and affirm the use of honey bees as a biomonitor of potentially harmful nickel smelting emissions.
Collapse
Affiliation(s)
- Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| | - Max M Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia
| | - Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia
| | - Cynthia F Barlow
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Australian Centre for Housing Research, Faculty of Arts, Business, Law and Economics, University of Adelaide, SA 5000, Australia
| | - Peggy Gunkel-Grillion
- Institute of Exact and Applied Sciences (ISEA), University of New Caledonia, BPR4, 98851, Nouméa Cedex, New Caledonia
| | - Romain Gueyte
- Centre d'Apiculture - Technopole de Nouvelle-Calédonie, 98870 Bourail, New Caledonia
| | - Margot Camoin
- Pôle Apicole - Groupement de Défense Sanitaire de la Réunion, 97418 Plaine des Cafres, Réunion, France
| |
Collapse
|
7
|
Fry KL, McPherson VJ, Gillings MR, Taylor MP. Tracing the Sources and Prevalence of Class 1 Integrons, Antimicrobial Resistance, and Trace Elements Using European Honey Bees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10582-10590. [PMID: 37417314 DOI: 10.1021/acs.est.3c03775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Surveillance of antimicrobial resistance is essential for an effective One Health response. This study explores the efficacy of European honey bees (Apis mellifera) for biomonitoring antimicrobial resistance (AMR) in urban areas. Class 1 integrons (intI1) are investigated as a universal AMR indicator, as well as associated cassette arrays and trace element contaminants at a city-wide scale. Class 1 integrons were found to be pervasive across the urban environment, occurring in 52% (75/144) of the honey bees assessed. The area of waterbodies within the honey bee's foraging radius was associated with intI1 prevalence, indicating an exposure pathway for future investigation to address. Trace element concentrations in honey bees reflected urban sources, supporting the application of this biomonitoring approach. As the first study of intI1 in honey bees, we provide insights into the environmental transfer of bacterial DNA to a keystone species and demonstrate how intI1 biomonitoring can support the surveillance of AMR.
Collapse
Affiliation(s)
- Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- EPA Science, Centre for Applied Sciences, Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia
| | - Vanessa J McPherson
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- EPA Science, Centre for Applied Sciences, Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia
| |
Collapse
|
8
|
Farias RA, Nunes CN, Quináia SP. Bees reflect better on their ecosystem health than their products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79617-79626. [PMID: 37322397 DOI: 10.1007/s11356-023-28141-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Beehives constitute a source of environmental contaminants because forager bees explore their habitat and unintentionally accumulate them while foraging for food. Therefore, this review paper investigated different bee species and products from 55 countries to identify how they can help environmental biomonitoring by giving an overview of the past 11 years. Thereby is presented in this study the beehive's use as a bioindicator for metals, analytical techniques, data analysis, environmental compartments, common inorganic contaminants, reference thresholds for some metal concentrations in bees and honey, and other factors over more than 100 references. Most authors agree that the honey bee is a suitable bioindicator to assess toxic metal contamination, and among its products, propolis, pollen, and beeswax are more suited than honey. However, in some situations, when comparing bees with their products, bees are more efficient as potential environmental biomonitors. Some factors such as the colony location, floral sources, regional effects, and activities surrounding the apiary influence the bees, and the composition of their products is reflected by alterations in their chemical profile, making them suitable bioindicators.
Collapse
Affiliation(s)
- Renata Almeida Farias
- Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antônio Dalla Vecchia, 838, CEP 85040-167 - Vila Carli, Guarapuava, PR, Brazil.
| | - Chalder Nogueira Nunes
- Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antônio Dalla Vecchia, 838, CEP 85040-167 - Vila Carli, Guarapuava, PR, Brazil
| | - Sueli Pércio Quináia
- Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antônio Dalla Vecchia, 838, CEP 85040-167 - Vila Carli, Guarapuava, PR, Brazil
| |
Collapse
|
9
|
Pellecchia M, Papa G, Barbato M, Capitani G, Negri I. Origin of non-exhaust PM in cities by individual analysis of particles collected by honey bees (Apis mellifera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121885. [PMID: 37236592 DOI: 10.1016/j.envpol.2023.121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Urban areas present multiple challenges to scientists interested in unraveling the source, transport, and fate of airborne particulate matter (PM). Airborne PM consists of a heterogeneous mixture of particles with different sizes, morphologies, and chemical compositions. However, standard air quality stations only detect the mass concentration of PM mixtures with aerodynamic diameters ≤10 μm (PM10) and/or ≤ 2.5 μm (PM2.5). During honey bee foraging flights, airborne PM up to 10 μm in size attaches to their bodies, making them suitable for collecting spatiotemporal data on airborne PM. The individual particulate chemistry of this PM can be assessed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy on a sub-micrometer scale, allowing accurate identification and classification of the particles. Herein, we analyzed the PM fractions of 10-2.5 μm, 2.5-1 μm, and below 1 μm in average geometric diameter collected by bees from hives located in the city of Milan, Italy. Bees showed contamination by natural dust, originating from soil erosion and rock outcropping in the foraging area, and particles with recurrent heavy metal content, most likely attributed to vehicular braking systems and possibly tires (non-exhaust PM). Notably, approximately 80% of non-exhaust PM was ≤1 μm in size. This study provides a possible alternative strategy to apportion the finer fraction of PM in urban areas and determine citizens' exposure. Our findings may also prompt decision-makers to issue policy addressal for non-exhaust pollution, especially for the ongoing restructuring of European regulations on mobility and the shift toward electric vehicles whose contribution to PM pollution is debated.
Collapse
Affiliation(s)
- Marco Pellecchia
- KOINE'- Consulenze Ambientali, Via Parmigianino 13, Montechiarugolo, Parma, Italy
| | - Giulia Papa
- Dipartimento di Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, Italy; Istituto per la Protezione Sostenibile Delle Piante, Consiglio Nazionale Delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Mario Barbato
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, Italy; Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, Viale Palatucci snc, Messina, Italy
| | - Giancarlo Capitani
- Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano-Bicocca, Piazza della Scienza 4, Milan, Italy
| | - Ilaria Negri
- Dipartimento di Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, Italy.
| |
Collapse
|
10
|
Reich MS, Kindra M, Dargent F, Hu L, Flockhart DTT, Norris DR, Kharouba H, Talavera G, Bataille CP. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Collapse
|
11
|
Smith KE, Weis D. Metal and Pb isotope characterization of particulates encountered by foraging honeybees in Metro Vancouver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154181. [PMID: 35231520 DOI: 10.1016/j.scitotenv.2022.154181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Honeybees and their products are useful biomonitors of metal distribution in urban centres. This study investigates particulate sources that foraging honeybees encounter in Metro Vancouver. Metal concentrations and lead (Pb) isotope compositions were measured in topsoil (top 2 cm, n = 14) colocated with existing research hives and in particulate matter ≤10 μm (PM10, n = 27) collected throughout Metro Vancouver (British Columbia, Canada) during honeybee foraging hours over the course of one year (2018-2019). Topsoil served as a proxy for resuspended/coarse PM and, together with PM10, covered the size range of particulates collected by foraging bees both actively (pollen) and passively (dusts). Particulate matter ≤ 2.5 μm (PM2.5, n = 7) was collected on Whistler Mountain during two transpacific events (in spring 2014) to estimate the possible effect of transpacific particulate input on the Pb isotope composition of Western Canada aerosols. Metal concentrations and Pb isotopes in topsoil and PM from this study and bees and hive products from previous studies (collected in 2014-2019) reveal similar spatial trends: there were elevated amounts of some metals associated with anthropogenic activity (e.g., Pb, Zn, Sb) and less radiogenic Pb isotope compositions in most samples collected nearer to the city centre in comparison to samples collected in more suburban or rural areas. Bees and hive products have a smoothing effect on the spatiotemporal variability of the data; metal concentrations and Pb isotope compositions vary less in hive products than in PM, presumably because bees interact with multiple environmental domains while foraging. Wildfire smoke and transpacific input are phenomena that cause measurable shifts in Pb isotope compositions of PM, but not in hive matrices. The findings highlight important considerations to make (i.e., the smoothing effect) when linking public health data and decisions with environmental data from hive products in urban centres.
Collapse
Affiliation(s)
- Kate E Smith
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall Vancouver, BC V6T 1Z4, Canada.
| | - Dominique Weis
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Chételat J, Cousens B, Hebert CE, Jung TS, Mundy L, Thomas PJ, Zhang S. Isotopic evidence for bioaccumulation of aerosol lead in fish and wildlife of western Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119074. [PMID: 35231539 DOI: 10.1016/j.envpol.2022.119074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a toxic element which is released as a result of anthropogenic activities, and Pb stable isotope ratios provide a means to distinguish sources and transport pathways in receiving environments. In this study, isotopes of bioaccumulated Pb (204Pb, 206Pb, 207Pb, 208Pb) were examined for diverse terrestrial and aquatic biota from three areas in western Canada: (a) otter, marten, gulls, terns, and wood frogs in the Alberta Oil Sands Region (AOSR), (b) fish, plankton, and gulls of Great Slave Lake (Yellowknife, Northwest Territories), and (c) wolverine from the Yukon. Aquatic and terrestrial biota from different habitats and a broad geographic area showed a remarkable similarity in their Pb isotope composition (grand mean ± 1 standard deviation: 206Pb/207Pb = 1.189 ± 0.007, 208Pb/207Pb = 2.435 ± 0.009, n = 116). Comparisons with Pb isotope ratios of local sources and environmental receptors showed that values in biota were most similar to those of atmospheric Pb, either measured in local aerosols influenced by industrial activities in the AOSR or in lichens (an aerosol proxy) near Yellowknife and in the Yukon. Biotic Pb isotope ratios were different from those of local geogenic Pb. Although the Pb isotope measurements could not unambiguously identify the specific anthropogenic sources of atmospheric Pb in biota, initial evidence points to the importance of fossil fuels currently used in transportation and power generation. Further research should characterize bioavailable chemical species of Pb in aerosols and important emission sources in western Canada.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada.
| | - Brian Cousens
- Isotope Geochemistry and Geochronology Research Centre, Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Craig E Hebert
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Thomas S Jung
- Yukon Department of Environment, Whitehorse, Yukon, Y1A 2C6, Canada
| | - Lukas Mundy
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Shuangquan Zhang
- Isotope Geochemistry and Geochronology Research Centre, Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
13
|
Costa A, Veca M, Barberis M, Cicerinegri L, Tangorra FM. Predicting atmospheric cadmium and lead using honeybees as atmospheric heavy metals pollution indicators. Results of a monitoring survey in Northern Italy. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1929523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Annamaria Costa
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Faculty of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | | | | | - Lorenzo Cicerinegri
- Dipartimento di Scienze Farmaceutiche, Apicoltura Veca, Università degli Studi di Milano, Milano, Italy
| | - Francesco Maria Tangorra
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Faculty of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
14
|
Grainger MNC, Klaus H, Hewitt N, French AD. Investigation of inorganic elemental content of honey from regions of North Island, New Zealand. Food Chem 2021; 361:130110. [PMID: 34033993 DOI: 10.1016/j.foodchem.2021.130110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 01/28/2023]
Abstract
Determination of geographical origin of honey is important to consumers to confirm authenticity. This study investigated the elemental fingerprint of 181 honey samples collected from apiary sites in six regions of North Island, New Zealand to determine if differences were observed due to region of collection or land use surrounding the hive (e.g. agricultural, rural, urban). Using principal component analysis, soil related elements (Ca, K, Mg, Mn, Na) provided 75.2% discrimination of samples in the first two principal components. Overall, low concentrations of heavy metals were observed; lead was present in close proximity to highly trafficked roads (28.1% of samples; 9.50-76.5 µg kg-1) and cadmium was primarily present in honey collected from agricultural land in the Waikato (<51.6 µg kg-1). The use of an elemental fingerprint of New Zealand honey may be advantageous to determine the geographical origin compared to honey produced from other countries.
Collapse
Affiliation(s)
- Megan N C Grainger
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Hannah Klaus
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Nyssa Hewitt
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Amanda D French
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| |
Collapse
|
15
|
Smith KE, Weis D, Scott SR, Berg CJ, Segal Y, Claeys P. Regional and global perspectives of honey as a record of lead in the environment. ENVIRONMENTAL RESEARCH 2021; 195:110800. [PMID: 33529648 DOI: 10.1016/j.envres.2021.110800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Honey from Apis mellifera is a useful and inexpensive biomonitor for mapping metal distributions in urban centers. The sampling resolution of a biomonitoring survey (e.g., city versus global scale) determines which geochemical processes are reflected in the results. This study presents Pb isotopic compositions and metal concentrations in honey from around the world, sampled at varying resolutions: honey from Canada (n = 21), the United States (n = 111), Belgium (n = 25), and New Zealand (n = 10), with additional samples from Afghanistan, Brazil, Cuba, Germany, Liberia, Taiwan, and Turkey. Honey was sampled at high resolution in two uniquely different land-use settings (New York Metro Area and the Hawaiian island of Kaua'i), at regional-scale resolution in eastern North America (including the Great Lakes region), and Pb isotopic compositions of all samples were compared on a global scale. At high sampling resolution, metal concentrations in honey reveal spatially significant concentration gradients: in New York City, metals associated with human activity and city infrastructure (e.g., Pb, Sb, Ti, V) are more concentrated in honey collected within the city compared to honey from upstate New York, and metal concentrations in honey from Kaua'i suggest polluting effects of nearby agricultural operations. At lower resolution (regional and global scales), lead isotopic compositions of honey are more useful than metal concentrations in revealing large-scale Pb processes (e.g., the enduring legacy of global leaded gasoline use throughout the twentieth century) and the continental origin of the honey. Lead isotopic compositions of honey collected from N. America (especially from the eastern USA) are more radiogenic (206Pb/207Pb: 1.132-1.253, 208Pb/206Pb: 2.001-2.129) compared to European honey, and honey from New Zealand, which has the least radiogenic isotopic compositions measured in this study (206Pb/207Pb: 1.077-1.160, 208Pb/206Pb: 2.090-2.187). Thus, biomonitoring using honey at different resolutions reflects differing processes and, to some extent, a honey terroir defined by the Pb isotopic composition. The data presented here provide important (and current) global context for future studies that utilize Pb isotopes in honey. Moreover, this study exhibits community science in action, as most of the honey was collected by collaborators around the world, working directly with local apiarists and hobby beekeepers.
Collapse
Affiliation(s)
- Kate E Smith
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Dominique Weis
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sean R Scott
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Yaffa Segal
- New Rochelle High School, New Rochelle, NY, USA
| | - Philippe Claeys
- Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Andreani G, Ferlizza E, Cabbri R, Fabbri M, Bellei E, Isani G. Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects ( Vespa crabro and Vespa velutina): A Molecular Perspective. Int J Mol Sci 2020; 22:E228. [PMID: 33379365 PMCID: PMC7797950 DOI: 10.3390/ijms22010228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
The recent introduction of the Asian yellow-legged hornet, Vespa velutina, into Europe has raised concern regarding the threat to honeybees and the competition with the European hornet, Vespa crabro. The aim of this study was to investigated essential (Mg, Fe, Zn, Cu) and non-essential (Cd and Pb) elements in these two species. Element concentrations were determined in the whole body and separately in the head, thorax and abdomen using atomic absorption spectrometry (AAS). The changes in essential element concentration and speciation during metamorphosis were also studied using size exclusion chromatography followed by AAS and proteomic analysis. In both species, the essential elements were more concentrated in the abdomen due to the presence of fat bodies. Magnesium, Fe and Zn concentrations were significantly higher in V. crabro than in V. velutina and could have been related to the higher aerobic energy demand of the former species required to sustain foraging flight. Low concentrations of Cd and Pb were indicative of low environmental exposure. The concentration and speciation of essential elements, particularly Fe, varied among the developmental stages, indicating a modification of ligand preferences during metamorphosis. Overall, the results in the present study provide a better understanding of the hornet metal metabolism and a foundation for additional studies.
Collapse
Affiliation(s)
- Giulia Andreani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| | - Enea Ferlizza
- Department of Experimental Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, via Belmeloro 8, 40126 Bologna, Italy
| | - Riccardo Cabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| | - Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, via del pozzo 71, 41124 Modena, Italy;
| | - Gloria Isani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| |
Collapse
|