1
|
Chen TX, Casey HL, Lin CYR, Boyle TA, Schmahmann JD, L'Italien GJ, Kuo SH, Gomez CM. Early-Life Social Determinants of SCA6 Age at Onset, Severity, and Progression. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1449-1456. [PMID: 38217689 PMCID: PMC11269368 DOI: 10.1007/s12311-023-01655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
SCA6 patients with the same size CAG repeat allele can vary significantly in age at onset (AAO) and clinical progression. The specific external factors affecting SCA6 have yet to be investigated. We assessed the effect of early life events on AAO, severity, and progression in SCA6 patients using a social determinant of health approach. We performed a survey of biological and social factors in SCA6 patients enrolled in the SCA6 Network at the University of Chicago. AAO of ataxia symptoms and patient-reported outcome measure (PROM) of ataxia were used as primary outcome measures. Least absolute shrinkage and selection operation (LASSO) regressions were used to identify which early life factors are predictive of SCA6 AAO, severity, and progression. Multiple linear regression models were then used to assess the degree to which these determinants influence SCA6 health outcomes. A total of 105 participants with genetically confirmed SCA6 completed the assessments. SCA6 participants with maternal difficulty during pregnancy, active participation in school sports, and/or longer CAG repeats were determined to have earlier AAO. We found a 13.44-year earlier AAO for those with maternal difficulty in pregnancy than those without (p = 0.008) and a 12.31-year earlier AAO for those active in school sports than those who were not (p < 0.001). Higher education attainment was associated with decreased SCA6 severity and slower progression. Early life biological and social factors can have a strong influence on the SCA6 disease course, indicating that non-genetic factors can contribute significantly to SCA6 health outcomes.
Collapse
Affiliation(s)
- Tiffany X Chen
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah L Casey
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Chi-Ying R Lin
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Theresa A Boyle
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Gilbert J L'Italien
- Global Health Outcomes and Epidemiology, Biohaven Pharmaceuticals, New Haven, CT, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
2
|
Rossi M, Hamed M, Rodríguez-Antigüedad J, Cornejo-Olivas M, Breza M, Lohmann K, Klein C, Rajalingam R, Marras C, van de Warrenburg BP. Genotype-Phenotype Correlations for ATX-TBP (SCA17): MDSGene Systematic Review. Mov Disord 2023; 38:368-377. [PMID: 36374860 DOI: 10.1002/mds.29278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 17 or ATX-TBP is a CAG/CAA repeat expansion disorder characterized by marked clinical heterogeneity. Reports of affected carriers with subthreshold repeat expansions and of patients with Parkinson's disease (PD) with expanded repeats have cast doubt on the established cutoff values of the expansions and the phenotypic spectrum of this disorder. The objective of this systematic review was to explore the genotype-phenotype relationships for repeat expansions in TBP to delineate the ATX-TBP phenotype and reevaluate the pathological range of repeat expansions. The International Parkinson and Movement Disorder Society Genetic Mutation Database (MDSGene) standardized data extraction protocol was followed. Clinically affected carriers of reported ATX-TBP expansions were included. Publications that contained repeat sizes in screened cohorts of patients with PD and/or healthy individuals were included for a separate evaluation of cutoff values. Phenotypic and genotypic data for 346 ATX-TBP patients were curated. Overall, 97.7% of the patients had ≥41 repeats, while 99.6% of patients with PD and 99.9% of healthy individuals had ≤42 repeats, with a gray zone of reduced penetrance between 41 and 45 repeats. Pure parkinsonism was more common in ATX-TBP patients with 41 to 45 repeats than in the group with ≥46 repeats, which conversely more often presented with a complex phenotype with mixed movement disorders. An updated genotype-phenotype assessment for ATX-TBP is provided, and new repeat expansion cutoff values of reduced penetrance (41-45 expanded repeats) and full penetrance (46-66 expanded repeats) are proposed. These adjusted cutoff values will have diagnostic and counseling implications and may guide future clinical trial protocol. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Sección de Movimientos Anormales, Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Moath Hamed
- New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jon Rodríguez-Antigüedad
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Institut d'Investigacions Biomediques-Sant Pau, Barcelona, Spain
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Carrera de Medicina, Universidad Científica del Sur, Lima, Peru
| | - Marianthi Breza
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Li QF, Cheng H, Yang L, Ma Y, Zhao J, Dong Y, Wu Z. Clinical features and genetic characteristics of homozygous spinocerebellar ataxia type 3. Mol Genet Genomic Med 2020; 8:e1314. [PMID: 32643267 PMCID: PMC7507100 DOI: 10.1002/mgg3.1314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Background Homozygous spinocerebellar ataxia type 3 (SCA3) patients, which have an expanded cytosine‐adenine‐guanine (CAG) repeat mutation in both alleles of ATXN3, are extremely rare. Clinical features and genetic characteristics of them were seldom studied. Methods We analyzed seven newly homozygous SCA3 patients from five families and 14 homozygotes reported previously. An additional cohort of 30 heterozygous SCA3 patients were analyzed to compare age at onset (AAO). Results Two out of seven SCA3 homozygotes had the minimum CAG repeats reported so far (55/56 and 56/58). Five patients appeared peripheral neuropathy and two had mild cognitive impairment. The AAO was significantly inversely correlated with both the large and small expanded CAG repeats (r = −.7682, p < .0001). The AAO was significantly earlier in homozygous SCA3 than heterozygous ones (32.81 ± 11.86 versus. 49.90 ± 9.73, p < .0001). In addition, the AAO of our seven homozygotes is elder compared to those reported previously (41.29 years vs. 28.57 years), which may be related to the fewer CAG repeats in our seven patients. Conclusion Gene dosage effect may play an important role in the AAO and severity of disease, and homozygosity for ATXN3 enhances phenotypic severity. Our findings expand clinical features and genetic characteristics of homozygous SCA3 patients.
Collapse
Affiliation(s)
- Quan-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hao‐Ling Cheng
- Department of Neurology and Institute of NeurologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Lu Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Jing‐Jing Zhao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhi‐Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Shang XJ, Xu HL, Yang JS, Chen PP, Lin MT, Qian MZ, Lin HX, Chen XP, Chen YC, Jiang B, Chen YJ, Chen WJ, Wang N, Zhou ZM, Gan SR. Homozygote of spinocerebellar Ataxia type 3 correlating with severe phenotype based on analyses of clinical features. J Neurol Sci 2018; 390:111-114. [PMID: 29801869 DOI: 10.1016/j.jns.2018.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is the most common subtype of SCAs worldwide. SCA3 homozygote is defined as expanded CAG repeats in both alleles that might exhibit severe phenotype due to gene dosage effect. However, a study on the systematic comparison of clinical phenotypes between homozygotes and heterozygotes to indicate these verity of phenotypes of homozygotes is still lacking. METHODS A total of 14 SCA3 homozygotes (3 Chinese participants and 11 participants from various ethnicity in different published studies) and 143 Chinese heterozygotes of SCA3 were recruited for this study. The 95% confidence intervals (CIs) of age at onset and disease severity expected from heterozygous patients were analyzed to detect the phenotypic differences between homozygotes and heterozygotes. RESULTS Almost all the homozygotes (13 of 14) were found to present a significant earlier age at onset compared with heterozygotes, because age at onset of most homozygotes was lower than the 95% CIs of age at onset of heterozygotes. Also, the clinical severity in most of the homozygotes (3 of 4) with identified clinical phenotypes was higher than the 95% CIs of severity in heterozygotes, indicating more severe clinical phenotypes in SCA3 homozygotes. CONCLUSIONS The homozygosity for SCA3 could lead to an earlier age of onset and putative severe clinical features. The findings of the present study suggested an influence of gene dosage on SCA3 phenotypes.
Collapse
Affiliation(s)
- Xian-Jin Shang
- Department of Neurology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hao-Ling Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Jin-Shan Yang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Ping-Ping Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Mei-Zhen Qian
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China; Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, China
| | - Hui-Xia Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Xiao-Ping Chen
- School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, Fuzhou, China
| | - Yu-Chao Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Bin Jiang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China; Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi-Jun Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Zhi-Ming Zhou
- Department of Neurology, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.
| |
Collapse
|
5
|
Soga K, Ishikawa K, Furuya T, Iida T, Yamada T, Ando N, Ota K, Kanno-Okada H, Tanaka S, Shintaku M, Eishi Y, Mizusawa H, Yokota T. Gene dosage effect in spinocerebellar ataxia type 6 homozygotes: A clinical and neuropathological study. J Neurol Sci 2016; 373:321-328. [PMID: 28131213 DOI: 10.1016/j.jns.2016.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disorder. However, it remains unclear whether SCA6 shows a gene dosage effect, defined by earlier age-of-onset in homozygotes than heterozygotes. Herein, we retrospectively analyzed four homozygous SCA6 subjects from our single institution cohort of 120 SCA6 subjects. We also performed a neuropathological investigation into an SCA6 individual with compound heterozygous expansions. In the 116 heterozygotes, there was an inverse correlation of age-of-onset with the number of CAG repeats in the expanded allele, and with the total number of CAG repeats, in both normal and expanded alleles. The age-of-onset in the four homozygotes was within the 95% confidence interval of the age-of-onset versus the repeat-lengths correlations determined in the 116 heterozygotes. Nevertheless, all homozygotes had earlier onset than their parents, and showed rapid disease progression. Neuropathology revealed neuronal loss, as well as α1A-calcium channel protein aggregates in Purkinje cells, a few α1A-calcium channel protein aggregates in the neocortex and basal ganglia, and neuronal loss in Clarke's column and the globus pallidus not seen in heterozygotes. These data suggest a mild clinical and neuropathological gene dosage effect in SCA6 subjects.
Collapse
Affiliation(s)
- Kazumasa Soga
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Tokuro Furuya
- Department of Neurology, Kawaguchi Kogyo General Hospital, 1-18-15 Aoki, Kawaguchi, Saitama 332-0031, Japan
| | - Tadatsune Iida
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuo Yamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Laboratory of Pathology, Department of Clinical Laboratory Medicine, Bunkyo Gakuin University Graduate School of Health Care Science, 2-4-1 Mukogaoka, Bunkyo-ku, Tokyo 113-0023, Japan
| | - Noboru Ando
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kiyobumi Ota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiromi Kanno-Okada
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Hokkaido University, North 14, West 5, Kita-ku, Sapporo 060-8648, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Hokkaido, Japan
| | - Masayuki Shintaku
- Department of Pathology, Shiga Medical Center for Adults, 5-4-30 Moriyama, Moriyama, Shiga 524-8524, Japan
| | - Yoshinobu Eishi
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; The National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
6
|
Relationship between type 1 metabotropic glutamate receptors and cerebellar ataxia. J Neurol 2016; 263:2179-2187. [PMID: 27502082 DOI: 10.1007/s00415-016-8248-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/19/2023]
Abstract
Imaging of type 1 metabotropic glutamate receptor (mGluR1) has recently become possible using positron emission tomography (PET). We aimed to examine the relationship between mGluR1 and cerebellar ataxia. Families with spinocerebellar ataxia type 19/22 (SCA19/22) and SCA6, six patients with sporadic SCA, and 26 healthy subjects underwent PET using an mGluR1 radiotracer. Volumes-of-interest were placed on the anterior and posterior lobes and vermis. The binding potential (BPND) was calculated to estimate mGluR1 availability. A partial volume correction was applied to the BPND values. The Scale for the Assessment and Rating of Ataxia (SARA) score were measured. In each patient with SCA19/22 and SCA6, the anterior lobe showed the highest decrease rates in the BPND values, compared with healthy subjects. In the families with SCA19/22 and SCA6, the disease durations and SARA scores were shorter and lower, respectively, in the offspring, compared with the parents. However, the offspring paradoxically showed lower BPND values, especially in the anterior lobe, compared with the parents. The patients with sporadic SCA showed significantly lower BPND values in all subregions than healthy subjects. The BPND values significantly correlated with the SARA scores in all participants. In conclusion, these results showed a decrease in mGluR1 availability in patients with hereditary and sporadic SCA, a correlation between mGluR1 availability and degree of cerebellar ataxia, and paradoxical findings in two families. These results suggest the potential use of mGluR1 imaging as a specific biomarker of cerebellar ataxia.
Collapse
|
7
|
Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet 2016; 90:305-14. [PMID: 27220866 DOI: 10.1111/cge.12808] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia (SCA) comprises a large group of heterogeneous neurodegenerative disorders inherited in an autosomal dominant fashion. It is characterized by progressive cerebellar ataxia with oculomotor dysfunction, dysarthria, pyramidal signs, extrapyramidal signs, pigmentary retinopathy, peripheral neuropathy, cognitive impairment and other symptoms. It is classified according to the clinical manifestations or genetic nosology. To date, 40 SCAs have been characterized, and include SCA1-40. The pathogenic genes of 28 SCAs were identified. In recent years, with the widespread clinical use of next-generation sequencing, the genes underlying SCAs, and the mutants as well as the affected phenotypes were identified. These advances elucidated the phenotype-genotype relationship in SCAs. We reviewed the recent clinical advances, genetic features and phenotype-genotype correlations involving each SCA and its differentiation. The heterogeneity of the disease and the genetic diagnosis might be attributed to the regional distribution and clinical characteristics. Therefore, recognition of the phenotype-genotype relationship facilitates genetic testing, prognosis and monitoring of symptoms.
Collapse
Affiliation(s)
- Y-M Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - C Lu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Z-Y Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China. .,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Tan EC, Lai PS. Molecular diagnosis of neurogenetic disorders involving trinucleotide repeat expansions. Expert Rev Mol Diagn 2014; 5:101-9. [PMID: 15723596 DOI: 10.1586/14737159.5.1.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are more than 15 known neurogenetic disorders involving trinucleotide repeat expansion. Expanded repeats range from small expansions of 20-100 copies to larger expansions of up to several thousand units. These dynamic expansions result in variability in age of onset, degree of severity and clinical presentation. Individuals carrying alleles in the intermediate range, known as premutation alleles, are often asymptomatic, but can potentially transmit a further expanded allele to his/her offspring. For autosomal dominant adult-onset disorders, carriers are asymptomatic prior to disease onset. With current molecular tools, it is now possible to determine the presence and number of expanded repeats for accurate diagnosis, presymptomatic testing and carrier status screening. This review examines some of the current approaches for molecular diagnosis and discusses the issues unique to triplet repeat diseases.
Collapse
Affiliation(s)
- Ene-Choo Tan
- DSO National Laboratories, Population Genetics Programme, Defence Medical and Environmental Research Institute, 27 Medical Drive, 117510 Singapore.
| | | |
Collapse
|
9
|
Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2013; 8:14. [PMID: 23331413 PMCID: PMC3558377 DOI: 10.1186/1750-1172-8-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 01/16/2013] [Indexed: 12/26/2022] Open
Abstract
Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.
Collapse
Affiliation(s)
- Shinsuke Fujioka
- Department of Neurology at Mayo Clinic, 4500 San Pablo Road Cannaday Bldg 2-E, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
10
|
Hübener J, Riess O. Polyglutamine-induced neurodegeneration in SCA3 is not mitigated by non-expanded ataxin-3: conclusions from double-transgenic mouse models. Neurobiol Dis 2010; 38:116-24. [PMID: 20079840 DOI: 10.1016/j.nbd.2010.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 10/19/2022] Open
Abstract
A crucial question in polyQ-induced neurodegeneration is the influence of wild type protein on the formation of aggregates and toxicity. Recently it was shown that non-expanded ataxin-3 protein mitigated neurodegeneration in a Drosophila and mouse model of SCA3. We now explored the effects of overexpressing non-expanded ataxin-3 with 15Q in a SCA3 transgenic mouse model with 70 polyglutamine repeats. These double-transgenic mice (dt) developed neurological symptoms with premature death at the age of 6 months comparable to the single-transgenic (st) SCA3 disease model. Furthermore, immunohistochemistry revealed similar localization and distribution of nuclear aggregates in dt- and st-mutant SCA3 mice. In a second dt-mutant mouse model, coexpression of ataxin-3 with 148Q attached to a nuclear export signal, which usually diminishes the phenotype, did even reinforce toxic effects of mutant expanded ataxin-3. We therefore conclude that overexpressing wild type ataxin-3 or mutant ataxin-3 with NES are not striking suppressors of polyglutamine-induced neurodegeneration and have thus no potential for future gene therapeutic interventions in SCA3.
Collapse
Affiliation(s)
- Jeannette Hübener
- Department of Medical Genetics, University of Tuebingen, 72076 Tuebingen, Germany.
| | | |
Collapse
|
11
|
Yiş U, Dirik E, Kurul SH, Eken AG, Başak AN. Two Young Sisters with Spinocerebellar Ataxia Type 2 Showing Different Clinical Progression of Disease. THE CEREBELLUM 2008; 8:127-9. [DOI: 10.1007/s12311-008-0080-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
|
12
|
Zühlke CH, Spranger M, Spranger S, Voigt R, Lanz M, Gehlken U, Hinrichs F, Schwinger E. SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet 2003; 11:629-32. [PMID: 12891385 DOI: 10.1038/sj.ejhg.5201018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An expanded polyglutamine domain in the TATA-binding protein (TBP) has been described in patients with spinocerebellar ataxia type 17 (SCA17) characterized by cerebellar ataxia associated with dementia. TBP is a general transcription initiation factor that regulates the expression of most eukaryotic genes transcribed by RNA polymerase II. SCA17, as an autosomal dominantly inherited progressive neurodegenerative disorder, is caused by heterozygous expansion of a CAG repeat coding for glutamine. Alleles with 27 to a maximum of 44 glutamine residues were found as the normal range, whereas expansions above 45 repeat units were considered pathological. Here, we present a patient with a very severe phenotype with a late onset but rapidly progressing ataxia associated with dementia and homozygous 47 glutamine residues caused by an apparent partial isodisomy 6. This extraordinary case has important implications for the insights of TBP and SCA17. The expanded polyglutamine domain in both TBP copies is not correlated with embryonic death indicating that the normal function of the protein is not disrupted by this kind of mutation but may account for the dementia seen in this patient.
Collapse
Affiliation(s)
- C H Zühlke
- Institut für Humangenetik, Universität Lübeck, 23538 Lübeck, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yoo SY, Pennesi ME, Weeber EJ, Xu B, Atkinson R, Chen S, Armstrong DL, Wu SM, Sweatt JD, Zoghbi HY. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 2003; 37:383-401. [PMID: 12575948 DOI: 10.1016/s0896-6273(02)01190-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We targeted 266 CAG repeats (a number that causes infantile-onset disease) into the mouse Sca7 locus to generate an authentic model of spinocerebellar ataxia type 7 (SCA7). These mice reproduced features of infantile SCA7 (ataxia, visual impairments, and premature death) and showed impaired short-term synaptic potentiation; downregulation of photoreceptor-specific genes, despite apparently normal CRX activity, led to shortening of photoreceptor outer segments. Wild-type ataxin-7 was barely detectable, as was mutant ataxin-7 in young animals; with increasing age, however, ataxin-7 staining became more pronounced. Neurons that appeared most vulnerable had relatively high levels of mutant ataxin-7; it is interesting, however, that marked dysfunction occurred in these neurons weeks prior to the appearance of nuclear inclusions. These data demonstrate that glutamine expansion stabilizes mutant ataxin-7, provide an explanation for selective neuronal vulnerability, and show that mutant ataxin-7 impairs posttetanic potentiation (PTP).
Collapse
Affiliation(s)
- Seung Yun Yoo
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tazón B, Badenas C, Jiménez L, Muñoz E, Milà M. SCA8 in the Spanish population including one homozygous patient. Clin Genet 2002; 62:404-9. [PMID: 12431257 DOI: 10.1034/j.1399-0004.2002.620509.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Controversial data have been reported about SCA8 since its description in 1999. The most accepted hypothesis is that CTG expansions within the CTA/CTG combined repeat expansion in the SCA8 locus causes SCA8. It is inherited as a dominant trait with reduced penetrance. The present study, reports the first data regarding SCA8 in the Spanish population and the clinical findings in patients carrying expanded alleles, including one homozygous patient. Two hundred and forty-six individuals from the Spanish population, including controls (149) and ataxic patients (97), were studied. DNA was extracted from blood samples using standard methods. Amplification of the CTA/CTG 3'untranslated region was achieved by PCR using primers SCA8-F3 and SCA8-R4 and conditions described previously. Neurological reevaluation was done in individuals carrying the expanded allele. We detected five unrelated expanded alleles corresponding to three affected patients (one of them homozygous) and one healthy individual. SCA8 represents 4% of the total dominant spinocerebellar ataxias studied in our group (Spanish population) (three index patients out of 75 dominant ataxic independent nucleus). The patient that resulted homozygous for the expansion is a 25-year-old man with a clinical picture of progressive ataxia and dysarthria that began at the age of 12. On neurological examination, he showed ataxia, slight dysarthria and nystagmus to the extreme lateral gaze. A cranial MRI showed global atrophy of cerebellum but the brainstem was spared. Family history showed the presence of ataxia in his grandfather and father. His mother is healthy at the age of 52 and a molecular study of SCA8 reveals one allele that could be considered as premutated. She has no ataxia antecedents in her family. Our results provide additional information about the SCA8 expansion, within the Spanish population. These results are in agreement with the hypothesis of the CTG expansion in the SCA8 locus being responsible for the SCA8 ataxia showing reduced penetrance. Besides homozygous status, advancing age at onset (as previously described for other SCAs) supports this idea.
Collapse
Affiliation(s)
- B Tazón
- Genetics Service, Hospital Clínic, and IDIBAPS (Institut d'Investigacions Biomèdiques August Pí Sunyer), Barcelona, Spain
| | | | | | | | | |
Collapse
|
15
|
Abstract
Advances in molecular genetics have led to identification of an increasing number of genes responsible for inherited ataxic disorders. Consequently, DNA testing has become a powerful method to unambiguously establish the diagnosis in some of these disorders; however, there are limitations in this approach. Furthermore, the ethical, social, legal and psychological implications of the genetic test results are complex, necessitating appropriate counseling. This article intends to help the practicing neurologist clinically differentiate these disorders, choose appropriate genetic tests, and recognize the importance of counseling.
Collapse
Affiliation(s)
- Alberto L Rosa
- Universidad de Córdoba, Laboratory of Neurogenetics, Institute for Medical Research Mercedes y Martín Ferreyra-INIMEC, Carrer Researcher of the National Research Council (CONICET), Córdoba, Argentina
| | | |
Collapse
|
16
|
Fukutake T, Kamitsukasa I, Arai K, Hattori T, Nakajima T. A patient homozygous for the SCA6 gene with retinitis pigmentosa. Clin Genet 2002; 61:375-9. [PMID: 12081723 DOI: 10.1034/j.1399-0004.2002.610510.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present authors studied a 55-year-old-patient homozygous for the SCA6 gene who experienced frequent attacks of positional vertigo at 37 years of age with subsequent staggering gait and night blindness. Retinitis pigmentosa (RP), as well as cerebellar ataxia and vertical antidirectional nystagmus, were detected. The subject's parents were first cousins, and two of his three male cousins, whose parents were also first cousins, had RP without ataxia or nystagmus. The numbers of CAG repeats in the expanded alleles of the SCA6 gene found by molecular analysis were 21 and 21. The genetic results were negative for SCA1, SCA2, SCA3, SCA7 and dentatorubral pallidoluysian atrophy. The retinal degeneration in this patient is most likely to be secondary to a genetic disorder of autosomal or X-linked recessive inheritance rather than SCA6. Other reported cases of patients homozygous for the SCA6 gene are also reviewed.
Collapse
Affiliation(s)
- T Fukutake
- Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan.
| | | | | | | | | |
Collapse
|
17
|
Increased expression of alpha 1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J Neurosci 2002. [PMID: 11717352 DOI: 10.1523/jneurosci.21-23-09185.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The expansion of polyglutamine tracts encoded by CAG trinucleotide repeats is a common mutational mechanism in inherited neurodegenerative diseases. Spinocerebellar ataxia type 6 (SCA6), an autosomal dominant, progressive disease, arises from trinucleotide repeat expansions present in the coding region of CACNA1A (chromosome 19p13). This gene encodes alpha(1A), the principal subunit of P/Q-type Ca(2+) channels, which are abundant in the CNS, particularly in cerebellar Purkinje and granule neurons. We assayed ion channel function by introduction of human alpha(1A) cDNAs in human embryonic kidney 293 cells that stably coexpressed beta(1) and alpha(2)delta subunits. Immunocytochemical analysis showed a rise in intracellular and surface expression of alpha(1A) protein when CAG repeat lengths reached or exceeded the pathogenic range for SCA6. This gain at the protein level was not a consequence of changes in RNA stability, as indicated by Northern blot analysis. The electrophysiological behavior of alpha(1A) subunits containing expanded (EXP) numbers of CAG repeats (23, 27, and 72) was compared against that of wild-type subunits (WT) (4 and 11 repeats) using standard whole-cell patch-clamp recording conditions. The EXP alpha(1A) subunits yielded functional ion channels that supported inward Ca(2+) channel currents, with a sharp increase in P/Q Ca(2+) channel current density relative to WT. Our results showed that Ca(2+) channels from SCA6 patients display near-normal biophysical properties but increased current density attributable to elevated protein expression at the cell surface.
Collapse
|
18
|
Abstract
Spinocerebellar ataxia type 6 (SCA6) is due to small expansions of a CAG repeat at the 3' end of the CACNA1A gene, coding for the alpha(1A) subunit of voltage-gated calcium channels type P/Q, expressed in the cerebellar Purkinje and granule cells. It is one of three allelic disorders, the other two being episodic ataxia type 2 (EA2), due mostly to protein truncating mutations, and familial hemiplegic migraine, associated with missense mutations. The latter disorders, due to point mutations altering the P/Q channel activity, clearly belong to the group of channelopathies. For SCA6, due to CAGn expansions, a toxic gain of function might, instead, be envisaged homologous to that of glutamine repeat disorders. A comparison between SCA6 and EA2 phenotypes performed on available literature data, shows that the clinical features of the two disorders are widely overlapping and that the differences could be accounted for with the older age of patients in the SCA6 group. A similar phenotype in the two disorders could imply the same pathogenic process. Functional analyses on cells expressing the protein with an expanded polyglutamine stretch have shown, in fact, an altered channel activity. In conclusion, available data seem to suggest that SCA6 is more likely belonging to channelopathies than to polyglutamine disorders.
Collapse
Affiliation(s)
- M Frontali
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
19
|
Gusella JF, MacDonald ME. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 2000; 1:109-15. [PMID: 11252773 DOI: 10.1038/35039051] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two decades ago, molecular genetic analysis provided a new approach for defining the roots of inherited disorders. This strategy has proved particularly powerful because, with only a description of the inheritance pattern, it can uncover previously unsuspected mechanisms of pathogenesis that are not implicated by known biological pathways or by the disease manifestations. Nowhere has the impact of molecular genetics been more evident than in the dominantly inherited neurodegenerative disorders, where eight unrelated diseases have been revealed to possess the same type of mutation--an expanded polyglutamine encoding sequence--affecting different genes.
Collapse
Affiliation(s)
- J F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|