1
|
Wilson CF, Marcq E, Gillmann C, Widemann T, Korablev O, Mueller NT, Lefèvre M, Rimmer PB, Robert S, Zolotov MY. Possible Effects of Volcanic Eruptions on the Modern Atmosphere of Venus. SPACE SCIENCE REVIEWS 2024; 220:31. [PMID: 38585189 PMCID: PMC10997549 DOI: 10.1007/s11214-024-01054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024]
Abstract
This work reviews possible signatures and potential detectability of present-day volcanically emitted material in the atmosphere of Venus. We first discuss the expected composition of volcanic gases at present time, addressing how this is related to mantle composition and atmospheric pressure. Sulfur dioxide, often used as a marker of volcanic activity in Earth's atmosphere, has been observed since late 1970s to exhibit variability at the Venus' cloud tops at time scales from hours to decades; however, this variability may be associated with solely atmospheric processes. Water vapor is identified as a particularly valuable tracer for volcanic plumes because it can be mapped from orbit at three different tropospheric altitude ranges, and because of its apparent low background variability. We note that volcanic gas plumes could be either enhanced or depleted in water vapor compared to the background atmosphere, depending on magmatic volatile composition. Non-gaseous components of volcanic plumes, such as ash grains and/or cloud aerosol particles, are another investigation target of orbital and in situ measurements. We discuss expectations of in situ and remote measurements of volcanic plumes in the atmosphere with particular focus on the upcoming DAVINCI, EnVision and VERITAS missions, as well as possible future missions.
Collapse
Affiliation(s)
- Colin F. Wilson
- European Space Agency, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
- Physics Dept, Oxford University, Oxford, OX1 3PU UK
| | - Emmanuel Marcq
- LATMOS/IPSL, UVSQ Sorbonne Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Cédric Gillmann
- Institut für Geophysik, Geophysical Fluid Dynamics, ETH Zurich, Sonneggstraße 5, 8092 Zürich, Switzerland
| | - Thomas Widemann
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 5 place Jules Janssen, 92195 Meudon, France
- Université Paris-Saclay, UVSQ, DYPAC, 78000 Versailles, France
| | - Oleg Korablev
- Space Research Institute (IKI), Russian Academy of Sciences, Moscow, 117997 Russia
| | - Nils T. Mueller
- Institute for Planetary Research, DLR, Rutherfordstraße 2, 12489 Berlin, Germany
- Institute of Geosciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany
| | - Maxence Lefèvre
- LATMOS/IPSL, UVSQ Sorbonne Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| | - Séverine Robert
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - Mikhail Y. Zolotov
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 USA
| |
Collapse
|
2
|
Herrick RR, Hensley S. Surface changes observed on a Venusian volcano during the Magellan mission. Science 2023; 379:1205-1208. [PMID: 36921020 DOI: 10.1126/science.abm7735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Venus has a geologically young surface, but it is unknown whether it has ongoing active volcanism. From 1990 to 1992, the Magellan spacecraft imaged the planet's surface, using synthetic aperture radar. We examined volcanic areas on Venus that were imaged two or three times by Magellan and identified an ~2.2-square-kilometer volcanic vent that changed shape in the 8-month interval between two radar images. Additional volcanic flows downhill from the vent are visible in the second-epoch images, although we cannot rule out that they were present but invisible in the first epoch because of differences in imaging geometry. We interpret these results as evidence of ongoing volcanic activity on Venus.
Collapse
Affiliation(s)
- Robert R Herrick
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Scott Hensley
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
3
|
Way MJ, Ostberg C, Foley BJ, Gillmann C, Höning D, Lammer H, O’Rourke J, Persson M, Plesa AC, Salvador A, Scherf M, Weller M. Synergies Between Venus & Exoplanetary Observations: Venus and Its Extrasolar Siblings. SPACE SCIENCE REVIEWS 2023; 219:13. [PMID: 36785654 PMCID: PMC9911515 DOI: 10.1007/s11214-023-00953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries. Spacecraft observations began with Mariner 2 in 1962 when we confirmed that Venus was a hothouse planet, rather than the tropical paradise science fiction pictured. As long as our level of exploration and understanding of Venus remains far below that of Mars, major questions will endure. On the other hand, exoplanetary science has grown leaps and bounds since the discovery of Pegasus 51b in 1995, not too long after the golden years of Venus spacecraft missions came to an end with the Magellan Mission in 1994. Multi-million to billion dollar/euro exoplanet focused spacecraft missions such as JWST, and its successors will be flown in the coming decades. At the same time, excitement about Venus exploration is blooming again with a number of confirmed and proposed missions in the coming decades from India, Russia, Japan, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). Here we review what is known and what we may discover tomorrow in complementary studies of Venus and its exoplanetary cousins.
Collapse
Affiliation(s)
- M. J. Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 USA
- Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Colby Ostberg
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521 USA
| | - Bradford J. Foley
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Cedric Gillmann
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005 USA
| | - Dennis Höning
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| | - Joseph O’Rourke
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Moa Persson
- Institut de Recherche en Astrophysique et Planétologie, Centre National de la Recherche Scientifique, Université Paul Sabatier – Toulouse III, Centre National d’Etudes Spatiales, Toulouse, France
| | | | - Arnaud Salvador
- Department of Astronomy and Planetary Science, Northern Arizona University, Box 6010, Flagstaff, AZ 86011 USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, AZ USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
- Institute for Geodesy, Technical University, Graz, Austria
| | - Matthew Weller
- Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058 USA
| |
Collapse
|
4
|
Limaye SS, Mogul R, Baines KH, Bullock MA, Cockell C, Cutts JA, Gentry DM, Grinspoon DH, Head JW, Jessup KL, Kompanichenko V, Lee YJ, Mathies R, Milojevic T, Pertzborn RA, Rothschild L, Sasaki S, Schulze-Makuch D, Smith DJ, Way MJ. Venus, an Astrobiology Target. ASTROBIOLOGY 2021; 21:1163-1185. [PMID: 33970019 DOI: 10.1089/ast.2020.2268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.
Collapse
Affiliation(s)
- Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, Cal Poly Pomona, Pomona, California, USA
| | - Kevin H Baines
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - James A Cutts
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - James W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | | | - Vladimir Kompanichenko
- Institute for Complex Analysis of Regional Problems, Russian Academy of Sciences, Birobidzhan, Russia
| | - Yeon Joo Lee
- Zentrum für Astronomie und Astrophysik, Technical University of Berlin, Berlin, Germany
| | - Richard Mathies
- Chemistry Department and Space Sciences Lab, University of California, Berkeley, Berkeley, California, USA
| | - Tetyana Milojevic
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rosalyn A Pertzborn
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Satoshi Sasaki
- School of Health Sciences, Tokyo University of Technology, Hachioji, Japan
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Berlin, Germany
- German Research Centre for Geosciences (GFZ), Potsdam, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, New York, New York, USA
| |
Collapse
|
5
|
Turbet M, Bolmont E, Chaverot G, Ehrenreich D, Leconte J, Marcq E. Day-night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 2021; 598:276-280. [PMID: 34645997 DOI: 10.1038/s41586-021-03873-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022]
Abstract
Earth has had oceans for nearly four billion years1 and Mars had lakes and rivers 3.5-3.8 billion years ago2. However, it is still unknown whether water has ever condensed on the surface of Venus3,4 because the planet-now completely dry5-has undergone global resurfacing events that obscure most of its history6,7. The conditions required for water to have initially condensed on the surface of Solar System terrestrial planets are highly uncertain, as they have so far only been studied with one-dimensional numerical climate models3 that cannot account for the effects of atmospheric circulation and clouds, which are key climate stabilizers. Here we show using three-dimensional global climate model simulations of early Venus and Earth that water clouds-which preferentially form on the nightside, owing to the strong subsolar water vapour absorption-have a strong net warming effect that inhibits surface water condensation even at modest insolations (down to 325 watts per square metre, that is, 0.95 times the Earth solar constant). This shows that water never condensed and that, consequently, oceans never formed on the surface of Venus. Furthermore, this shows that the formation of Earth's oceans required much lower insolation than today, which was made possible by the faint young Sun. This also implies the existence of another stability state for present-day Earth: the 'steam Earth', with all the water from the oceans evaporated into the atmosphere.
Collapse
Affiliation(s)
- Martin Turbet
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland.
| | - Emeline Bolmont
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland
| | - Guillaume Chaverot
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland
| | - David Ehrenreich
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland
| | - Jérémy Leconte
- Laboratoire d'astrophysique de Bordeaux, Université de Bordeaux, CNRS, B18N, Pessac, France
| | - Emmanuel Marcq
- LATMOS/IPSL, UVSQ, Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| |
Collapse
|
6
|
López I, Hansen VL. Geologic Map of the Niobe Planitia Region (I-2467), Venus. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2020; 7:e2020EA001171. [PMID: 33134436 PMCID: PMC7583383 DOI: 10.1029/2020ea001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
We present a 1:10M scale geologic map of the Niobe Planitia region of Venus (0°N-57°N/60°E-180°E). We herein refer to this area as the Niobe Map Area (NMA). Geologic mapping employed NASA Magellan synthetic aperture radar and altimetry data. The NMA geologic map and its companion Aphrodite Map Area (AMA) cover ~25% of Venus' surface, providing an important and unique perspective to study global and regional geologic processes. Both areas display a regional coherence of preserved geologic patterns that record three sequential geologic eras: the ancient era, the Artemis superstructure era, and the youngest fracture zone era. The NMA preserves a limited record of the fracture zone era, contrary to the AMA. However, the NMA hosts a diverse and rich assemblage of material and structures of the ancient era and structures that define the Artemis superstructure era. These two eras likely overlap in time and account for the formation of basement materials and lower plain units. Impact craters formed throughout the NMA recorded history. Approximately 40% of the impact craters show interior flood deposits, indicating that a significant number of NMA impact craters experienced notable geological events after impact crater formation. This and other geologic relations record a geohistory inconsistent with postulated global catastrophic resurfacing. Together, the NMA and the AMA record a rich geologic history of the surface of Venus that provide a framework to formulate new working hypotheses of Venus evolution and to plan future studies of the planet.
Collapse
Affiliation(s)
- Iván López
- Departamento de Biología y Geología, Física y Química InorgánicaUniversidad Rey Juan CarlosMadridSpain
| | - Vicki L. Hansen
- Department of Earth and Environmental SciencesUniversity of Minnesota‐DuluthDuluthMNUSA
| |
Collapse
|
7
|
Hansen VL, López I. Geologic Map of Aphrodite Map Area (AMA; I-2476), Venus. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2020; 7:e2019EA001066. [PMID: 33134435 PMCID: PMC7583386 DOI: 10.1029/2019ea001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
We present a 1:10-M-scale geologic map of the Aphrodite Map Area (AMA) of Venus (0°N-57°S/60-80°E). Geologic mapping employed NASA Magellan synthetic aperture radar and altimetry data. The AMA geologic map, with detailed structural elements and geologic units covering over one eighth of Venus' surface, affords an important and unique perspective to test models of global-scale geologic processes through time. Geologic relations record a history inconsistent with global catastrophic resurfacing. The AMA displays a regional coherence of preserved geologic patterns that record three sequential geologic eras: the ancient era, the Artemis superstructure era, and the youngest fracture zone era. The ancient era and Artemis superstructure, with a footprint covering more than 25% of the surface, are recorded in the Niobe Map Area to the north. The latter two eras likely overlap in time. The fracture zone domain, part of a globally extensive province, marks the most spatially focused tectonomagmatic domain within the AMA. Impact craters are both cut by and overprint fracture zone structures. Twelve percent of AMA impact craters that occur within the fracture zone domain predate or formed during fracture zone development. This observation indicates the relative youth of the fracture zone era and is consistent with the possibility that this domain remains geologically active. The AMA records a rich geologic history of large tract of the surface of Venus and provides an important framework to formulate new working hypotheses of Venus evolution and contribute to planning future studies of the surface of planets.
Collapse
Affiliation(s)
- V. L. Hansen
- Department of Earth and Environmental SciencesUniversity of Minnesota, DuluthDuluthMNUSA
| | - I. López
- Department of Biology and Geology, Physics and Inorganic Chemistry, Área de GeologíaUniversidad Rey Juan CarlosMóstoles, MadridSpain
| |
Collapse
|
8
|
Hansen VL. Global tectonic evolution of Venus, from exogenic to endogenic over time, and implications for early Earth processes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0412. [PMID: 30275161 DOI: 10.1098/rsta.2017.0412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Venus provides a rich arena in which to stretch one's tectonic imagination with respect to non-plate tectonic processes of heat transfer on an Earth-like planet. Venus is similar to Earth in density, size, inferred composition and heat budget. However, Venus' lack of plate tectonics and terrestrial surficial processes results in the preservation of a unique surface geologic record of non-plate tectonomagmatic processes. In this paper, I explore three global tectonic domains that represent changes in global conditions and tectonic regimes through time, divided respectively into temporal eras. Impactors played a prominent role in the ancient era, characterized by thin global lithosphere. The Artemis superstructure era highlights sublithospheric flow processes related to a uniquely large super plume. The fracture zone complex era, marked by broad zones of tectonomagmatic activity, witnessed coupled spreading and underthrusting, since arrested. These three tectonic regimes provide possible analogue models for terrestrial Archaean craton formation, continent formation without plate tectonics, and mechanisms underlying the emergence of plate tectonics. A bolide impact model for craton formation addresses the apparent paradox of both undepleted mantle and growth of Archaean crust, and recycling of significant Archaean crust to the mantle.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Vicki L Hansen
- Department of Earth and Environmental Sciences, University of Minnesota Duluth, 1114 Kirby Drive, Duluth, MN 55812, USA
| |
Collapse
|
9
|
Platz T, Byrne PK, Massironi M, Hiesinger H. Volcanism and tectonism across the inner solar system: an overview. ACTA ACUST UNITED AC 2014. [DOI: 10.1144/sp401.22] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractVolcanism and tectonism are the dominant endogenic means by which planetary surfaces change. This book, in general, and this overview, in particular, aim to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on planetary bodies across the inner solar system – a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic processes are enormous, and vary across the inventory of inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this review are but a primer to the expansive field of planetary volcanism and tectonism. In addition to this extended introductory contribution, this Special Publication features 21 dedicated research articles about volcanic and tectonic processes manifest across the inner solar system. Those articles are summarized at the end of this review.
Collapse
Affiliation(s)
- T. Platz
- Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719-2395, USA
- Freie Universität Berlin, Institute of Geological Sciences, Planetary Sciences & Remote Sensing, Malteserstrasse 74-100, 12249 Berlin, Germany
| | - P. K. Byrne
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Boulevard, Houston, TX 77058, USA
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305, USA
| | - M. Massironi
- Dipartimento di Geoscienze, Universita' degli Studi di Padova, via G. Gradenigo 6, 35131 Padova, Italy
| | - H. Hiesinger
- Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
10
|
Head JW, Coffin MF. Large Igneous Provinces: A Planetary Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/gm100p0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Zuber MT, Smith DE, Watkins MM, Asmar SW, Konopliv AS, Lemoine FG, Melosh HJ, Neumann GA, Phillips RJ, Solomon SC, Wieczorek MA, Williams JG, Goossens SJ, Kruizinga G, Mazarico E, Park RS, Yuan DN. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science 2012; 339:668-71. [PMID: 23223395 DOI: 10.1126/science.1231507] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.
Collapse
Affiliation(s)
- Maria T Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Arkani-Hamed J, Schaber GG, Strom RG. Constraints on the thermal evolution of Venus inferred from Magellan data. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/93je00052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
|
14
|
|
15
|
Herrick RR, Rumpf ME. Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003722] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 2010; 328:605-8. [PMID: 20378775 DOI: 10.1126/science.1186785] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The questions of whether Venus is geologically active and how the planet has resurfaced over the past billion years have major implications for interior dynamics and climate change. Nine "hotspots"--areas analogous to Hawaii, with volcanism, broad topographic rises, and large positive gravity anomalies suggesting mantle plumes at depth--have been identified as possibly active. This study used variations in the thermal emissivity of the surface observed by the Visible and Infrared Thermal Imaging Spectrometer on the European Space Agency's Venus Express spacecraft to identify compositional differences in lava flows at three hotspots. The anomalies are interpreted as a lack of surface weathering. We estimate the flows to be younger than 2.5 million years and probably much younger, about 250,000 years or less, indicating that Venus is actively resurfacing.
Collapse
Affiliation(s)
- Suzanne E Smrekar
- Jet Propulsion Laboratory, Mail Stop 183-501, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the Moon and the Earth were essentially dry immediately after the formation of the Moon-by a giant impact on the proto-Earth-and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is supported by U-Pb and I-Xe chronologies, which show that water delivery peaked approximately 100 million years after the isolation of the Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars.
Collapse
|
18
|
|
19
|
Bondarenko NV, Head JW. Crater-associated dark diffuse features on Venus: Properties of surficial deposits and their evolution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003163] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Mueller N, Helbert J, Hashimoto GL, Tsang CCC, Erard S, Piccioni G, Drossart P. Venus surface thermal emission at 1μm in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003118] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Anderson FS, Smrekar SE. Global mapping of crustal and lithospheric thickness on Venus. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2004je002395] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Basilevsky AT, Head JW. Impact craters on regional plains on Venus: Age relations with wrinkle ridges and implications for the geological evolution of Venus. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002473] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Johnson CL. A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je001962] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
|
25
|
|
26
|
Ivanov MA, Head JW. Geology of Venus: Mapping of a global geotraverse at 30°N latitude. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001265] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Basilevsky AT, Head JW. Rifts and large volcanoes on Venus: Global assessment of their age relations with regional plains. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000je001260] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Herrick RR, Sharpton VL. Implications from stereo-derived topography of Venusian impact craters. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001225] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Nimmo F, Stevenson DJ. Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001216] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
DeShon HR, Young DA, Hansen VL. Geologic evolution of southern Rusalka Planitia, Venus. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Pierazzo E, Melosh HJ. Understanding oblique impacts from experiments, observations, and modeling. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES 2000; 28:141-167. [PMID: 11583040 DOI: 10.1146/annurev.earth.28.1.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Natural impacts in which the projectile strikes the target vertically are virtually nonexistent. Nevertheless, our inherent drive to simplify nature often causes us to suppose most impacts are nearly vertical. Recent theoretical, observational, and experimental work is improving this situation, but even with the current wealth of studies on impact cratering, the effect of impact angle on the final crater is not well understood. Although craters' rims may appear circular down to low impact angles, the distribution of ejecta around the crater is more sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. Experimental studies established that crater dimensions depend only on the vertical component of the impact velocity. The shock wave generated by the impact weakens with decreasing impact angle. As a result, melting and vaporization depend on impact angle; however, these processes do not seem to depend on the vertical component of the velocity alone. Finally, obliquity influences the fate of the projectile: in particular, the amount and velocity of ricochet are a strong function of impact angle.
Collapse
Affiliation(s)
- E Pierazzo
- Lunar and Planetary Lab., University of Arizona, Tucson, 84721, USA.
| | | |
Collapse
|
32
|
Collins GC, Head JW, Basilevsky AT, Ivanov MA. Evidence for rapid regional plains emplacement on Venus from the population of volcanically embayed impact craters. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je001041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klaasen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK. Does Europa have a subsurface ocean? Evaluation of the geological evidence. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je000628] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Wichman RW. Internal crater modification on Venus: Recognizing crater-centered volcanism by changes in floor morphometry and floor brightness. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1997je000428] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
|
36
|
Copp DL, Guest JE, Stofan ER. New insights into Coronae evolution: Mapping on Venus. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/97je03182] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Gilmore MS, Collins GC, Ivanov MA, Marinangeli L, Head JW. Style and sequence of extensional structures in tessera terrain, Venus. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je01322] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Hauck SA, Phillips RJ, Price MH. Venus: Crater distribution and plains resurfacing models. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je00400] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
McGovern PJ, Solomon SC. Growth of large volcanoes on Venus: Mechanical models and implications for structural evolution. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je01046] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Williams-Jones G, Williams-Jones AE, Stix J. The nature and origin of Venusian canali. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je00243] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
|
42
|
Namiki N, Solomon SC. Volcanic degassing of argon and helium and the history of crustal production on Venus. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/97je03032] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
McGovern PJ, Solomon SC. Filling of flexural moats around large volcanoes on Venus: Implications for volcano structure and global magmatic flux. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97je01318] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Gilmore MS, Ivanov MA, Head JW, Basilevsky AT. Duration of tessera deformation on Venus. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97je00965] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Ivanov MA, Head JW. Tessera terrain on Venus: A survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je01245] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Brown CD, Grimm RE. Lithospheric rheology and flexure at Artemis Chasma, Venus. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je00834] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Smrekar SE, Parmentier EM. The interaction of mantle plumes with surface thermal and chemical boundary layers: Applications to hotspots on Venus. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95jb02877] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Grosfils EB, Head JW. The timing of giant radiating dike swarm emplacement on Venus: Implications for resurfacing of the planet and its subsequent evolution. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Price MH, Watson G, Suppe J, Brankman C. Dating volcanism and rifting on Venus using impact crater densities. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95je03017] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
|