1
|
Blaney DL, Hibbitts K, Diniega S, Davies AG, Clark RN, Green RO, Hedman M, Langevin Y, Lunine J, McCord TB, Murchie S, Paranicas C, Seelos F, Soderblom JM, Cable ML, Eckert R, Thompson DR, Trumbo SK, Bruce C, Lundeen SR, Bender HA, Helmlinger MC, Moore LB, Mouroulis P, Small Z, Tang H, Van Gorp B, Sullivan PW, Zareh S, Rodriquez JI, McKinley I, Hahn DV, Bowers M, Hourani R, Bryce BA, Nuding D, Bailey Z, Rettura A, Zarate ED. The Mapping Imaging Spectrometer for Europa (MISE). SPACE SCIENCE REVIEWS 2024; 220:80. [PMID: 39398102 PMCID: PMC11464581 DOI: 10.1007/s11214-024-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/25/2024] [Indexed: 10/15/2024]
Abstract
The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to "understand the habitability of Europa's ocean through composition and chemistry" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to "explore Europa to investigate its habitability." MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.
Collapse
Affiliation(s)
- Diana L. Blaney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Karl Hibbitts
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Serina Diniega
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Robert O. Green
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | | | | | - Scott Murchie
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Chris Paranicas
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Frank Seelos
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | | | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Regina Eckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - David R. Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Carl Bruce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Sarah R. Lundeen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Holly A. Bender
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mark C. Helmlinger
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lori B. Moore
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Pantazis Mouroulis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Zachary Small
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Hong Tang
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Byron Van Gorp
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Peter W. Sullivan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Shannon Zareh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Jose I. Rodriquez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Ian McKinley
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Daniel V. Hahn
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Matthew Bowers
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Ramsey Hourani
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Brian A. Bryce
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Danielle Nuding
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Zachery Bailey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Alessandro Rettura
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Evan D. Zarate
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
2
|
Tosi F, Roatsch T, Galli A, Hauber E, Lucchetti A, Molyneux P, Stephan K, Achilleos N, Bovolo F, Carter J, Cavalié T, Cimò G, D’Aversa E, Gwinner K, Hartogh P, Huybrighs H, Langevin Y, Lellouch E, Migliorini A, Palumbo P, Piccioni G, Plaut JJ, Postberg F, Poulet F, Retherford K, Rezac L, Roth L, Solomonidou A, Tobie G, Tortora P, Tubiana C, Wagner R, Wirström E, Wurz P, Zambon F, Zannoni M, Barabash S, Bruzzone L, Dougherty M, Gladstone R, Gurvits LI, Hussmann H, Iess L, Wahlund JE, Witasse O, Vallat C, Lorente R. Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE. SPACE SCIENCE REVIEWS 2024; 220:59. [PMID: 39132056 PMCID: PMC11310297 DOI: 10.1007/s11214-024-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/01/2024] [Indexed: 08/13/2024]
Abstract
We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): "Surfaces and Near-surface Exospheres of the Satellites, dust and rings".
Collapse
Affiliation(s)
- Federico Tosi
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Thomas Roatsch
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - André Galli
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Ernst Hauber
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Alice Lucchetti
- Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Padova (INAF-OAPd), Padua, Italy
| | | | - Katrin Stephan
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Nicholas Achilleos
- Department of Physics & Astronomy, University College London, London, UK
| | - Francesca Bovolo
- Center for Digital Society, Fondazione Bruno Kessler (FBK), Trento, Italy
| | - John Carter
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | - Thibault Cavalié
- Laboratoire d’Astrophysique de Bordeaux, Université de Bordeaux, CNRS, Pessac, France
- LESIA, Observatoire de Paris, Meudon, France
| | - Giuseppe Cimò
- Joint Institute for VLBI ERIC, Dwingeloo, The Netherlands
| | - Emiliano D’Aversa
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Klaus Gwinner
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Paul Hartogh
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Hans Huybrighs
- Space and Planetary Science Center, Khalifa University, Abu Dhabi, UAE
- School of Cosmic Physics, Dunsink Observatory, Dublin Institute for Advanced Studies (DIAS), Dublin, Ireland
| | - Yves Langevin
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | | | - Alessandra Migliorini
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Pasquale Palumbo
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Giuseppe Piccioni
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | | | - Frank Postberg
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - François Poulet
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | | | - Ladislav Rezac
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Lorenz Roth
- Division of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Gabriel Tobie
- Laboratoire de Planétologie et Géosciences, Nantes Université, Nantes, France
| | - Paolo Tortora
- Department of Industrial Engineering (DIN), Università di Bologna, Forlì, Italy
| | - Cecilia Tubiana
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Roland Wagner
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Eva Wirström
- Chalmers University of Technology, Onsala, Sweden
| | - Peter Wurz
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Francesca Zambon
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Marco Zannoni
- Department of Industrial Engineering (DIN), Università di Bologna, Forlì, Italy
| | | | - Lorenzo Bruzzone
- Dipartimento di Ingegneria e Scienza dell’Informazione, Università degli Studi di Trento, Trento, Italy
| | | | | | - Leonid I. Gurvits
- Joint Institute for VLBI ERIC, Dwingeloo, The Netherlands
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Hauke Hussmann
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Luciano Iess
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMA), Università degli Studi di Roma “La Sapienza”, Rome, Italy
| | | | - Olivier Witasse
- European Space Agency – European Space Research and Technology Centre (ESA-ESTEC), Noordwijk, The Netherlands
| | - Claire Vallat
- European Space Agency – European Space Astronomy Centre (ESA-ESAC), Madrid, Spain
| | - Rosario Lorente
- European Space Agency – European Space Astronomy Centre (ESA-ESAC), Madrid, Spain
| |
Collapse
|
3
|
Berni S, Scelta D, Romi S, Fanetti S, Alabarse F, Pagliai M, Bini R. Exploring High-Pressure Polymorphism in Carbonic Acid through Direct Synthesis from Carbon Dioxide Clathrate Hydrate. Angew Chem Int Ed Engl 2024; 63:e202403953. [PMID: 38536217 DOI: 10.1002/anie.202403953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 04/24/2024]
Abstract
Carbon dioxide (CO2) is widespread in astrochemically relevant environments, often coexisting with water (H2O) ices and thus triggering a great interest regarding the possible formation of their adducts under various thermodynamic conditions. Amongst them, solid carbonic acid (H2CO3) remains elusive, yet being widely studied. Synthetic routes followed for its production have always been characterised by drastic irradiation on solid ice mixtures or complex procedures on fluid samples (such as laser heating at moderate to high pressures). Here we report about a simpler yet effective synthetic route to obtain two diverse carbonic acid crystal structures from the fast, cold compression of pristine clathrate hydrate samples. The two distinct polymorphs we obtained, differing in the water content, have been deeply characterised via spectroscopic and structural techniques to assess their composition and their astonishing pressure stability, checked up to half a megabar, also highlighting the complex correlations between them so to compile a detailed phase diagram of this system. These results may have a profound impact on the prediction and modelisation of the complex chemistry which characterises many icy bodies of our Solar System.
Collapse
Affiliation(s)
- Selene Berni
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Demetrio Scelta
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Sebastiano Romi
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Samuele Fanetti
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Frederico Alabarse
- Elettra Sincrotrone Trieste S.C.p.A, AREA Science Park, I-34149, Basovizza, Trieste, Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Roberto Bini
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
4
|
Doran PT, Hayes A, Grasset O, Coustenis A, Prieto-Ballesteros O, Hedman N, Al Shehhi O, Ammannito E, Fujimoto M, Groen F, Moores JE, Mustin C, Olsson-Francis K, Peng J, Praveenkumar K, Rettberg P, Sinibaldi S, Ilyin V, Raulin F, Suzuki Y, Xu K, Whyte LG, Zaitsev M, Buffo J, Kminek G, Schmidt B. The COSPAR planetary protection policy for missions to Icy Worlds: A review of history, current scientific knowledge, and future directions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:86-99. [PMID: 38670657 DOI: 10.1016/j.lssr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 04/28/2024]
Abstract
Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection. This paper summarizes the results of those discussions, reviewing the current knowledge and the history of planetary protection considerations for Icy Worlds as well as suggesting ways forward. Based on those discussions, we therefore suggest to (1) Establish a new definition for Icy Worlds for Planetary Protection that captures the outer Solar System moons and dwarf planets like Pluto, but excludes more primitive bodies such as comets, centaurs, and asteroids: Icy Worlds in our Solar System are defined as all bodies with an outermost layer that is believed to be greater than 50 % water ice by volume and have enough mass to assume a nearly round shape. (2) Establish indices for the lower limits of Earth life with regards to water activity (LLAw) and temperature (LLT) and apply them into all areas of the COSPAR Planetary Protection Policy. These values are currently set at 0.5 and -28 °C and were originally established for defining Mars Special Regions; (3) Establish LLT as a parameter to assign categorization for Icy Worlds missions. The suggested categorization will have a 1000-year period of biological exploration, to be applied to all Icy Worlds and not just Europa and Enceladus as is currently the case. (4) Have all missions consider the possibility of impact. Transient thermal anomalies caused by impact would be acceptable so long as there is less than 10-4 probability of a single microbe reaching deeper environments where temperature is >LLT in the period of biological exploration. (5) Restructure or remove Category II* from the policy as it becomes largely redundant with this new approach, (6) Establish that any sample return from an Icy World should be Category V restricted Earth return.
Collapse
Affiliation(s)
- P T Doran
- Department of Geology and Geophysics, Louisiana State, Baton Rouge, LA, USA.
| | - A Hayes
- Cornell University, Ithaca, NY, 14853-6801, USA
| | | | - A Coustenis
- LESIA, Paris Observatory, PSL University, CNRS, Paris University, 92195, Meudon Cedex, France
| | - O Prieto-Ballesteros
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - N Hedman
- Committee, Policy and Legal Affairs Section, Office for Outer Space Affairs, United Nations Office at Vienna, Austria
| | | | | | - M Fujimoto
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Kanagawa, Japan
| | - F Groen
- Office of Safety and Mission Assurance, NASA Headquarters, Washington, DC, 20546, USA
| | | | - C Mustin
- Centre National des Etudes Spatiales (CNES), France
| | - K Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - J Peng
- China National Space Administration, Beijing, China
| | | | - P Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, 51147, Cologne, Germany
| | - S Sinibaldi
- European Space Agency, ESA-ESTEC, Noordwijk, the Netherlands
| | - V Ilyin
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - F Raulin
- Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Y Suzuki
- Department of Earth and Planetary Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - K Xu
- Laboratory of Space Microbiology, Shenzhou Space Biotechnology Group, Chinese Academy of Space Technology, Beijing, China
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, Canada
| | - M Zaitsev
- Planetary Physics Department, Space Research Inst. of Russian Acad. of Sciences, Moscow, Russia
| | - J Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - G Kminek
- European Space Agency, ESA-ESTEC, Noordwijk, the Netherlands
| | - B Schmidt
- Cornell University, Ithaca, NY, 14853-6801, USA
| |
Collapse
|
5
|
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, Elder CM. Investigating Europa's Habitability with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:81. [PMID: 38046182 PMCID: PMC10687213 DOI: 10.1007/s11214-023-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).
Collapse
Affiliation(s)
- Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kathleen L. Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Everett Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Britney E. Schmidt
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan Lunine
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - William B. McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO USA
| | - Elizabeth M. Spiers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Honeybee Robotics, Altadena, CA USA
| | - Natalie Wolfenbarger
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Erin J. Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Divya M. Persaud
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mikhail Y. Zolotov
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | | | | | | | - Samuel M. Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Andrew J. Dombard
- Dept. of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, USA
| | | | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA USA
| | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Murthy S. Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Insoo Jun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
| | - Krista M. Soderlund
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Catherine M. Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
6
|
Trumbo SK, Brown ME. The distribution of CO 2 on Europa indicates an internal source of carbon. Science 2023; 381:1308-1311. [PMID: 37733851 DOI: 10.1126/science.adg4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Jupiter's moon Europa has a subsurface ocean, the chemistry of which is largely unknown. Carbon dioxide (CO2) has previously been detected on the surface of Europa, but it was not possible to determine whether it originated from subsurface ocean chemistry, was delivered by impacts, or was produced on the surface by radiation processing of impact-delivered material. We mapped the distribution of CO2 on Europa using observations obtained with the James Webb Space Telescope (JWST). We found a concentration of CO2 within Tara Regio, a recently resurfaced terrain. This indicates that the CO2 is derived from an internal carbon source. We propose that the CO2 formed in the internal ocean, although we cannot rule out formation on the surface through radiolytic conversion of ocean-derived organics or carbonates.
Collapse
Affiliation(s)
- Samantha K Trumbo
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael E Brown
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Villanueva GL, Hammel HB, Milam SN, Faggi S, Kofman V, Roth L, Hand KP, Paganini L, Stansberry J, Spencer J, Protopapa S, Strazzulla G, Cruz-Mermy G, Glein CR, Cartwright R, Liuzzi G. Endogenous CO 2 ice mixture on the surface of Europa and no detection of plume activity. Science 2023; 381:1305-1308. [PMID: 37733858 DOI: 10.1126/science.adg4270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Jupiter's moon Europa has a subsurface ocean beneath an icy crust. Conditions within the ocean are unknown, and it is unclear whether it is connected to the surface. We observed Europa with the James Webb Space Telescope (JWST) to search for active release of material by probing its surface and atmosphere. A search for plumes yielded no detection of water, carbon monoxide, methanol, ethane, or methane fluorescence emissions. Four spectral features of carbon dioxide (CO2) ice were detected; their spectral shapes and distribution across Europa's surface indicate that the CO2 is mixed with other compounds and concentrated in Tara Regio. The 13CO2 absorption is consistent with an isotopic ratio of 12C/13C = 83 ± 19. We interpret these observations as indicating that carbon is sourced from within Europa.
Collapse
Affiliation(s)
- G L Villanueva
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - H B Hammel
- Association of Universities for Research in Astronomy, Washington, DC 20004, USA
| | - S N Milam
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - S Faggi
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- American University, Washington, DC 20016, USA
| | - V Kofman
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- American University, Washington, DC 20016, USA
| | - L Roth
- Royal Institute of Technology, Stockholm 104 50, Sweden
| | - K P Hand
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - L Paganini
- NASA Headquarters, Washington, DC 20546, USA
| | - J Stansberry
- Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - J Spencer
- Southwest Research Institute, Boulder, CO 80302, USA
| | - S Protopapa
- Southwest Research Institute, Boulder, CO 80302, USA
| | - G Strazzulla
- Osservatorio Astrofisico di Catania, Istituto Nazionale di Astrofisica, 95123 Catania, Italy
| | - G Cruz-Mermy
- Universite Paris-Sarclay, 91190 Gif-sur-Yvette, France
| | - C R Glein
- Southwest Research Institute, San Antonio, TX 78238, USA
| | - R Cartwright
- Carl Sagan Center for Research, Search for Extraterrestrial Intelligence Institute, Mountain View, CA 94043, USA
| | - G Liuzzi
- Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
8
|
Abstract
Ground-based telescopes and space exploration have provided outstanding observations of the complexity of icy planetary surfaces. This work presents our review of the varying nature of carbon dioxide (CO2) and carbon monoxide (CO) ices from the cold traps on the Moon to Pluto in the Kuiper Belt. This review is organized into five parts. First, we review the mineral physics (e.g., rheology) relevant to these environments. Next, we review the radiation-induced chemical processes and the current interpretation of spectral signatures. The third section discusses the nature and distribution of CO2 in the giant planetary systems of Jupiter and Saturn, which are much better understood than the satellites of Uranus and Neptune, discussed in the subsequent section. The final sections focus on Pluto in comparison to Triton, having mainly CO, and a brief overview of cometary materials. We find that CO2 ices exist on many of these icy bodies by way of magnetospheric influence, while intermixing into solid ices with CH4 (methane) and N2 (nitrogen) out to Triton and Pluto. Such radiative mechanisms or intermixing can provide a wide diversity of icy surfaces, though we conclude where further experimental research of these ices is still needed.
Collapse
|
9
|
Abplanalp MJ, Frigge R, Kaiser RI. Low-temperature synthesis of polycyclic aromatic hydrocarbons in Titan's surface ices and on airless bodies. SCIENCE ADVANCES 2019; 5:eaaw5841. [PMID: 31663015 PMCID: PMC6795510 DOI: 10.1126/sciadv.aaw5841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Titan's equatorial dunes represent the most monumental surface structures in our Solar System, but the chemical composition of their dark organics remains a fundamental, unsolved enigma, with solid acetylene detected near the dunes implicated as a key feedstock. Here, we reveal in laboratory simulation experiments that aromatics such as benzene, naphthalene, and phenanthrene-prospective building blocks of the organic dune material-can be efficiently synthesized via galactic cosmic ray exposure of low-temperature acetylene ices on Titan's surface, hence challenging conventional wisdom that aromatic hydrocarbons are formed solely in Titan's atmosphere. These processes are also of critical importance in unraveling the origin and chemical composition of the dark surfaces of airless bodies in the outer Solar System, where hydrocarbon precipitation from the atmosphere cannot occur. This finding notably advances our understanding of the distribution of carbon throughout our Solar System such as on Kuiper belt objects like Makemake.
Collapse
Affiliation(s)
- Matthew J. Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Robert Frigge
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ralf I. Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Maynard-Casely HE. ‘Peaks in space’ – crystallography in planetary science: past impacts and future opportunities. CRYSTALLOGR REV 2016. [DOI: 10.1080/0889311x.2016.1242127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Loeffler MJ, Hudson RL. Descent without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds. ASTROBIOLOGY 2015; 15:453-461. [PMID: 26060983 DOI: 10.1089/ast.2014.1195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NH4+ and SO2 making SO(4)2- by H+ and e- transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.
Collapse
Affiliation(s)
- Mark J Loeffler
- Astrochemistry Laboratory, NASA Goddard Space Flight Center , Greenbelt, Maryland
| | - Reggie L Hudson
- Astrochemistry Laboratory, NASA Goddard Space Flight Center , Greenbelt, Maryland
| |
Collapse
|
12
|
Goguen JD. Planetary surface photometry and imaging: progress and perspectives. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:104901. [PMID: 25313169 DOI: 10.1088/0034-4885/77/10/104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spacecraft have visited and returned many thousands of images and spectra of all of the planets, many of their moons, several asteroids, and a few comet nuclei during the golden age of planetary exploration. The signal in each pixel of each image or spectral channel is a measurement of the radiance of scattered sunlight into a specific direction. The information on the structure and composition of the surface that is contained in variation of the radiance with scattering geometry and wavelength, including polarization state, has only just begun to be exploited and is the topic of this review. The uppermost surfaces of these bodies are mainly composed of particles that are continuously generated by impacts of micrometeoroids and larger impactors. Models of light scattering by distributions of sizes and irregular shapes of particles and by closely packed particles within a surface are challenging. These are active topics of research where considerable progress has recently been made. We focus on the surfaces of bodies lacking atmospheres.These surfaces are diverse and their morphologies give evidence of their evolution by impacts and resurfacing by a variety of processes including down slope movement and electrostatic transport of particles, gravitational accumulation of debris, volatile outgassing and migration, and magnetospheric interactions. Sampling of scattering geometries and spatial resolution is constrained by spacecraft trajectories. However, the large number of archived images and spectra demand more quantitative interpretation. The scattering geometry dependence of the radiance is underutilized and promises constraints on the compositions and structure of the surface for materials that lack diagnostic wavelength dependence. The general problem is considered in terms of the lunar regolith for which samples have been returned to Earth.
Collapse
Affiliation(s)
- Jay D Goguen
- Mail Stop 183-401, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
| |
Collapse
|
13
|
Bennett CJ, Ennis CP, Kaiser RI. IMPLANTATION OF ENERGETIC D+IONS INTO CARBON DIOXIDE ICES AND IMPLICATIONS FOR OUR SOLAR SYSTEM: FORMATION OF D2O AND D2CO3. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/0004-637x/794/1/57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Affiliation(s)
- Bruce C Gibb
- Department of Chemistry at Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
15
|
Bennett CJ, Pirim C, Orlando TM. Space-Weathering of Solar System Bodies: A Laboratory Perspective. Chem Rev 2013; 113:9086-150. [DOI: 10.1021/cr400153k] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chris J. Bennett
- Department of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Claire Pirim
- Department of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Thomas M. Orlando
- Department of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Sivaraman B, Raja Sekhar BN, Fulvio D, Hunniford A, McCullough B, Palumbo ME, Mason N. Ozone and carbon trioxide synthesis by low energy ion implantation onto solid carbon dioxide and implications to astrochemistry. J Chem Phys 2013; 139:074706. [DOI: 10.1063/1.4818166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
17
|
Pappalardo RT, Vance S, Bagenal F, Bills BG, Blaney DL, Blankenship DD, Brinckerhoff WB, Connerney JEP, Hand KP, Hoehler TM, Leisner JS, Kurth WS, McGrath MA, Mellon MT, Moore JM, Patterson GW, Prockter LM, Senske DA, Schmidt BE, Shock EL, Smith DE, Soderlund KM. Science potential from a Europa lander. ASTROBIOLOGY 2013; 13:740-773. [PMID: 23924246 DOI: 10.1089/ast.2013.1003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.
Collapse
Affiliation(s)
- R T Pappalardo
- Planetary Sciences Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schwadron NA, Baker T, Blake B, Case AW, Cooper JF, Golightly M, Jordan A, Joyce C, Kasper J, Kozarev K, Mislinski J, Mazur J, Posner A, Rother O, Smith S, Spence HE, Townsend LW, Wilson J, Zeitlin C. Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Dalton JB, Shirley JH, Kamp LW. Europa's icy bright plains and dark linea: Exogenic and endogenic contributions to composition and surface properties. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003909] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Pilling S, Duarte ES, Domaracka A, Rothard H, Boduch P, Silveira EFD. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature. Phys Chem Chem Phys 2011; 13:15755-65. [DOI: 10.1039/c1cp20592g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Bennett CJ, Jamieson CS, Kaiser RI. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3) in interstellar ice analog samples. Phys Chem Chem Phys 2010; 12:4032-50. [DOI: 10.1039/b917162b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Cruikshank DP, Dalton JB, Dalle Ore CM, Bauer J, Stephan K, Filacchione G, Hendrix AR, Hansen CJ, Coradini A, Cerroni P, Tosi F, Capaccioni F, Jaumann R, Buratti BJ, Clark RN, Brown RH, Nelson RM, McCord TB, Baines KH, Nicholson PD, Sotin C, Meyer AW, Bellucci G, Combes M, Bibring JP, Langevin Y, Sicardy B, Matson DL, Formisano V, Drossart P, Mennella V. Surface composition of Hyperion. Nature 2007; 448:54-6. [PMID: 17611536 DOI: 10.1038/nature05948] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 05/16/2007] [Indexed: 11/09/2022]
Abstract
Hyperion, Saturn's eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion's surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25-26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.
Collapse
Affiliation(s)
- D P Cruikshank
- NASA Ames Research Center, MS 245-6, NASA Ames Research Center, MS 211-3, Moffett Field, California 94035, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boxe CS, Bodsgard BR, Smythe W, Leu MT. Grain sizes, surface areas, and porosities of vapor-deposited H2O ices used to simulate planetary icy surfaces. J Colloid Interface Sci 2007; 309:412-8. [PMID: 17306289 DOI: 10.1016/j.jcis.2007.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/28/2022]
Abstract
Mean grain sizes and specific surface areas (SSAs) of ice substrates formed by vapor deposition at low temperatures are of importance in simulating external surfaces of icy satellites in the solar system. Environmental scanning electron microscopy (ESEM) was used to obtain granule sizes and to observe the phase of ice granules prepared on borosilicate, silicon, and metallic plates. Ices prepared at a temperature lower than 140 K appear to be amorphous, and their granule sizes are typically submicrometer. At slightly warmer temperatures, near 180-200 K, ice films are composed of either hexagonal or cubic granules with sizes up to a few micrometers. When briefly annealed to even warmer temperatures, ice granule sizes approach approximately 10 microm. SSAs of ice substrates were determined from BET (Brunauer, Emmett, and Teller) analysis of gas adsorption isotherms in the temperature range from 83.5 to 261 K. SSAs decrease drastically from 102 m2/g at 83.5 K to 0.87 m2/g at 150 K and further decrease slowly to 0.22 m2/g at 261 K, suggesting that the transition from amorphous to crystalline forms occurs at approximately 150 K. The overall decrease in SSAs is primarily due to metamorphism and sintering. These results are comparable to recent field and laboratory measurements. Possible implications for theoretical models of icy satellites of outer planets using remote sensing techniques are also discussed.
Collapse
Affiliation(s)
- C S Boxe
- Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | | | | |
Collapse
|
24
|
Hand KP, Chyba CF, Carlson RW, Cooper JF. Clathrate hydrates of oxidants in the ice shell of Europa. ASTROBIOLOGY 2006; 6:463-82. [PMID: 16805702 DOI: 10.1089/ast.2006.6.463] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Europa's icy surface is radiolytically modified by high-energy electrons and ions, and photolytically modified by solar ultraviolet photons. Observations from the Galileo Near Infrared Mapping Spectrometer, ground-based telescopes, the International Ultraviolet Explorer, and the Hubble Space Telescope, along with laboratory experiment results, indicate that the production of oxidants, such as H2O2, O2, CO2, and SO2, is a consequence of the surface radiolytic chemistry. Once created, some of the products may be entrained deeper into the ice shell through impact gardening or other resurfacing processes. The temperature and pressure environments of regions within the europan hydrosphere are expected to permit the formation of mixed clathrate compounds. The formation of carbon dioxide and sulfur dioxide clathrates has been examined in some detail. Here we add to this analysis by considering oxidants produced radiolytically on the surface of Europa. Our results indicate that the bulk ice shell could have a approximately 1.7-7.6% by number contamination of oxidants resulting from radiolysis at the surface. Oxidant-hosting clathrates would consequently make up approximately 12-53% of the ice shell by number relative to ice, if oxidants were entrained throughout. We examine, in brief, the consequences of such contamination on bulk ice shell thickness and find that clathrate formation could lead to substantially thinner ice shells on Europa than otherwise expected. Finally, we propose that double occupancy of clathrate cages by O2 molecules could serve as an explanation for the observation of condensed-phase O2 on Europa. Clathrate-sealed, gas-filled bubbles in the near surface ice could also provide an effective trapping mechanism, though they cannot explain the 5771 A (O2)2 absorption.
Collapse
Affiliation(s)
- Kevin P Hand
- Department of Geological & Environmental Sciences, Stanford University, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
25
|
Strazzulla G, Leto G, Spinella F, Gomis O. Production of oxidants by ion irradiation of water/carbon dioxide frozen mixtures. ASTROBIOLOGY 2005; 5:612-21. [PMID: 16225434 DOI: 10.1089/ast.2005.5.612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present new experimental results on the formation of oxidants, such as hydrogen peroxide, ozone, and carbonic acid, under ion irradiation of icy mixtures of water/carbon dioxide at different ratios and temperatures (16 and 80 K). Pure water ice layers and mixtures with carbon dioxide were irradiated by 200 keV He+ ions. We found that the CO(2)/H(2)O ratio progressively decreased to a value of about 0.1, the H(2)O(2) production increased with increasing CO(2) abundance at both 16 and 80 K, and the CO and H(2)CO(3) production increased with increasing CO(2) abundance at 16 K. At 80 K, the synthesis of CO was less efficient because of the high volatility of the molecule that partially sublimed from the target. The production of carbonic acid was connected with the production of CO(3). O(3) was detected only after ion irradiation of CO(2)-rich mixtures. The experimental results are discussed with regard to the relevance they may have in the production of an energy source for a europan or a martian biosphere.
Collapse
Affiliation(s)
- G Strazzulla
- INAF-Osservatorio Astrofisico, Via S. Sofia 78, I-95123 Catania, Italy.
| | | | | | | |
Collapse
|
26
|
Clark RN, Brown RH, Jaumann R, Cruikshank DP, Nelson RM, Buratti BJ, McCord TB, Lunine J, Baines KH, Bellucci G, Bibring JP, Capaccioni F, Cerroni P, Coradini A, Formisano V, Langevin Y, Matson DL, Mennella V, Nicholson PD, Sicardy B, Sotin C, Hoefen TM, Curchin JM, Hansen G, Hibbits K, Matz KD. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy. Nature 2005; 435:66-9. [PMID: 15875014 DOI: 10.1038/nature03558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/11/2005] [Indexed: 11/08/2022]
Abstract
The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.
Collapse
Affiliation(s)
- Roger N Clark
- US Geological Survey, MS964, Box 25046, Federal Center, Denver, Colorado 80225, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Takato N, Bus SJ, Terada H, Pyo TS, Kobayashi N. Detection of a Deep 3-µm Absorption Feature in the Spectrum of Amalthea (JV). Science 2004; 306:2224-7. [PMID: 15618511 DOI: 10.1126/science.1105427] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.
Collapse
Affiliation(s)
- Naruhisa Takato
- Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, Hawaii 96720, USA.
| | | | | | | | | |
Collapse
|
28
|
De Angelis G, Clowdsley MS, Nealy JE, Tripathi RK, Wilson JW. Radiation analysis for manned missions to the Jupiter system. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 34:1395-403. [PMID: 15881781 DOI: 10.1016/j.asr.2003.09.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits.
Collapse
Affiliation(s)
- G De Angelis
- Old Dominion University, Norfolk, VA 23508, USA.
| | | | | | | | | |
Collapse
|
29
|
Hansen GB. Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003je002149] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Zolotov MY. A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003je002194] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Fagents SA. Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002128] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah A. Fagents
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Sciences and Technology; University of Hawaii at Manoa; Honolulu Hawaii USA
| |
Collapse
|
32
|
Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je001847] [Citation(s) in RCA: 446] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Griffith CA, Owen T, Geballe TR, Rayner J, Rannou P. Evidence for the exposure of water ice on Titan's surface. Science 2003; 300:628-30. [PMID: 12714742 DOI: 10.1126/science.1081897] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The smoggy stratosphere of Saturn's largest moon, Titan, veils its surface from view, except at narrow wavelengths centered at 0.83, 0.94, 1.07, 1.28, 1.58, 2.0, 2.9, and 5.0 micrometers. We derived a spectrum of Titan's surface within these "windows" and detected features characteristic of water ice. Therefore, despite the hundreds of meters of organic liquids and solids hypothesized to exist on Titan's surface, its icy bedrock lies extensively exposed.
Collapse
Affiliation(s)
- Caitlin A Griffith
- Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092, USA.
| | | | | | | | | |
Collapse
|
34
|
Gormly S, Adams VD, Marchand E. Physical simulation for low-energy astrobiology environmental scenarios. ASTROBIOLOGY 2003; 3:761-770. [PMID: 14987481 DOI: 10.1089/153110703322736088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Speculations about the extent of life of independent origin and the potential for sustaining Earth-based life in subsurface environments on both Europa and Mars are of current and relevant interest. Theoretical modeling based on chemical energetics has demonstrated potential options for viable biochemical metabolism (metabolic pathways) in these types of environments. Also, similar environments on Earth show microbial activity. However, actual physical simulation testing of specific environments is required to confidently determine the interplay of various physical and chemical parameters on the viability of relevant metabolic pathways. This testing is required to determine the potential to sustain life in these environments on a specific scenario by scenario basis. This study examines the justification, design, and fabrication of, as well as the culture selection and screening for, a psychrophilic/halophilic/anaerobic digester. This digester is specifically designed to conform to physical testing needs of research relating to potential extent physical environments on Europa and other planetary bodies in the Solar System. The study is a long-term effort and is currently in an early phase, with only screening-level data at this time. Full study results will likely take an additional 2 years. However, researchers in electromagnetic biosignature and in situ instrument development should be aware of the study at this time, as they are invited to participate in planning for future applications of the digester facility.
Collapse
Affiliation(s)
- Sherwin Gormly
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA.
| | | | | |
Collapse
|
35
|
Figueredo PH, Greeley R, Neuer S, Irwin L, Schulze-Makuch D. Locating potential biosignatures on Europa from surface geology observations. ASTROBIOLOGY 2003; 3:851-861. [PMID: 14987486 DOI: 10.1089/153110703322736132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.
Collapse
Affiliation(s)
- Patricio H Figueredo
- Department of Geological Sciences, Arizona State University, Tempe, Arizona 85287-1404, USA.
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Chaban GM, Huo WM, Lee TJ. Theoretical study of infrared and Raman spectra of hydrated magnesium sulfate salts. J Chem Phys 2002. [DOI: 10.1063/1.1489997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
|
39
|
Zolotov MY, Shock EL. Composition and stability of salts on the surface of Europa and their oceanic origin. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001413] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
McCord TB, Hansen GB, Hibbitts CA. Hydrated Salt Minerals on Ganymede's Surface: Evidence of an Ocean Below. Science 2001; 292:1523-5. [PMID: 11375486 DOI: 10.1126/science.1059916] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reflectance spectra from Galileo's near-infrared mapping spectrometer (NIMS) suggests that the surface of Ganymede, the largest satellite of Jupiter, contains hydrated materials. These materials are interpreted to be similar to those found on Europa, that is, mostly frozen magnesium sulfate brines that are derived from a subsurface briny layer of fluid.
Collapse
Affiliation(s)
- T B McCord
- Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii, USA.
| | | | | |
Collapse
|
41
|
Chyba C, Phillips C. Possible ecosystems and the search for life on Europa. Proc Natl Acad Sci U S A 2001; 98:801-4. [PMID: 11158549 PMCID: PMC33371 DOI: 10.1073/pnas.98.3.801] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- C Chyba
- Center for the Study of Life in the Universe, SETI Institute, Mountain View, CA 94043, USA.
| | | |
Collapse
|
42
|
Hibbitts CA, McCord TB, Hansen GB. Distributions of CO2and SO2on the surface of Callisto. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001101] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Affiliation(s)
- C F Chyba
- SETI Institute, Mountain View, California 94043, USA
| |
Collapse
|
44
|
Abstract
NASA's Galileo mission to Jupiter and improved Earth-based observing capabilities have allowed major advances in our understanding of Jupiter's moons Io, Europa, Ganymede, and Callisto over the past few years. Particularly exciting findings include the evidence for internal liquid water oceans in Callisto and Europa, detection of a strong intrinsic magnetic field within Ganymede, discovery of high-temperature silicate volcanism on Io, discovery of tenuous oxygen atmospheres at Europa and Ganymede and a tenuous carbon dioxide atmosphere at Callisto, and detection of condensed oxygen on Ganymede. Modeling of landforms seen at resolutions up to 100 times as high as those of Voyager supports the suggestion that tidal heating has played an important role for Io and Europa.
Collapse
Affiliation(s)
- A P Showman
- Department of Mechanical Engineering, University of Louisville, 215 Sackett Hall, Louisville, KY 40292, USA
| | | |
Collapse
|
45
|
Johnson RE. Comment on “Laboratory studies of the optical properties and stability of oxygen on Ganymede” by Raul A. Baragiola and David A. Bahr. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je900036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
McCord TB, Hansen GB, Matson DL, Johnson TV, Crowley JK, Fanale FP, Carlson RW, Smythe WD, Martin PD, Hibbitts CA, Granahan JC, Ocampo A. Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je900005] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Carlson RW, Anderson MS, Johnson RE, Smythe WD, Hendrix AR, Barth CA, Soderblom LA, Hansen GB, McCord TB, Dalton JB, Clark RN, Shirley JH, Ocampo AC, Matson DL. Hydrogen peroxide on the surface of Europa. Science 1999; 283:2062-4. [PMID: 10092224 DOI: 10.1126/science.283.5410.2062] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.
Collapse
Affiliation(s)
- R W Carlson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.
Collapse
Affiliation(s)
- R W Carlson
- Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-601, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
| |
Collapse
|
49
|
McCord TB, Hansen GB, Fanale FP, Carlson RW, Matson DL, Johnson TV, Smythe WD, Crowley JK, Martin PD, Ocampo A, Hibbitts CA, Granahan JC. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. Science 1998; 280:1242-5. [PMID: 9596573 DOI: 10.1126/science.280.5367.1242] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.
Collapse
Affiliation(s)
- T B McCord
- Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|