1
|
West NG, Bamford SE, Pigram PJ, Pan J, Qi DC, Mechler A. Controllable hierarchical self-assembly: systematic study forming metallosupramolecular frameworks on the basis of helical beta-oligoamides. MATERIALS HORIZONS 2023; 10:5584-5596. [PMID: 37815516 DOI: 10.1039/d3mh01327h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Self-assembly is a key guiding principle for the design of complex nanostructures. Substituted beta oligoamides offer versatile building blocks that can have inherent folding characteristics, offering geometrically defined functionalities that can specifically bind and assemble with predefined morphological characteristics. In this work hierarchical self-assembly is implemented based on metal coordinating helical beta-oligoamides crosslinked with transition metals selected for their favourable coordination geometries, Fe2+, Cu2+, Ni2+, Co2+, Zn2+, and two metalates, MoO42-, and WO42-. The oligoamide Ac-β3Aβ3Vβ3S-αHαHαH-β3Aβ3Vβ3A (3H) was designed to allow crosslinking via three distinct faces of the helical unit, with a possibility of forming three dimensional framework structures. Atomic force microscopy (AFM) confirmed the formation of specific morphologies that differ characteristically with each metal. X-Ray photoelectron spectroscopy (XPS) results reveal that the metal centres can be reduced in the final structures, confirming strong chemical interaction. Time of flight secondary ion mass spectrometry (ToF-SIMS) confirmed the spatial distribution of metals within the self-assembled networks, also revealing molecular fragments that confirm coordination to histidine and carboxyl moieties. The metalates MoO42- and WO42- were also able to induce the formation of specific superstructure morphologies. It was observed that assembly with either of nickel, copper, and molybdate form thin films, while cobalt, zinc, and tungstate produced specific three dimensional networks of oligoamides. Iron was found to form both a thin film and a complex hierarchical assembly with the 3H simultaneously. The design of the 3H substituted beta oligoamide to readily form metallosupramolecular frameworks was demonstrated with a range of metals and metalates with a degree of control over layer thicknesses as a function of the metal/metalate. The results validate and broaden the metallosupramolecular framework concept and establish a platform technology for the design of functional thin layer materials.
Collapse
Affiliation(s)
- Norton G West
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Sarah E Bamford
- Center for Materials and Surface Science, and Department of Mathematical and Physical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Paul J Pigram
- Center for Materials and Surface Science, and Department of Mathematical and Physical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jisheng Pan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Dong-Chen Qi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
3
|
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
5
|
Yokoo H, Hirano M, Misawa T, Demizu Y. Helical Antimicrobial Peptide Foldamers Containing Non-proteinogenic Amino Acids. ChemMedChem 2021; 16:1226-1233. [PMID: 33565721 DOI: 10.1002/cmdc.202000940] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides (AMPs) are potential novel therapeutic drugs against microbial infections. Most AMPs function by disrupting microbial membranes because of their amphipathic properties and ordered secondary structures. In this minireview, we describe recent efforts to develop helical AMP foldamers containing non-proteinogenic amino acids, such as α,α-disubstituted α-amino acids, β-amino acids, γ-amino acids, side-chain stapling and N-alkyl glycines.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Motoharu Hirano
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
6
|
Szigyártó IC, Mihály J, Wacha A, Bogdán D, Juhász T, Kohut G, Schlosser G, Zsila F, Urlacher V, Varga Z, Fülöp F, Bóta A, Mándity I, Beke-Somfai T. Membrane active Janus-oligomers of β 3-peptides. Chem Sci 2020; 11:6868-6881. [PMID: 33042513 PMCID: PMC7504880 DOI: 10.1039/d0sc01344g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of an acyclic β3-hexapeptide with alternating side chain chirality, into nanometer size oligomeric bundles showing membrane activity and hosting capacity for hydrophobic small molecules.
Self-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and complex oligomeric assemblies – key areas for biomedical and technological applications. Here we designed short, acyclic β3-peptide sequences with alternating amino acid stereoisomers to obtain non-helical molecules having hydrophilic charged residues on one side, and hydrophobic residues on the other side, with the N-terminus preventing formation of infinite fibrils. Our results indicate that these β-peptides form small oligomers both in water and in lipid bilayers and are stabilized by intermolecular hydrogen bonds. In the presence of model membranes, they either prefer the headgroup regions or they insert between the lipid chains. Molecular dynamics (MD) simulations suggest the formation of two-layered bundles with their side chains facing opposite directions when compared in water and in model membranes. Analysis of the MD calculations showed hydrogen bonds inside each layer, however, not between the layers, indicating a dynamic assembly. Moreover, the aqueous form of these oligomers can host fluorescent probes as well as a hydrophobic molecule similarly to e.g. lipid transfer proteins. For the tested, peptides the mixed chirality pattern resulted in similar assemblies despite sequential differences. Based on this, it is hoped that the presented molecular framework will inspire similar oligomers with diverse functionality.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - András Wacha
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Dóra Bogdán
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Gergely Kohut
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Gitta Schlosser
- Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Vlada Urlacher
- Institute of Biochemistry , Heinrich-Heine University , 40225 Düsseldorf , Germany
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Ferenc Fülöp
- MTA-SZTE Stereochemistry Research Group , Institute of Pharmaceutical Chemistry , University of Szeged , H-6720 Szeged , Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - István Mándity
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Chemistry and Chemical Engineering , Physical Chemistry , Chalmers University of Technology , SE-41296 Göteborg , Sweden
| |
Collapse
|
7
|
Reja A, Afrose SP, Das D. Aldolase Cascade Facilitated by Self‐Assembled Nanotubes from Short Peptide Amphiphiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|
8
|
Buchanan C, Garvey CJ, Puskar L, Perlmutter P, Mechler A. Coordination crosslinking of helical substituted oligoamide nanorods with Cu(II). Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1730839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Claire Buchanan
- Department of Chemistry and Physics, La Trobe University, Bundoora, Australia
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, Australia
- Lund Institute for Advanced Neutron and X-ray Science (LINXS), Lund, Sweden
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Health and Society, Malmö University, Malmö, Sweden
| | - Ljiljana Puskar
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Patrick Perlmutter
- Department of Chemistry and Physics, La Trobe University, Bundoora, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Australia
| |
Collapse
|
9
|
Reja A, Afrose SP, Das D. Aldolase Cascade Facilitated by Self-Assembled Nanotubes from Short Peptide Amphiphiles. Angew Chem Int Ed Engl 2020; 59:4329-4334. [PMID: 31920004 DOI: 10.1002/anie.201914633] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Early evolution benefited from a complex network of reactions involving multiple C-C bond forming and breaking events that were critical for primitive metabolism. Nature gradually chose highly evolved and complex enzymes such as lyases to efficiently facilitate C-C bond formation and cleavage with remarkable substrate selectivity. Reported here is a lipidated short peptide which accesses a homogenous nanotubular morphology to efficiently catalyze C-C bond cleavage and formation. This system shows morphology-dependent catalytic rates, suggesting the formation of a binding pocket and registered enhancements in the presence of the hydrogen-bond donor tyrosine, which is exploited by extant aldolases. These assemblies showed excellent substrate selectivity and templated the formation of a specific adduct from a pool of possible adducts. The ability to catalyze metabolically relevant cascade transformations suggests the importance of such systems in early evolution.
Collapse
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
10
|
Capaccio V, Sicignano M, Rodríguez RI, Della Sala G, Alemán J. Asymmetric Synthesis of α-Trifluoromethylthio-β-Amino Acids under Phase Transfer Catalysis. Org Lett 2019; 22:219-223. [DOI: 10.1021/acs.orglett.9b04195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vito Capaccio
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marina Sicignano
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Ricardo I. Rodríguez
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giorgio Della Sala
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Wacha A, Beke‐Somfai T, Nagy T. Improved Modeling of Peptidic Foldamers Using a Quantum Chemical Parametrization Based on Torsional Minimum Energy Path Matching. Chempluschem 2019; 84:927-941. [PMID: 31423411 PMCID: PMC6686720 DOI: 10.1002/cplu.201900180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/12/2019] [Indexed: 11/11/2022]
Abstract
The increasing interest in novel foldamer constructs demands an accurate computational treatment on an extensive timescale. However, it is still a challenge to derive a force field (FF) that can reproduce the experimentally known fold while also allowing the spontaneous exploration of other structures. Here, aiming at a realistic reproduction of backbone torsional barriers, the relevant proper dihedrals of acyclic β2-, β3- and β2,3-amino acids were added to the CHARMM FF and optimized using a novel, self-consistent iterative procedure based on quantum chemical relaxed scans. The new FF was validated by molecular dynamics simulations on three acyclic peptides. While they resided most of the time in their preferred fold (>80 % in helices and >50 % in hairpin), they also visited other conformations. Owing to the CHARMM36m-consistent parametrization, the proposed extension is suitable for exploring new foldamer structures and assemblies, and their interactions with diverse biomolecules.
Collapse
Affiliation(s)
- András Wacha
- Institute of Materials and Environmental Chemistry Research Centre for Natural SciencesHungarian Academy of SciencesH-1117Budapest, Magyar tudósok körútja 2Hungary
| | - Tamás Beke‐Somfai
- Institute of Materials and Environmental Chemistry Research Centre for Natural SciencesHungarian Academy of SciencesH-1117Budapest, Magyar tudósok körútja 2Hungary
| | - Tibor Nagy
- Institute of Materials and Environmental Chemistry Research Centre for Natural SciencesHungarian Academy of SciencesH-1117Budapest, Magyar tudósok körútja 2Hungary
| |
Collapse
|
12
|
Bahamonde A, Rifaie BA, Martín-Heras V, Allen JR, Sigman MS. Enantioselective Markovnikov Addition of Carbamates to Allylic Alcohols for the Construction of α-Secondary and α-Tertiary Amines. J Am Chem Soc 2019; 141:8708-8711. [PMID: 31124676 PMCID: PMC6583784 DOI: 10.1021/jacs.9b03438] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we describe the development of a Pd-catalyzed enantioselective Markovnikov addition of carbamates to allylic alcohols for the construction of α-tertiary and α-secondary amines. The reaction affords a range of β-amino alcohols, after reduction of the aldehyde in situ, which contain a variety of functional groups in moderate yields and moderate to good enantioselectivities. These products can be readily oxidized to β-amino acids, valuable building blocks for the synthesis of biologically active compounds. Mechanistic studies indicate that the C-N bond formation occurs via a syn amino-palladation mechanism, an insight which may guide future reaction development given the limited number of enantioselective syntheses of α-tertiary amines.
Collapse
Affiliation(s)
| | | | - Victor Martín-Heras
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Jamie R. Allen
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| |
Collapse
|
13
|
Guarracino DA, Riordan JA, Barreto GM, Oldfield AL, Kouba CM, Agrinsoni D. Macrocyclic Control in Helix Mimetics. Chem Rev 2019; 119:9915-9949. [DOI: 10.1021/acs.chemrev.8b00623] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Danielle A. Guarracino
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Jacob A. Riordan
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Gianna M. Barreto
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Alexis L. Oldfield
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Christopher M. Kouba
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Desiree Agrinsoni
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| |
Collapse
|
14
|
Zarezin DP, Shmatova OI, Nenajdenko VG. Chiral β 3-isocyanopropionates for multicomponent synthesis of peptides and depsipeptides containing a β-amino acid fragment. Org Biomol Chem 2018; 16:5987-5998. [PMID: 30083689 DOI: 10.1039/c8ob01507d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient three-step synthesis of a novel family of enantiomerically pure isocyanides derived from β3-isocyanopropionic acids was elaborated. Easily available N-formylated α-amino acids were used as starting materials towards this aim. The 3-step sequence (Arndt-Eistert reaction-Wolff rearrangement-dehydration) resulted in target isonitriles in good yields (up to 97%). As a result a new family of isocyanides bearing a fragment of β3-amino acids with different functional groups (amides, esters and short peptides) was obtained. It was demonstrated that these new isonitriles can be used in the Ugi and Passerini reactions to prepare short peptides and depsipeptides having a β-amino acid fragment incorporated.
Collapse
Affiliation(s)
- Danil P Zarezin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
15
|
Forsythe JG, English SL, Simoneaux RE, Weber AL. Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions. ORIGINS LIFE EVOL B 2018; 48:201-211. [PMID: 29796877 DOI: 10.1007/s11084-018-9558-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.
Collapse
Affiliation(s)
- Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Sloane L English
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Rachel E Simoneaux
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Arthur L Weber
- Ames Research Center, SETI Institute, Mail Stop 239-4, Moffett Field, CA, 94035, USA.
| |
Collapse
|
16
|
Seoudi RS, Mechler A. Design Principles of Peptide Based Self-Assembled Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:51-94. [DOI: 10.1007/978-3-319-66095-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017; 22:E1430. [PMID: 28850098 PMCID: PMC6151827 DOI: 10.3390/molecules22091430] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids (N-alkylated glycine oligomers), β-peptoids (N-alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N-acylated N-aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
18
|
Thodupunuri P, Katukuri S, Ramakrishna KVS, Sharma GVM, Kunwar AC, Sarma AVS, Hofmann HJ. Solvent-Directed Switch of a Left-Handed 10/12-Helix into a Right-Handed 12/10-Helix in Mixed β-Peptides. J Org Chem 2017; 82:2018-2031. [DOI: 10.1021/acs.joc.6b02856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Prashanth Thodupunuri
- Organic
and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Sirisha Katukuri
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Kallaganti V. S. Ramakrishna
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Gangavaram V. M. Sharma
- Organic
and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ajit C. Kunwar
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Akella V. S. Sarma
- Nuclear Magnetic Resonance & Structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Hans-Jörg Hofmann
- Institute
of Biochemistry, Faculty of Biosciences, University of Leipzig, Brüderstrasse 34, D-04103 Leipzig, Germany
| |
Collapse
|
19
|
Diedrich D, Moita AJR, Rüther A, Frieg B, Reiss GJ, Hoeppner A, Kurz T, Gohlke H, Lüdeke S, Kassack MU, Hansen FK. α-Aminoxy Oligopeptides: Synthesis, Secondary Structure, and Cytotoxicity of a New Class of Anticancer Foldamers. Chemistry 2016; 22:17600-17611. [PMID: 27573537 DOI: 10.1002/chem.201602521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 11/11/2022]
Abstract
α-Aminoxy peptides are peptidomimetic foldamers with high proteolytic and conformational stability. To gain an improved synthetic access to α-aminoxy oligopeptides we used a straightforward combination of solution- and solid-phase-supported methods and obtained oligomers that showed a remarkable anticancer activity against a panel of cancer cell lines. We solved the first X-ray crystal structure of an α-aminoxy peptide with multiple turns around the helical axis. The crystal structure revealed a right-handed 28 -helical conformation with precisely two residues per turn and a helical pitch of 5.8 Å. By 2D ROESY experiments, molecular dynamics simulations, and CD spectroscopy we were able to identify the 28 -helix as the predominant conformation in organic solvents. In aqueous solution, the α-aminoxy peptides exist in the 28 -helical conformation at acidic pH, but exhibit remarkable changes in the secondary structure with increasing pH. The most cytotoxic α-aminoxy peptides have an increased propensity to take up a 28 -helical conformation in the presence of a model membrane. This indicates a correlation between the 28 -helical conformation and the membranolytic activity observed in mode of action studies, thereby providing novel insights in the folding properties and the biological activity of α-aminoxy peptides.
Collapse
Affiliation(s)
- Daniela Diedrich
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Ana J Rodrigues Moita
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Rüther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Benedikt Frieg
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Guido J Reiss
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Astrid Hoeppner
- X-Ray Facility and Crystal Farm, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Steffen Lüdeke
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
20
|
Sadek M, Berndt D, Milovanovic D, Jahn R, Diederichsen U. Distance Regulated Vesicle Fusion and Docking Mediated by β-Peptide Nucleic Acid SNARE Protein Analogues. Chembiochem 2016; 17:479-85. [PMID: 26879104 DOI: 10.1002/cbic.201500517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 11/07/2022]
Abstract
Artificial SNARE analogues derived from SNARE proteins, which mediate synaptic membrane fusion, are of interest. They mimic the tetrameric α-helix bundle of the SNARE motif with various bio-oligomer recognition units. Interaction between complementary oligomers linked to the respective membrane by lipid or peptide anchors leads to proximity of vesicles and to fusion of lipid bilayers. β-Peptide nucleic acids were introduced as hybrid oligomers with the native SNARE protein transmembrane/linker sequence, in order to evaluate a fusion system that allows distance tuning of approaching membranes. Formation of a four-base pair β-PNA double strand with 20 Å length is sufficient for vesicle membrane fusion. Elongation of the recognition β-PNA duplex in the linker region yielded a 40 Å β-peptide duplex and provided a vesicle-vesicle distance that only supported hemifusion of vesicle membranes.
Collapse
Affiliation(s)
- Muheeb Sadek
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Daniel Berndt
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Dragomir Milovanovic
- Abteilung Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Reinhard Jahn
- Abteilung Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Hu X, Dawson SJ, Nagaoka Y, Tanatani A, Huc I. Solid-Phase Synthesis of Water-Soluble Helically Folded Hybrid α-Amino Acid/Quinoline Oligoamides. J Org Chem 2016; 81:1137-50. [PMID: 26703882 DOI: 10.1021/acs.joc.5b02671] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here a solid phase synthesis methodology that allows the incorporation of α-amino acids (X) into quinoline (Q) oligoamide foldamer sequences. Water-soluble hybrid oligoamides based on the XQ2 trimer repeat motif were shown to adopt helical conformations presenting α-amino acid side chains in a predictable linear array on one face of the helix. In contrast, sequences based on the XQ dimer motif expressed less well-defined behavior, most likely due to local conformational variability precluding long-range order. Also presented is a full structural investigation by NMR of a dodecameric XQ2-type foldamer containing four different amino acid residues (Lys, Ala, Asp, and Ser).
Collapse
Affiliation(s)
- Xiaobo Hu
- Université de Bordeaux, CBMN (UMR5248) , Institut Européen de Chimie et Biologie, 2 Rue Escarpit, 33600 Pessac, France
| | - Simon J Dawson
- CNRS, CBMN (UMR 5248) , Institut Européen de Chimie et Biologie, 2 Rue Escarpit, 33600 Pessac, France
| | - Yui Nagaoka
- Department of Chemistry, Faculty of Science, Ochanomizu University , 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University , 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Ivan Huc
- Université de Bordeaux, CBMN (UMR5248) , Institut Européen de Chimie et Biologie, 2 Rue Escarpit, 33600 Pessac, France
| |
Collapse
|
22
|
Ramesh Babu A, Raju G, Purna Chander C, Shoban Babu B, Srinivas R, Sharma GVM. Electrospray ionization tandem mass spectrometric study of protonated and alkali- cationized α/ε-hybrid peptides: differentiation of a pair of dipeptide positional isomers. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:181-191. [PMID: 27882883 DOI: 10.1255/ejms.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new class of Boc-N-protected hybrid peptides derived from L- Ala and ε6-Caa (L-Ala = L-Alanine, Caa = C-linked carboamino acid derived from D-xylose) have been studied by positive ion electrospray ionization (ESI) ion-trap tandem mass spectrometry (MS/MS). MSn spectra of protonated and alkali-cationized hybrid peptides produce characteristic fragmentation involving the peptide backbone, the tert-butyloxycarbonyl (Boc) group, and the side chain. The dipeptide positional isomers are differentiated by the collision-induced dissociation (CID) of the protonated and alkali-cationized peptides. The CID of [M + H]+ ion of Boc-NH-L-Ala-ε-Caa- OCH3 (1) shows a prominent [M + H - C4H8]+ ion, which is totally absent for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH3 (6), which instead shows significant loss of t-butanol. The formation of the [M + Cat - C4H8]+ ion is totally absent and [M + Cat - Boc + H]+ is prominent in the CID of the [M + Cat]+ ion of Boc-NH-L-Ala-ε-Caa- OCH3 (1), whereas the former is highly abundant and the latter is of low abundance for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH3 (6). It is observed that 'b' ions are abundant when oxazolone structures are formed through a five-membered cyclic transition state in tetra-, penta-, and hexapeptides and the cyclization process for larger 'b' ions led to an insignificant abundance. However, the significant 'b' ion is formed in ε,α-dipeptide, which may have a seven-membered substituted 2-oxoazepanium ion structure. The MSn spectra of [M + Cat - Boc + H]+ ions of these peptides are found to be significantly different to those of [M + H - Boc + H]+ ions. The CID spectra of [M + Cat - Boc + H]+ ions of peptide acids containing L-Ala at the C-terminus show an abundant N-terminal rearrangement ion, [bn + 17 + Cat]+, which is absent for the peptide acids containing ε-Caa at the C-terminus. Thus, the results of these hybrid peptides provide sequencing information, the structure of the cyclic intermediate involved in the formation of the rearrangement ion, and distinguish a pair of dipeptide positional isomers.
Collapse
Affiliation(s)
- A Ramesh Babu
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - G Raju
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - C Purna Chander
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - B Shoban Babu
- Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - R Srinivas
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - G V M Sharma
- Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|
23
|
Sharma GVM, Ravindranath H, Bhaskar A, Sirisha K, Ramakrishna KVS, Sarma AVS. Design and Synthesis of Diastereomeric β3-Peptides from (R,R)/(S,S)-APyC and (R)/(S)-β3-Caa: Determination of Enantiomeric Handedness. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
|
25
|
Duley A, Gowda V, Ganjiwale A, Raghothama S, Ramanathan G. Effect of methylene group insertions on the structural rigidity of Aib containing helices. Biopolymers 2015; 104:720-32. [PMID: 26152771 DOI: 10.1002/bip.22691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/06/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022]
Abstract
Nonprotein amino acids are being extensively used in the design of synthetic peptides to create new structure mimics. In this study we report the effect of methylene group insertions in a heptapeptide Boc-Ala1-Leu2-Aib3-Xxx4-Ala5-Leu6-Aib7-OMe which nicely folds into a mixed 310 -/α-helical structure when Xxx= Ala. Analogs of this peptide have been made and studied by replacing central Xxx4 residue with Glycine (α-residue), β-Alanine (β-Αla), γ-aminobutyric acid (Gaba), and ε-aminocaproic acid (ε-Aca). NMR and circular dichroism were used to study the solution structure of these peptides. Crystals of the peptides containing alanine, β-Αla, and Gaba reveal that increasing the number of central methylene (-CH2 -) groups introduces local perturbations even as the helical structure is retained.
Collapse
Affiliation(s)
- Anju Duley
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vasantha Gowda
- NMR Research Centre, Indian Institute of Science, Bangalore-, 560012, India
| | - Anjali Ganjiwale
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bengaluru, 560 100, India
| | | | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
26
|
Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J Control Release 2014; 196:168-83. [DOI: 10.1016/j.jconrel.2014.09.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
|
27
|
Sharma GVM, Ravindranath H, Bhaskar A, Jeelani Basha S, Gurava Reddy PRG, Sirisha K, Sarma AVS, Hofmann HJ. Design and Study of Peptides Containing 1:1 Left- and Right-Handed Helical Patterns from Aminopyrancarboxylic Acids. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Chan-Seng D, Lutz JF. Primary Structure Control of Oligomers Based on Natural and Synthetic Building Blocks. ACS Macro Lett 2014; 3:291-294. [PMID: 35590523 DOI: 10.1021/mz5000575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solid-phase synthesis was exploited for the preparation of oligomers constructed from natural and synthetic building blocks by combining the formation of amide bonds and copper-assisted alkyne-azide cycloaddition reactions extending the variety of oligomers with well-defined primary structures accessible through this technique and providing control over the spacing between amino acids.
Collapse
Affiliation(s)
- Delphine Chan-Seng
- Institut Charles Sadron, UPR22/CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Jean-François Lutz
- Institut Charles Sadron, UPR22/CNRS, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
29
|
Guarracino DA, Alabanza AM, Robertson CT, Sanghvi SS. The role of primary sequence in helical control compared across shortα- andβ3-peptides. J Biomol Struct Dyn 2014; 33:597-605. [DOI: 10.1080/07391102.2014.897260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Denton EV, Craig CJ, Pongratz RL, Appelbaum JS, Doerner AE, Narayanan A, Shulman GI, Cline GW, Schepartz A. A β-peptide agonist of the GLP-1 receptor, a class B GPCR. Org Lett 2013; 15:5318-21. [PMID: 24087900 DOI: 10.1021/ol402568j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous work has shown that certain β(3)-peptides can effectively mimic the side chain display of an α-helix and inhibit interactions between proteins, both in vitro and in cultured cells. Here we describe a β(3)-peptide analog of GLP-1, CC-3(Act), that interacts with the GLP-1R extracellular domain (nGLP-1R) in vitro in a manner that competes with exendin-4 and induces GLP-1R-dependent cAMP signaling in cultured CHO-K1 cells expressing GLP-1R.
Collapse
Affiliation(s)
- Elizabeth V Denton
- Department of Chemistry, Yale University , New Haven, Connecticut 06511, United States, Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut 06536, United States, Department of Cell Biology, Yale University School of Medicine , New Haven, Connecticut 06520, United States, Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut 06520, United States, and Department of Molecular, Cellular and Developmental Biology, Yale University , New Haven, Connecticut 06520, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Venugopalan P, Kishore R. Unusual folding propensity of an unsubstituted β,γ-hybrid model peptide: importance of the C-H⋅⋅⋅O intramolecular hydrogen bond. Chemistry 2013; 19:9908-15. [PMID: 23775881 DOI: 10.1002/chem.201300630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Indexed: 11/08/2022]
Abstract
The single-crystal X-ray diffraction analysis of a β,γ-hybrid model peptide Boc-β-Ala-γ-Abu-NH2 revealed the existence of four crystallographically independent molecules (A, B, C and D conformers) in the asymmetric unit. The analysis revealed that unusual β-turn-like folded structures predominate, wherein the conformational space of non-proteinogenic β-Ala and γ-Abu residues are restricted to gauche-gauche-skew and skew-gauche-trans-skew orientations, respectively. Interestingly, the U-shaped conformers are seemingly stabilised by an effective unconventional C-H⋅⋅⋅O intramolecular hydrogen bond, encompassing a non-covalent 14-membered ring-motif. Taking into account the signs of torsion angles, these conformers could be grouped into two distinct categories, A/B and C/D, establishing the incidence of non-superimposable stereogeometrical features across a non-chiral one-component peptide model system, that is, "mirror-image-like" relationships. The natural occurrence of β-Ala and γ-Abu entities in various pharmacologically important molecules, coupled with their biocompatibilities, highlight how the non-functionalised β,γ-hybrid segment may offer unique advantages for introducing and/or manipulating a wide spectrum of biologically relevant hydrogen bonded secondary structural mimics in short synthetic peptides.
Collapse
Affiliation(s)
- Paloth Venugopalan
- Department of Chemistry, Panjab University, Sector 14, Chandigarh-160 014, India
| | | |
Collapse
|
32
|
Sharma GVM, Sridhar T, Reddy PP, Kunwar AC. Synthesis and Structural Studies of α/β-Peptides Derived from Fused Furano-pyran β-Amino Acid and L-Ala. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Baldauf C, Hofmann HJ. Ab initioMO Theory - An Important Tool in Foldamer Research: Prediction of Helices in Oligomers ofω-Amino Acids. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201200436] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
van der Knaap M, Otero JM, Llamas-Saiz A, van Raaij MJ, Lageveen LI, Busscher HJ, Grotenbreg GM, van der Marel GA, Overkleeft HS, Overhand M. Design, synthesis and structural analysis of mixed α/β-peptides that adopt stable cyclic hairpin-like conformations. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Sharma GVM, Reddy NY, Ravi R, Sreenivas B, Sridhar G, Chatterjee D, Kunwar AC, Hofmann HJ. Synthesis of C-linked carbo-β2-amino acids and β2-peptides: design of new motifs for left-handed 12/10- and 10/12-mixed helices. Org Biomol Chem 2012; 10:9191-203. [DOI: 10.1039/c2ob26615f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Raju G, Ramesh Babu A, Chandramouli N, Sharma GVM, Srinivas R. Differentiation of Boc-N-protected α/β-hybrid peptides containing β-Caa-L-Ala-β-Caa-OMe and β-Caa-L-Ala-β-Caa-NHMe at the C-terminus by electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3369-3374. [PMID: 22006401 DOI: 10.1002/rcm.5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
37
|
Kudirka R, Tran H, Sanii B, Nam KT, Choi PH, Venkateswaran N, Chen R, Whitelam S, Zuckermann RN. Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet. Biopolymers 2011; 96:586-95. [DOI: 10.1002/bip.21590] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Kim B, Park OK, Bae JY, Jang TH, Yoon JH, Do KH, Kim BG, Yun H, Park HH. Crystallization and preliminary X-ray crystallographic studies of β-transaminase from Mesorhizobium sp. strain LUK. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:231-3. [PMID: 21301093 DOI: 10.1107/s1744309110050876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/04/2010] [Indexed: 11/11/2022]
Abstract
β-Transaminase (β-TA) catalyzes the transamination reaction between β-aminocarboxylic acids and keto acids. This enzyme is a particularly suitable candidate for use as a biocatalyst for the asymmetric synthesis of enantiochemically pure β-amino acids for pharmaceutical purposes. The β-TA from Mesorhizobium sp. strain LUK (β-TAMs) belongs to a novel class in that it shows β-transaminase activity with a broad and unique substrate specificity. In this study, β-TAMs was overexpressed in Escherichia coli with an engineered C-terminal His tag. β-TAMs was then purified to homogeneity and crystallized at 293 K. X-ray diffraction data were collected to a resolution of 2.5 Å from a crystal that belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 90.91, b = 192.17, c = 52.75 Å.
Collapse
Affiliation(s)
- Bokyung Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vass E, Strijowski U, Wollschläger K, Mándity IM, Szilvágyi G, Jewgiński M, Gaus K, Royo S, Majer Z, Sewald N, Hollósi M. VCD studies on cyclic peptides assembled from L-α-amino acids and a trans-2-aminocyclopentane- or trans-2-aminocyclohexane carboxylic acid. J Pept Sci 2010; 16:613-20. [DOI: 10.1002/psc.1272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Vasudev PG, Chatterjee S, Shamala N, Balaram P. Structural Chemistry of Peptides Containing Backbone Expanded Amino Acid Residues: Conformational Features of β, γ, and Hybrid Peptides. Chem Rev 2010; 111:657-87. [DOI: 10.1021/cr100100x] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Prema. G. Vasudev
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sunanda Chatterjee
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Narayanaswamy Shamala
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Padmanabhan Balaram
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
41
|
Kumar N, Venugopalan P, Kishore R. Crystallographically observed folded topology of an unsubstituted γ-aminobutyric acid incorporated in a model peptide: Importance of a CH···O interaction. Biopolymers 2010; 93:927-31. [DOI: 10.1002/bip.21511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Rode JE, Dobrowolski JC, Sadlej J. Phenylisoserine in the gas-phase and water: Ab initio studies on neutral and zwitterion conformers. J Mol Model 2010; 17:961-70. [PMID: 20623308 PMCID: PMC3094660 DOI: 10.1007/s00894-010-0783-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/11/2010] [Indexed: 11/04/2022]
Abstract
The conformational landscape of phenylisoserine (PhIS) was studied. Trial structures were generated by allowing for all combinations of single-bond rotamers. Based on the B3LYP/aug-cc-pVDZ calculations 54 conformers were found to be stable in the gas phase. The six most stable conformers were further optimized at the B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVDZ levels for which characteristic intramolecular hydrogen bond types were classified. To estimate the influence of water on PhIS conformation, the IEF-PCM/B3LYP/aug-cc-pVDZ calculations were carried out and showed 51 neutral and six zwitterionic conformers to be stable in water solution. According to DFT calculations, the conformer equilibrium in the gas phase is dominated by one conformer, whereas the MP2 calculations suggest three PhIS structures to be significantly populated. Comparison of DFT and MP2 energies of all 57 structures stable in water indicates that, in practice, one zwitterionic and one neutral conformer determine the equilibrium in water. Based on the AIM calculations, we found that for the neutral conformers in vacuum and in water, d(H...B) is linearly correlated with Laplacian at the H-bond critical point. Phenylisoserine (PhIS) is an active side chain of cytotoxic Paclitaxel medicine. The conformational landscape of phenylisoserine was studied. One zwitterionic and one neutralconformer determine the equilibrium in water whereas in the gas phase the MP2 calculations suggest three PhIS structures to be significantly populated. ![]()
Collapse
Affiliation(s)
- Joanna E Rode
- Industrial Chemistry Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland
| | | | | |
Collapse
|
43
|
Bautista AD, Appelbaum JS, Craig CJ, Michel J, Schepartz A. Bridged beta(3)-peptide inhibitors of p53-hDM2 complexation: correlation between affinity and cell permeability. J Am Chem Soc 2010; 132:2904-6. [PMID: 20158215 DOI: 10.1021/ja910715u] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Beta-peptides possess several features that are desirable in peptidomimetics; they are easily synthesized, fold into stable secondary structures in physiologic buffers, and resist proteolysis. They can also bind to a diverse array of proteins to inhibit their interactions with alpha-helical ligands. beta-peptides are usually not cell-permeable, however, and this feature limits their utility as research tools and potential therapeutics. Appending an Arg(8) sequence to a beta-peptide improves uptake but adds considerable mass. We previously reported that embedding a small cationic patch within a PPII, alpha-, or beta-peptide helix improves uptake without the addition of significant mass. In another mass-neutral strategy, Verdine, Walensky, and others have reported that insertion of a hydrocarbon bridge between the i and i + 4 positions of an alpha-helix also increases cell uptake. Here we describe a series of beta-peptides containing diether and hydrocarbon bridges and compare them on the basis of cell uptake and localization, affinities for hDM2, and 14-helix structure. Our results highlight the relative merits of the cationic-patch and hydrophobic-bridge strategies for improving beta-peptide uptake and identify a surprising correlation between uptake efficiency and hDM2 affinity.
Collapse
Affiliation(s)
- Arjel D Bautista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | | | | | |
Collapse
|
44
|
Raju G, Ramesh V, Srinivas R, Sharma GVM, Shoban Babu B. Differentiation of Boc-protected alpha,delta-/delta,alpha- and beta,delta-/delta,beta-hybrid peptide positional isomers by electrospray ionization tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:651-663. [PMID: 20527034 DOI: 10.1002/jms.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two new series of Boc-N-alpha,delta-/delta,alpha- and beta,delta-/delta,beta-hybrid peptides containing repeats of L-Ala-delta(5)-Caa/delta(5)-Caa-L-Ala and beta(3)-Caa-delta(5)-Caa/delta(5)-Caa-beta(3)-Caa (L-Ala = L-alanine, Caa = C-linked carbo amino acid derived from D-xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MS(n) spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc-group, and the side chain. The dipeptide positional isomers are differentiated by the collision-induced dissociation (CID) of the protonated peptides. The loss of 2-methylprop-1-ene is more pronounced for Boc-NH-L-Ala-delta-Caa-OCH(3) (1), whereas it is totally absent for its positional isomer Boc-NH-delta-Caa-L-Ala-OCH(3) (7), instead it shows significant loss of t-butanol. On the other hand, second isomeric pair shows significant loss of t-butanol and loss of acetone for Boc-NH-delta-Caa-beta-Caa-OCH(3) (18), whereas these are insignificant for its positional isomer Boc-NH-beta-Caa-delta-Caa-OCH(3) (13). The tetra- and hexapeptide positional isomers also show significant differences in MS(2) and MS(3) CID spectra. It is observed that 'b' ions are abundant when oxazolone structures are formed through five-membered cyclic transition state and cyclization process for larger 'b' ions led to its insignificant abundance. However, b(1)(+) ion is formed in case of delta,alpha-dipeptide that may have a six-membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di-, tetra-, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers.
Collapse
Affiliation(s)
- G Raju
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
45
|
Barra M, Roy O, Traïkia M, Taillefumier C. Click glycoconjugation of per-azido- and alkynyl-functionalized β-peptides built from aspartic acid. Org Biomol Chem 2010; 8:2941-55. [DOI: 10.1039/b923275c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Góbi S, Knapp K, Vass E, Majer Z, Magyarfalvi G, Hollósi M, Tarczay G. Is β-homo-proline a pseudo-γ-turn forming element of β-peptides? An IR and VCD spectroscopic study on Ac-β-HPro-NHMe in cryogenic matrices and solutions. Phys Chem Chem Phys 2010; 12:13603-15. [DOI: 10.1039/c0cp00145g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Dobrowolski JC, Jamróz MH, Kołos R, Rode JE, Cyrański MK, Sadlej J. IR low-temperature matrix, X-ray and ab initio study on l-isoserine conformations. Phys Chem Chem Phys 2010; 12:10818-30. [DOI: 10.1039/c0cp00016g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Martinek TA, Tóth GK, Vass E, Hollósi M, Fülöp F. cis-2-aminocyclopentanecarboxylic acid oligomers adopt a sheetlike structure: switch from helix to nonpolar strand. Angew Chem Int Ed Engl 2009; 41:1718-21. [PMID: 19750694 DOI: 10.1002/1521-3773(20020517)41:10<1718::aid-anie1718>3.0.co;2-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tamás A Martinek
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös, 6720 Szeged, Hungary
| | | | | | | | | |
Collapse
|
49
|
Srivastava R, Kumar Ray A, Diederichsen U. Higher Aggregation of β-Peptide Networks Controlled by Nucleobase Pairing. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Hall K, Aguilar MI. Membrane interactions of antimicrobial β-peptides: The role of amphipathicity versus secondary structure induction. Biopolymers 2009; 92:554-64. [DOI: 10.1002/bip.21311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|