1
|
Wang G, Xu R, Zhang B, Hong X, Bartell TR, Pearson C, Liang L, Wang X. Impact of intrauterine exposure to maternal diabetes on preterm birth: fetal DNA methylation alteration is an important mediator. Clin Epigenetics 2023; 15:59. [PMID: 37029435 PMCID: PMC10082529 DOI: 10.1186/s13148-023-01473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND In utero exposure to diabetes has been shown to contribute to preterm birth, though the underlying biological mechanisms are yet to be fully elucidated. Fetal epigenetic variations established in utero may be a possible pathway. This study aimed to investigate whether in utero exposure to diabetes was associated with a change in newborn DNA methylation, and whether the identified CpG sites mediate the association between diabetes and preterm birth in a racially diverse birth cohort population. METHODS This study included 954 mother-newborn pairs. Methylation levels in the cord blood were determined using the Illumina Infinium MethylationEPIC BeadChip 850 K array platform. In utero exposure to diabetes was defined by the presence of maternal pregestational or gestational diabetes. Preterm birth was defined as gestational age at birth less than 37 weeks. Linear regression analysis was employed to identify differentially methylated CpG sites. Differentially methylated regions were identified using the DMRcate Package. RESULTS 126 (13%) newborns were born to mothers with diabetes in pregnancy and 173 (18%) newborns were born preterm, while 41 newborns were born both preterm and to mothers with diabetes in pregnancy. Genomic-wide CpG analysis found that eighteen CpG sites in cord blood were differentially methylated by maternal diabetes status at an FDR threshold of 5%. These significant CpG sites were mapped to 12 known genes, one of which was annotated to gene Major Histocompatibility Complex, Class II, DM Beta (HLA-DMB). Consistently, one of the two identified significant methylated regions overlapped with HLA-DMB. The identified differentially methylated CpG sites mediated the association between diabetes in pregnancy and preterm birth by 61%. CONCLUSIONS In this US birth cohort, we found that maternal diabetes was associated with altered fetal DNA methylation patterns, which substantially explained the link between diabetes and preterm birth.
Collapse
Affiliation(s)
- Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| | - Richard Xu
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Tami R Bartell
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Xu Y, Huang F, Guo W, Feng K, Zhu L, Zeng Z, Huang T, Cai YD. Characterization of chromatin accessibility patterns in different mouse cell types using machine learning methods at single-cell resolution. Front Genet 2023; 14:1145647. [PMID: 36936430 PMCID: PMC10014730 DOI: 10.3389/fgene.2023.1145647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Chromatin accessibility is a generic property of the eukaryotic genome, which refers to the degree of physical compaction of chromatin. Recent studies have shown that chromatin accessibility is cell type dependent, indicating chromatin heterogeneity across cell lines and tissues. The identification of markers used to distinguish cell types at the chromosome level is important to understand cell function and classify cell types. In the present study, we investigated transcriptionally active chromosome segments identified by sci-ATAC-seq at single-cell resolution, including 69,015 cells belonging to 77 different cell types. Each cell was represented by existence status on 20,783 genes that were obtained from 436,206 active chromosome segments. The gene features were deeply analyzed by Boruta, resulting in 3897 genes, which were ranked in a list by Monte Carlo feature selection. Such list was further analyzed by incremental feature selection (IFS) method, yielding essential genes, classification rules and an efficient random forest (RF) classifier. To improve the performance of the optimal RF classifier, its features were further processed by autoencoder, light gradient boosting machine and IFS method. The final RF classifier with MCC of 0.838 was constructed. Some marker genes such as H2-Dmb2, which are specifically expressed in antigen-presenting cells (e.g., dendritic cells or macrophages), and Tenm2, which are specifically expressed in T cells, were identified in this study. Our analysis revealed numerous potential epigenetic modification patterns that are unique to particular cell types, thereby advancing knowledge of the critical functions of chromatin accessibility in cell processes.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Lin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
3
|
Integrated Analysis of Multiple Microarray Studies to Identify Core Gene-Expression Signatures Involved in Tubulointerstitial Injury in Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9554658. [PMID: 35592524 PMCID: PMC9113875 DOI: 10.1155/2022/9554658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/11/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease in both developed and developing countries. It is lack of specific diagnosis, and the pathogenesis remains unclarified in diabetic nephropathy, following the unsatisfactory effects of existing treatments. Therefore, it is very meaningful to find biomarkers with high specificity and potential targets. Two datasets, GSE30529 and GSE47184 from GEO based on diabetic nephropathy tubular samples, were downloaded and merged after batch effect removal. A total of 545 different expression genes screened with
were weighted gene coexpression correlation network analysis, and green module and blue module were identified. The results of KEGG analyses both in green module and GSEA analysis showed the same two enriched pathway, focal adhesion and viral myocarditis. Based on the intersection among WGCNA focal adhesion/Viral myocarditis, GSEA focal adhesion/viral myocarditis, and PPI network, 17 core genes, ACTN1, CAV1, PRKCB, PDGFRA, COL1A2, COL6A3, RHOA, VWF, FN1, HLA-F, HLA-DPB1, ITGB2, HLA-DRA, HLA-DMA, HLA-DPA1, HLA-B, and HLA-DMB, were identified as potential biomarkers in diabetic tubulointerstitial injury and were further validated externally for expression at GSE99325 and GSE104954 and clinical feature at nephroseq V5 online platform. CMap analysis suggested that two compounds, LY-294002 and bufexamac, may be new insights for therapeutics of diabetic tubulointerstitial injury. Conclusively, it was raised that a series of core genes may be as potential biomarkers for diagnosis and two prospective compounds.
Collapse
|
4
|
He J, Chen J, Han X, Gu Q, Liang J, Sun M, Liu S, Yao Y, Shi L. Association of HLA-DM and HLA class II Genes with Antibody Response Induced by Inactivated Japanese Encephalitis Vaccine. HLA 2022; 99:357-367. [PMID: 35118816 DOI: 10.1111/tan.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
HLA (HLA) class II molecules, HLA-DR, DP, and DQ, together with HLA II-like protein DM, play a dominant role in the processing and presentation of antigens, which may influence vaccine effectiveness. We previously demonstrated that variations in the HLA-DRB1, DPB1, and DQB1 genes may affect the neutralising antibody (NAb) response induced by the inactivated Japanese encephalitis vaccine (IJEV). In the present study, we genotyped HLA-DPA1, DQA1, DMA, and DMB genes and used previous HLA-DRB1, DPB1, and DQB1 data to evaluate the association of these genes with IJEV-induced NAbs, at both the seroconversion and geometric mean titres (GMTs). We confirmed the seropositive association of DQB1*02:01 and NAbs (0.156 vs. 0.075, Padj = 0.018; OR = 2.270; 95% CI = 1.285-3.999) and seronegative association of DQB1*02:02 (0.014 vs. 0.09, Padj = 0.0002; OR = 0.130; 95% CI = 0.047-0.400). Furthermore, the DMB*01:03-DMA*01:01-DPA1*01:03-DPB1*04:01 haplotype was associated with a negative response (0.020 vs. 0.074; Padj = 0.03; OR = 0.250; 95% CI = 0.097-0.649), whereas DRB1*15:02-DMB*01:01-DMA*01:01 was associated with a positive response (0.034 vs. 0; Padj = 0.044). In addition, DRB1*12:02, DRB1*13:02, DPB1*04:01, DPB1*05:01, DPB1*09:01, DQA1*06:01, and DQA1*01:02 were associated with a higher GMT of NAbs, whereas DRB1*11:01, DPB1*13:01, and DQA1*05:05 were associated with a lower GMT of NAbs. In conclusion, the present study suggests that variations in the HLA-DM and HLA class II genes, as well as their combined allotypes, may influence the IJEV NAbs at seroconversion and GMT levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jihong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jun Chen
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
5
|
Prediction of Drug Targets for Specific Diseases Leveraging Gene Perturbation Data: A Machine Learning Approach. Pharmaceutics 2022; 14:pharmaceutics14020234. [PMID: 35213968 PMCID: PMC8878225 DOI: 10.3390/pharmaceutics14020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Identification of the correct targets is a key element for successful drug development. However, there are limited approaches for predicting drug targets for specific diseases using omics data, and few have leveraged expression profiles from gene perturbations. We present a novel computational approach for drug target discovery based on machine learning (ML) models. ML models are first trained on drug-induced expression profiles with outcomes defined as whether the drug treats the studied disease. The goal is to “learn” the expression patterns associated with treatment. Then, the fitted ML models were applied to expression profiles from gene perturbations (overexpression (OE)/knockdown (KD)). We prioritized targets based on predicted probabilities from the ML model, which reflects treatment potential. The methodology was applied to predict targets for hypertension, diabetes mellitus (DM), rheumatoid arthritis (RA), and schizophrenia (SCZ). We validated our approach by evaluating whether the identified targets may ‘re-discover’ known drug targets from an external database (OpenTargets). Indeed, we found evidence of significant enrichment across all diseases under study. A further literature search revealed that many candidates were supported by previous studies. For example, we predicted PSMB8 inhibition to be associated with the treatment of RA, which was supported by a study showing that PSMB8 inhibitors (PR-957) ameliorated experimental RA in mice. In conclusion, we propose a new ML approach to integrate the expression profiles from drugs and gene perturbations and validated the framework. Our approach is flexible and may provide an independent source of information when prioritizing drug targets.
Collapse
|
6
|
Han S, Yang H, Han Y, Zhang H. Genes and transcription factors related to the adverse effects of maternal type I diabetes mellitus on fetal development. Mol Cell Probes 2018; 43:64-71. [PMID: 30447278 DOI: 10.1016/j.mcp.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Maternal type I diabetes mellitus (T1DM) increases the risk of adverse pregnancy outcomes, but the corresponding mechanism is unclear. This study aims to investigate the mechanism underlying the adverse pregnancy outcomes of maternal T1DM. METHODS Gene expression microarray (GSE51546) was down-loaded from the Gene Expression Omnibus. This dataset included 12 umbilical cord samples from the newborns of T1DM mothers (T1DM group, N = six) and non-diabetic mothers (control group, N = six). RESULTS Consequently, 1051 differentially expressed genes (DEGs) were found between the two groups. The up-regulated DEGs enriched in 30 KEGG pathways. HLA-DPA1, HLA-DMA, HLA-DMB, HLA-DQA1, HLA-DQA2 and HLA-DRA enriched in "Type I diabetes mellitus". This pathway was strongly related to 14 pathways, most of which were associated with diseases. Then, a protein-protein interaction network was constructed, and 45 potential key DEGs were identified. The 45 DEGs enriched in pathways such as "Rheumatoid arthritis", "Chemokine signaling pathway" and "Cytokine-cytokine receptor interaction" (e.g. CXCL12 and CCL5). Transcription factors (TFs) of key DEGs were predicted, and a TF-DEG regulatory network was constructed. CONCLUSIONS Some genes (e.g. CXCL12 and CCL5) and their TFs were significantly and abnormally regulated in the umbilical cord tissue from the pregnancies of T1DM mothers compared to that from non-T1DM mothers.
Collapse
Affiliation(s)
- Shuyi Han
- Department of Clinical Laboratory, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China
| | - Huili Yang
- Department of Obstetrics, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China.
| | - Yunhui Han
- Department of Obstetrics, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China
| | - Hongzhi Zhang
- Department of Gynecology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China
| |
Collapse
|
7
|
Arnaiz-Villena A, Palacio-Grüber J, Muñiz E, Rey D, Recio MJ, Campos C, Martinez-Quiles N, Martin-Villa JM, Martinez-Laso J. HLA-DMB in Amerindians: Specific linkage of DMB*01:03:01/DRB1 alleles. Hum Immunol 2016; 77:389-94. [PMID: 26944519 DOI: 10.1016/j.humimm.2016.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
|
8
|
Liu B, Jin Y, Lu Y, Wu Y, Xue Y, Zhang Y, Liu Y, Zhuo M, Ling F. Comprehensive identification of high-frequency and combination MHC-DMA and -DMB alleles in a cohort of Chinese rhesus macaques and cynomolgus macaques of Vietnamese origin. Hum Immunol 2015; 76:109-12. [PMID: 25636571 DOI: 10.1016/j.humimm.2015.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/01/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022]
Abstract
Rhesus and cynomolgus macaques are currently used as ideal animal models of immune response. Major histocompatibility complex (MHC) molecules play important roles in the susceptibility and/or resistance to many diseases. In this study, MHC-DMA and -DMB were first characterized by sequencing and cloning in 28 unrelated cynomolgus macaques from Vietnam and 34 unrelated Chinese rhesus macaques. A total of 23 novel alleles, including six high frequency alleles, were identified in this study. Our results showed that the alleles with the highest phenotypic frequencies were Mafa-DMA(∗)02:04:03 (57.1%), Mafa-DMB(∗)03:01:02 (76.9%), Mamu-DMA(∗)02:01:04 (88.2%), and Mamu-DMB(∗)03:02:02 (85%), respectively, indicating that distribution and frequencies of alleles had a few differences between Chinese rhesus macaques and cynomolgus macaques from Vietnam. Interestingly, compared to the cynomolgus macaques, we found that the combination of Mamu-DMA(∗)02:01:04-DMB(∗)03:02:02 was detected in 27 (79.4%) of 34 monkeys, suggesting that the combination of the MHC-DMA and -DMB alleles was probably a characteristic feature of the Chinese rhesus macaques. Our results will greatly increase the value of the two species as models for biomedical research.
Collapse
Affiliation(s)
- Beilei Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yabin Jin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yueer Lu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yiran Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yanxia Xue
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yonghui Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yang Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Min Zhuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Álvaro-Benito M, Wieczorek M, Sticht J, Kipar C, Freund C. HLA-DMA polymorphisms differentially affect MHC class II peptide loading. THE JOURNAL OF IMMUNOLOGY 2014; 194:803-16. [PMID: 25505276 DOI: 10.4049/jimmunol.1401389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the adaptive immune response, MHCII proteins display antigenic peptides on the cell surface of APCs for CD4(+) T cell surveillance. HLA-DM, a nonclassical MHCII protein, acts as a peptide exchange catalyst for MHCII, editing the peptide repertoire. Although they map to the same gene locus, MHCII proteins exhibit a high degree of polymorphism, whereas only low variability has been observed for HLA-DM. As HLA-DM activity directly favors immunodominant peptide presentation, polymorphisms in HLA-DM (DMA or DMB chain) might well be a contributing risk factor for autoimmunity and immune disorders. Our systematic comparison of DMA*0103/DMB*0101 (DMA-G155A and DMA-R184H) with DMA*0101/DMB*0101 in terms of catalyzed peptide exchange and dissociation, as well as direct interaction with several HLA-DR/peptide complexes, reveals an attenuated catalytic activity of DMA*0103/DMB*0101. The G155A substitution dominates the catalytic behavior of DMA*0103/DMB*0101 by decreasing peptide release velocity. Preloaded peptide-MHCII complexes exhibit ∼2-fold increase in half-life in the presence of DMA*0103/DMB*0101 when compared with DMA*0101/DMB*0101. We show that this effect leads to a greater persistence of autoimmunity-related Ags in the presence of high-affinity competitor peptide. Our study therefore reveals that HLA-DM polymorphic residues have a considerable impact on HLA-DM catalytic activity.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Marek Wieczorek
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany
| | - Jana Sticht
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Claudia Kipar
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Christian Freund
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany
| |
Collapse
|
10
|
Zhou Z, Jensen PE. Structural Characteristics of HLA-DQ that May Impact DM Editing and Susceptibility to Type-1 Diabetes. Front Immunol 2013; 4:262. [PMID: 24009614 PMCID: PMC3756536 DOI: 10.3389/fimmu.2013.00262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/18/2013] [Indexed: 12/31/2022] Open
Abstract
Autoreactive CD4+ T cells initiate the chronic autoimmune disease Type-1 diabetes (T1D), in which multiple environmental and genetic factors are involved. The association of HLA, especially the DR-DQ loci, with risk for T1D is well documented. However, the molecular mechanisms are poorly understood. In this review, we explore the structural characteristics of HLA-DQ and the role of HLA-DM function as they may contribute to an understanding of autoreactive T cell development in T1D.
Collapse
Affiliation(s)
- Zemin Zhou
- ARUP Laboratories, Department of Pathology, University of Utah , Salt Lake City, UT , USA
| | | |
Collapse
|
11
|
Feng ML, Liu RZ, Shen T, Zhao YL, Zhu ZY, Liu DZ. Analysis of HLA-DM polymorphisms in the Chinese Han population. ACTA ACUST UNITED AC 2012; 79:157-64. [PMID: 22309257 DOI: 10.1111/j.1399-0039.2012.01838.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Non-classical human leukocyte antigen (HLA)-DM plays an important and unique role in the processing and presentation of exogenous antigens. Polymorphisms of certain genes and frequency of alleles in populations may indicate susceptibility to certain diseases. In this study, the analysis of HLA-DMA and HLA-DMB gene polymorphisms and haplotypes in the Chinese Han population was conducted to obtain population genetic data. HLA-DM typing has been performed previously by other groups by polymerase chain reaction (PCR)-restriction fragment length polymorphism and PCR-sequence-specific oligonucleotide probe techniques. In this study, we established a TaqMan PCR typing method as an alternative to these techniques to survey the frequency of DMA and DMB alleles in the population. Genotyping was conducted in 1000 unrelated individuals of Han nationality in South and North China using TaqMan PCR typing. Four different DMA alleles and six different DMB alleles were detected. All loci met the Hardy-Weinberg equilibrium principle that both allele and genotype frequencies in a population remain constant. We found that the DMA*01:01 (69.35%) and DMB*01:01 (52.5%) alleles were more frequent in Chinese Hans. Analysis of the haplotypes for two loci of DMA and DMB showed that a highly significant positive linkage disequilibrium (LD) presented for DMA*01:01-DMB*01:02, DMA*01:01-DMB*01:03, DMA*01:01-DMB*01:04, DMA*01:02-DMB*01:01, DMA*01:02-DMB*01:05, DMA*01:03-DMB*01:07, and DMA*01:04-DMB*01:01 haplotypes. Analysis of haplotypes for four loci associated with antigen processing (DMA-DMB-TAP1-TAP2) showed a highly significant LD in DMA*01:01-DMB*01:04-TAP1*02:01:01-TAP2*01:02, DMA*01: 02-DMB*01:05-TAP1*01:01-TAP2*01:01, and DMA*01:01-DMB*01:03-TAP1* 04:01-TAP2*01:01 haplotypes. The comparison between the Chinese Han population and non-Chinese populations showed that no significant differences were found at the HLA-DMA locus in the Chinese Han population compared with people of German nationality, whereas significant differences presented when compared with Turkish, American Caucasian, Japanese, French, and Italian nationalities. However, at the HLA-DMB locus, highly significant differences presented in the Chinese Han population compared with Germans and Italians. This study lays the foundations for further disease association analyses.
Collapse
Affiliation(s)
- M L Feng
- Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | |
Collapse
|
12
|
Lich JD, Jayne JA, Zhou D, Elliott JF, Blum JS. Editing of an immunodominant epitope of glutamate decarboxylase by HLA-DM. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:853-9. [PMID: 12847254 DOI: 10.4049/jimmunol.171.2.853] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DM stabilizes peptide-receptive class II alphabeta dimers and facilitates the capture of high affinity peptides, thus influencing the peptide repertoire presented by class II molecules. Variations in DM levels may therefore have a profound effect on the antigenic focus of T cell-mediated immune responses. Specifically, DM expression may influence susceptibility and resistance to autoimmune diseases. In this study the role of DM in HLA-DR4-restricted presentation of an insulin-dependent diabetes mellitus autoantigen, glutamate decarboxylase (GAD), was tested. Presentation of immunodominant GAD epitope 273-285 was regulated by endogenous DM levels in human B lymphoblasts. T cell responses to exogenous GAD as well as an endogenous cytoplasmic form of this Ag were significantly diminished with increasing cellular expression of DM. Epitope editing by DM was observed only using Ag and not small synthetic peptides, suggesting that this process occurred within endosomes. Results with cytoplasmic GAD also indicated that peptides from this compartment intersect class II proteins in endocytic vesicles where DM editing was facilitated. Changes in DM levels within APC may therefore influence the presentation of autoantigens and the development of autoimmune disorders such as type I diabetes.
Collapse
Affiliation(s)
- John D Lich
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
13
|
Naik E, LeBlanc S, Tang J, Jacobson LP, Kaslow RA. The complexity of HLA class II (DRB1, DQB1, DM) associations with disseminated Mycobacterium avium complex infection among HIV-1-seropositive whites. J Acquir Immune Defic Syndr 2003; 33:140-5. [PMID: 12794545 DOI: 10.1097/00126334-200306010-00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Earlier associations of polymorphism in classic HLA class II (DRB1 and DQB1) genes have been extended to include the accessory genes DMA and DMB as determinants of disseminated Mycobacterium avium complex (DMAC) infection among HIV-1-seropositive whites. From the Multicenter AIDS Cohort study, 176 DMAC cases were matched with 176 controls in a nested case-control study. PCR-based HLA genotyping techniques were used to resolve variants of DRB1 and DQB1 to their four-digit or five-digit alleles, and single-strand conformation polymorphism was used to resolve sequences in exon 3 at each DM locus. The DMA*0102 allele occurred less frequently among DMAC cases than among controls (OR = 0.46, p =.02). Combinations of DRB1 alleles with or without specific DMA and DMB variants showed significant differences in distributions between the cases and controls, but both of the previously associated class II alleles (DRB1*1501 and DRB1*0701) showed stronger positive associations with DMAC in the absence than in the presence of DMA*0102. Apparent joint effects of DRB1 and DM allelic combinations on occurrence and timing of DMAC suggest that class II disease relationships may be better predicted by biologically plausible interactive combinations than by polymorphisms in individual genes.
Collapse
Affiliation(s)
- Eknath Naik
- Department of Epidemiology and Biostatistics, University of South Florida, Tampa, Florida, USA
| | | | | | | | | |
Collapse
|
14
|
Johansson S, Lie BA, Todd JA, Pociot F, Nerup J, Cambon-Thomsen A, Kockum I, Akselsen HE, Thorsby E, Undlien DE. Evidence of at least two type 1 diabetes susceptibility genes in the HLA complex distinct from HLA-DQB1, -DQA1 and -DRB1. Genes Immun 2003; 4:46-53. [PMID: 12595901 DOI: 10.1038/sj.gene.6363917] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Susceptibility to, and protection against development of type 1 diabetes (T1D) are primarily associated with the highly polymorphic exon 2 sequences of the HLA class II genes: DQB1, DQA1 and DRB1. However, several studies have also suggested that additional genes in the HLA complex influence T1D risk, albeit to a lesser degree than the class II genes. We have previously shown that allele 3 of microsatellite marker D6S2223, 4.9 Mb telomeric of DQ in the extended class I region, is associated with a reduction in risk conferred by the DQ2-DR3 haplotype. Here we replicate this finding in two populations from Sweden and France. We also show that markers in the HLA class II, III and centromeric class I regions contribute to the DQ2-DR3 associated risk of T1D, independently of linkage disequilibrium (LD) with both the DQ/DR genes and the D6S2223 associated gene. The associated marker alleles are carried on the DQ2-DR3-B18 haplotype in a region of strong LD. By haplotype mapping, we have located the most likely location for this second DQ2-DR3 haplotype-modifying locus to the 2.35 Mb region between HLA-DOB and marker D6S2702, located 970 kb telomeric of HLA-B.
Collapse
Affiliation(s)
- S Johansson
- Institute of Immunology, Rikshospitalet, University Hospital, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vojvodić S. [Association of class II HLA antigens and insulin-dependent diabetes mellitus in the population of Vojvodina]. MEDICINSKI PREGLED 2003; 56:26-31. [PMID: 12793183 DOI: 10.2298/mpns0302026v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Class II HLA antigens were investigated in a group of 28 patients with insulin-dependent diabetes mellitus (IDDM) and 218 healthy unrelated persons (control group) from Vojvodina. MATERIAL AND METHODS We used a modified two-colour immunofluorescence method (serologic technique) to determine the phenotype of DR and DQ locus HlA antigens. Phenotype frequencies of class II HLA antigens were determined in both investigated groups and were used for calculating relative risk (RR). If RR was higher than 1, we calculated the population attributable risk (EF), and if RR was lower than 1, we calculated the preventive fraction (PF). Investigation of statistically significant differences in frequencies of class II HLA antigens in patients and control group was performed by using chi 2 test. RESULTS Results of investigation showed that values of RR were higher than 1 for HLA DR4 (2,808), DR10 (1,116) and DQ3 (1,386), while we noticed a statistically significant difference in frequencies of HLA DR4 (chi 2 test: 4,805) in patients regarding control group. HLA DQ1 antigen has a preventive role in development of IDDM due to highest value of PF (0,314). CONCLUSION Results of our investigation confirm that there is an association of HLA DR4 with IDDM in population of Vojvodina. High values of relative risk of IDDM, noticed in persons with HLA-DR4 antigen, point to the degree of risk of IDDM, which is a disease with great socioeconomic importance in Vojvodina.
Collapse
|
16
|
Kilmartin DJ, Wilson D, Liversidge J, Dick AD, Bruce J, Acheson RW, Urbaniak SJ, Forrester JV. Immunogenetics and clinical phenotype of sympathetic ophthalmia in British and Irish patients. Br J Ophthalmol 2001; 85:281-6. [PMID: 11222331 PMCID: PMC1723868 DOI: 10.1136/bjo.85.3.281] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Sympathetic ophthalmia (SO) is a classic example of autoimmune disease where human leucocyte antigen (HLA) genomic associations could provide further understanding of mechanisms of disease. This study sought to assess HLA genetic polymorphism in British and Irish patients with SO, and to assess whether HLA gene variants are associated with clinical phenotype or disease severity. METHODS High resolution DNA based HLA typing using polymerase chain reaction sequence specific primers was performed in 27 patients with SO and 51 matched healthy controls. Clinical phenotype and markers of disease severity were determined prospectively in 17 newly diagnosed patients and from medical record review and repeat clinical examination in 10 previously diagnosed patients. RESULTS HLA-Cw*03 (p=0.008), DRB1*04 (p=0.017), and DQA1*03 (p=0.014) were significantly associated with SO. For class II alleles at higher resolution, only HLA-DRB1*0404 (relative risk (RR) = 5.6, p = 0.045) was significantly associated with SO. The highest relative risk for any of the associated haplotypes was with HLA-DRB1*0404-DQA1*0301 (RR=10.9, p=0.019). Patients with the DRB1*04-DQA1*03 associated haplotype were significantly more likely to develop SO earlier, with fewer inciting ocular trauma events, and to require more systemic steroid therapy to control inflammatory activity. CONCLUSIONS Sympathetic ophthalmia is associated with HLA-DRB1*04 and DQA1*03 genotypes in white patients, similar to Japanese patients. Differences in DRB1*04 gene variant associations (-0404 in Britain and Ireland and -0405 in Japan) may have implications for HLA peptide binding in disease initiation. The DRB1*04-DQA1*03 haplotype is a marker of increased SO susceptibility and severity, as in Vogt-Koyanagi-Harada disease, which also has similar clinicopathological and HLA associations.
Collapse
Affiliation(s)
- D J Kilmartin
- Department of Ophthalmology, University of Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|