1
|
Thankappan B, Thomas A, Sakthivadivel A, Shanmuganathan N, Angayarkanni J. In vitro and in vivo antimicrobial activity of self-assembled melittin nanoparticles: A comparative study with melittin peptide. Colloids Surf B Biointerfaces 2023; 226:113331. [PMID: 37150105 DOI: 10.1016/j.colsurfb.2023.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The aim of the present study was to analyse the efficacy of self-assembled melittin nanoparticles (MelNP) and compare with native melittin peptide (Mel). Self-assembly formation of the melittin was promoted by heating at 90 °C for 50 min followed by cooling at room temperature. SEM micrographs revealed the formation of nanovesicles. MIC of MelNP against E. coli, S. aureus and P. aeruginosa was found to be 4, 2, and 2 μM, respectively while it was 8, 8 and 4 μM for Mel peptide. Markedly, MelNP showed 12.6 % hemolysis at 8 μM whereas with Mel it was about 71.63 %. The lytic activity of MelNP was also higher in the presence of trypsin/serum than Mel. Both MelNP and Mel exhibited membranolytic activity with cellular disintegration. Further, toxicity analysis studied up to 72 h showed that MelNP was non-toxic to zebrafish embryos up to 6 μM; however, with Mel exposed embryos showed up 30 dead embryos. Bacterial load was markedly reduced in MelNP and Mel exposed infected embryos than compared to the infected one. Moreover, the peptides were also responsible for reducing the infection and prolonging the survivability in infected embryos. Thus, MelNP could be considered an efficient and safer therapeutic molecule that Mel and wherein further experiments are warranted to affirm the broad spectrum efficiency.
Collapse
Affiliation(s)
- Bency Thankappan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Anto Thomas
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Aishwarya Sakthivadivel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Nivetha Shanmuganathan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
2
|
El-Beyrouthy J, Makhoul-Mansour MM, Freeman EC. Studying the Mechanics of Membrane Permeabilization through Mechanoelectricity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6120-6130. [PMID: 35073482 DOI: 10.1021/acsami.1c19880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this research, real-time monitoring of lipid membrane disruption is made possible by exploiting the dynamic properties of model lipid bilayers formed at oil-water interfaces. This involves tracking an electrical signal generated through rhythmic membrane perturbation translated into the adsorption and penetration of charged species within the membrane. Importantly, this allows for the detection of membrane surface interactions that occur prior to pore formation that may be otherwise undetected. The requisite dynamic membranes for this approach are made possible through the droplet interface bilayer (DIB) technique. Membranes are formed at the interface of lipid monolayer-coated aqueous droplets submerged in oil. We present how cyclically alternating the membrane area leads to the generation of mechanoelectric current. This current is negligible without a transmembrane voltage until a composition mismatch between the membrane monolayers is produced, such as a one-sided accumulation of disruptive agents. The generated mechanoelectric current is then eliminated when an applied electric field compensates for this asymmetry, enabling measurement of the transmembrane potential offset. Tracking the compensating voltage with respect to time then reveals the gradual accumulation of disruptive agents prior to membrane permeabilization. The innovation of this work is emphasized in its ability to continuously track membrane surface activity, highlighting the initial interaction steps of membrane disruption. In this paper, we begin by validating our proposed approach against measurements taken for fixed composition membranes using standard electrophysiological techniques. Next, we investigate surfactant adsorption, including hexadecyltrimethylammonium bromide (CTAB, cationic) and sodium decyl sulfate (SDS, anionic), demonstrating the ability to track adsorption prior to disruption. Finally, we investigate the penetration of lipid membranes by melittin, confirming that the peptide insertion and disruption mechanics are, in part, modulated by membrane composition.
Collapse
Affiliation(s)
- Joyce El-Beyrouthy
- Biomembranes Engineering Laboratory, School of Environment, Civil, Agriculture and Mechanical Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Michelle M Makhoul-Mansour
- Biomembranes Engineering Laboratory, School of Environment, Civil, Agriculture and Mechanical Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Eric C Freeman
- Biomembranes Engineering Laboratory, School of Environment, Civil, Agriculture and Mechanical Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Pal S, Chakraborty H, Chattopadhyay A. Lipid Headgroup Charge Controls Melittin Oligomerization in Membranes: Implications in Membrane Lysis. J Phys Chem B 2021; 125:8450-8459. [PMID: 34254509 DOI: 10.1021/acs.jpcb.1c02499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melittin, a hemolytic peptide present in bee venom, represents one of the most well-studied amphipathic antimicrobial peptides, particularly in terms of its membrane interaction and activity. Nevertheless, no consensus exists on the oligomeric state of membrane-bound melittin. We previously reported on the differential microenvironments experienced by melittin in zwitterionic and negatively charged phospholipid membranes. In this work, we explore the role of negatively charged lipids in the oligomerization of membrane-bound melittin (labeled with 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)) utilizing a quantitative photobleaching homo-FRET assay. Our results show that the presence of negatively charged lipids decreases melittin oligomeric size to ∼50% of that observed in zwitterionic membranes. This is possibly due to differential energetics of binding of the peptide monomer to membranes of different compositions and could explain the reduced lytic activity yet tighter binding of melittin in negatively charged membranes. These results constitute one of the first experimental observations on the role of phospholipid headgroup charge in the oligomerization of melittin in membranes and is relevant in light of previous apparently contradictory reports on oligomerization of membrane-bound melittin. Our results highlight the synergistic interplay of peptide-membrane binding events and peptide oligomerization in modulating the organization, dynamics, and function of amphipathic α-helical peptides.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.,CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.,School of Chemistry, Sambalpur University, Burla, Odisha 768 019, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
4
|
Sabapathy T, Deplazes E, Mancera RL. Revisiting the Interaction of Melittin with Phospholipid Bilayers: The Effects of Concentration and Ionic Strength. Int J Mol Sci 2020; 21:E746. [PMID: 31979376 PMCID: PMC7037773 DOI: 10.3390/ijms21030746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Melittin is an anti-microbial peptide (AMP) and one of the most studied membrane-disrupting peptides. There is, however, a lack of accurate measurements of the concentration-dependent kinetics and affinity of binding of melittin to phospholipid membranes. In this study, we used surface plasmon resonance spectroscopy to determine the concentration-dependent effect on the binding of melittin to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers in vesicles. Three concentration ranges were considered, and when combined, covered two orders of magnitudes (0.04 µM to 8 µM), corresponding to concentrations relevant to the membrane-disrupting and anti-microbial activities of melittin. Binding kinetics data were analysed using a 1:1 Langmuir-binding model and a two-state reaction model. Using in-depth quantitative analysis, we characterised the effect of peptide concentration, the addition of NaCl at physiological ionic strength and the choice of kinetic binding model on the reliability of the calculated kinetics and affinity of binding parameters. The apparent binding affinity of melittin for POPC bilayers was observed to decrease with increasing peptide/lipid (P/L) ratio, primarily due to the marked decrease in the association rate. At all concentration ranges, the two-state reaction model provided a better fit to the data and, thus, a more reliable estimate of binding affinity. Addition of NaCl significantly reduced the signal response during the association phase; however, no substantial effect on the binding affinity of melittin to the POPC bilayers was observed. These findings based on POPC bilayers could have important implications for our understanding of the mechanism of action of melittin on more complex model cell membranes of higher physiological relevance.
Collapse
Affiliation(s)
- Thiru Sabapathy
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
| | - Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ricardo L. Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
| |
Collapse
|
5
|
Arumugam V, Venkatesan M, Ramachandran K, Ramachandran S, Palanisamy SK, Sundaresan U. Purification, Characterization and Antibacterial Properties of Peptide from Marine Ascidian Didemnum sp. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09829-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
7
|
Quirk S, Hopkins MM, Bureau H, Lusk RJ, Allen C, Hernandez R, Bain DL. Mutational Analysis of Neuropeptide Y Reveals Unusual Thermal Stability Linked to Higher-Order Self-Association. ACS OMEGA 2018; 3:2141-2154. [PMID: 29619413 PMCID: PMC5876621 DOI: 10.1021/acsomega.7b01949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Neuropeptide Y (NPY) is a 36-residue peptide, abundant in the central and peripheral nervous system. The peptide interacts with membrane-bound receptors to control processes such as food intake, vasoconstriction, and memory retention. The N-terminal polyproline sequence of NPY folds back onto a C-terminal α-helix to form a hairpin structure. The hairpin undergoes transient unfolding to allow the monomer to interact with its target membranes and receptors and to form reversible dimers in solution. Using computational, functional, and biophysical approaches, we characterized the role of two conserved tyrosines (Y20 and Y27) located within the hydrophobic core of the hairpin fold. Successive mutation of the tyrosines to more hydrophobic phenylalanines increased the thermal stability of NPY and reduced functional activity, consistent with computational studies predicting a more stable hairpin structure. However, mutant stability was high relative to wild-type: melting temperatures increased by approximately 20 °C for the single mutants (Y20F and Y27F) and by 30 °C for the double mutant (Y20F + Y27F). These findings suggested that the mutations were not just simply enhancing hairpin structure stability, but might also be driving self-association to dimer. Using analytical ultracentrifugation, we determined that the mutations indeed increased self-association, but shifted the equilibrium toward hexamer-like species. Notably, these latter species were not unique to the NPY mutants, but were found to preexist at low levels in the wild-type population. Collectively, the findings indicate that NPY self-association is more complex than previously recognized and that the ensemble of NPY quaternary states is tunable by modulating hairpin hydrophobicity.
Collapse
Affiliation(s)
- Stephen Quirk
- Archeus
Bioscience, 7094 Peachtree
Industrial Blvd., Norcross, Georgia 30071, United
States
| | - Mandi M. Hopkins
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 E Montview Blvd., Aurora, Colorado 80045, United
States
| | - Hailey Bureau
- Center
for Computational and Molecular Science and Technology, School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic
Dr, Atlanta, Georgia 30332, United States
| | - Ryan J. Lusk
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 E Montview Blvd., Aurora, Colorado 80045, United
States
| | - Caley Allen
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Center
for Computational and Molecular Science and Technology, School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic
Dr, Atlanta, Georgia 30332, United States
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - David L. Bain
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 E Montview Blvd., Aurora, Colorado 80045, United
States
| |
Collapse
|
8
|
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:1-111. [PMID: 28097641 PMCID: PMC5315671 DOI: 10.1007/s13659-016-0115-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994-2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from <3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11-12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized.
Collapse
Affiliation(s)
- Satheesh Kumar Palanisamy
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy.
| | - N M Rajendran
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy
| |
Collapse
|
9
|
Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat Commun 2016; 7:12654. [PMID: 27585494 PMCID: PMC5025784 DOI: 10.1038/ncomms12654] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 01/14/2023] Open
Abstract
The formation of organic films on gold employing N-heterocyclic carbenes (NHCs) has been previously shown to be a useful strategy for generating stable organic films. However, NHCs or NHC precursors typically require inert atmosphere and harsh conditions for their generation and use. Herein we describe the use of benzimidazolium hydrogen carbonates as bench stable solid precursors for the preparation of NHC films in solution or by vapour-phase deposition from the solid state. The ability to prepare these films by vapour-phase deposition permitted the analysis of the films by a variety of surface science techniques, resulting in the first measurement of NHC desorption energy (158±10 kJ mol−1) and confirmation that the NHC sits upright on the surface. The use of these films in surface plasmon resonance-type biosensing is described, where they provide specific advantages versus traditional thiol-based films. Self-assembled monolayers (SAMs) have shown tremendous number of applications but can suffer from low stability. Here, the authors report air and bench stable carbene precursors allowing facile SAM formation, and furthermore demonstrate an application in biosensing
Collapse
|
10
|
Lee TH, Hirst DJ, Aguilar MI. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1868-85. [PMID: 26009270 DOI: 10.1016/j.bbamem.2015.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Biomolecular-membrane interactions play a critical role in the regulation of many important biological processes such as protein trafficking, cellular signalling and ion channel formation. Peptide/protein-membrane interactions can also destabilise and damage the membrane which can lead to cell death. Characterisation of the molecular details of these binding-mediated membrane destabilisation processes is therefore central to understanding cellular events such as antimicrobial action, membrane-mediated amyloid aggregation, and apoptotic protein induced mitochondrial membrane permeabilisation. Optical biosensors have provided a unique approach to characterising membrane interactions allowing quantitation of binding events and new insight into the kinetic mechanism of these interactions. One of the most commonly used optical biosensor technologies is surface plasmon resonance (SPR) and there have been an increasing number of studies reporting the use of this technique for investigating biophysical analysis of membrane-mediated events. More recently, a number of new optical biosensors based on waveguide techniques have been developed, allowing membrane structure changes to be measured simultaneously with mass binding measurements. These techniques include dual polarisation interferometry (DPI), plasmon waveguide resonance spectroscopy (PWR) and optical waveguide light mode spectroscopy (OWLS). These techniques have expanded the application of optical biosensors to allow the analysis of membrane structure changes during peptide and protein binding. This review provides a theoretical and practical overview of the application of biosensor technology with a specific focus on DPI, PWR and OWLS to study biomembrane-mediated events and the mechanism of biomembrane disruption. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| |
Collapse
|
11
|
Membrane partitioning and translocation studied by isothermal titration calorimetry. Methods Mol Biol 2014; 1033:253-71. [PMID: 23996182 DOI: 10.1007/978-1-62703-487-6_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The ability to bind to and translocate across lipid bilayers is of paramount importance for the extracellular administration of intracellularly active compounds in cell biology, medicinal chemistry, and drug development. A combination of the so-called uptake and release experiments performed by high-sensitivity isothermal titration calorimetry provides a powerful and universally applicable tool for measuring membrane binding and translocation of various compound classes in a label-free manner in solution. The protocol presented here is designed for a quantitative analysis of microcalorimetric uptake and release titrations. In contrast with simpler approaches described previously, it is applicable also to electrically charged solutes, such as peptides and proteins, experimentally and clinically relevant surfactants, drugs, metal ions, and other ionic compounds.
Collapse
|
12
|
OKA M, KAMIMORI H. Lipid Membrane-Binding Properties of Amphotericin B Deoxycholate (Fungizone) Using Surface Plasmon Resonance. ANAL SCI 2013; 29:697-702. [DOI: 10.2116/analsci.29.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masako OKA
- Pharmaceutical Research Division, Shionogi & Co., Ltd
| | | |
Collapse
|
13
|
KINOUCHI H, ONISHI M, KAMIMORI H. Lipid Membrane-Binding Properties of Daptomycin Using Surface Plasmon Resonance. ANAL SCI 2013; 29:297-301. [DOI: 10.2116/analsci.29.297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Masako ONISHI
- Pharmaceutical Research Division, Shionogi & Co. Ltd
| | | |
Collapse
|
14
|
Francois-Moutal L, Maniti O, Marcillat O, Granjon T. New insights into lipid-Nucleoside Diphosphate Kinase-D interaction mechanism: protein structural changes and membrane reorganisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:906-15. [PMID: 22974817 DOI: 10.1016/j.bbamem.2012.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/18/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Nucleoside Diphosphate Kinases (NDPKs) have long been considered merely as housekeeping enzymes. The discovery of the NME1 gene, an anti-metastatic gene coding for NDPK-A, led the scientific community to re-evaluate their role in the cell. It is now well established that the NDPK family is more complex than what was first thought, and despite the increasing amount of evidence suggesting the multifunctional role of nm23/NDPKs, the specific functions of each family member are still elusive. Among these isoforms, NDPK-D is the only one to present a mitochondria-targeting sequence. It has recently been shown that this protein is able to bind and cross-link with mitochondrial membranes, suggesting that NDPK-D can mediate contact sites and contributes to the mitochondrial intermembrane space structuring. To better understand the influence of NDPK-D on mitochondrial lipid organisation, we analysed its behaviour in different lipid environments. We found that NDPK-D not only interacts with CL or anionic lipids, but is also able to bind in a non negligible manner to zwitterionic PC. NDPK-D alters membrane organisation in terms of fluidity, hydration and lipid clustering, effects which depend on lipid structure. Changes in the protein structure after lipid binding were evidenced, both by fluorescence and infrared spectroscopy, regardless of membrane composition. Taking into account all these elements, a putative mechanism of interaction between NDPK-D and zwitterionic or anionic lipids was proposed.
Collapse
Affiliation(s)
- L Francois-Moutal
- Université de Lyon, Université Lyon 1, CNRS, UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, IMBL, 43 Bd du 11 Novembre 1918 F-69622 Villeurbanne, France
| | | | | | | |
Collapse
|
15
|
Gly6 of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2354-61. [DOI: 10.1016/j.bbamem.2012.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022]
|
16
|
Hall K, Lee TH, Aguilar MI. The role of electrostatic interactions in the membrane binding of melittin. J Mol Recognit 2011; 24:108-18. [PMID: 21194121 DOI: 10.1002/jmr.1032] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The binding of melittin and the C-terminally truncated analogue of melittin (21Q) to a range of phospholipid bilayers was studied using surface plasmon resonance (SPR). The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylethanolamine (DMPE), together with mixtures DMPC/dimyristylphosphatidylglycerol (DMPG), DMPC/DMPG/cholesterol and DMPE/DMPG. Melittin bound rapidly to all membrane mixtures, whereas 21Q, which has a reduced charge, bound much more slowly on the DMPC and DMPC/DMPG mixtures reflecting the role of the initial electrostatic interaction. The loss of the cationic residues also significantly decreased the binding of 21Q with DMPC/DMPG/Cholesterol, DMPE and DMPE/DMPG. The role of electrostatics was also highlighted with NaCl in the buffer, which affected the way melittin bound to the different membranes, causing a more uniform, concentration dependant increase in response. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high α-helicity was associated with high binding affinity. Overall, the results demonstrate that the positively charged residues at the C-terminus of melittin play an essential role in membrane binding, that modulation of peptide charge influences selectivity of binding to different phospholipids and that manipulation of the cationic regions of antimicrobial peptides can be used to modulate membrane selectivity.
Collapse
Affiliation(s)
- Kristopher Hall
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
17
|
Dynamic Nanoplatforms in Biosensor and Membrane Constitutional Systems. CONSTITUTIONAL DYNAMIC CHEMISTRY 2011; 322:139-63. [DOI: 10.1007/128_2011_199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Svensson FR, Lincoln P, Nordén B, Esbjörner EK. Tryptophan orientations in membrane-bound gramicidin and melittin—a comparative linear dichroism study on transmembrane and surface-bound peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:219-28. [DOI: 10.1016/j.bbamem.2010.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/20/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
19
|
Selective toxin–lipid membrane interactions of natural, haemolytic Scyphozoan toxins analyzed by surface plasmon resonance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1944-52. [DOI: 10.1016/j.bbamem.2010.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/02/2010] [Accepted: 06/15/2010] [Indexed: 11/18/2022]
|
20
|
Henriques ST, Castanho MARB, Pattenden LK, Aguilar MI. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Biopolymers 2010; 94:314-22. [PMID: 20049920 DOI: 10.1002/bip.21367] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of peptide carriers, termed "cell-penetrating peptides (CPPs)" has attracted much attention due to their potential for cellular delivery of hydrophilic molecules with pharmacological interest, overcoming the membrane barrier. These peptides are able to deliver attached cargos in a nontoxic manner, with the uptake mechanisms being either endosomally or physically driven. Pep-1 is a CPP of particular interest, not only due to outstanding delivery rates but also because its mechanism of membrane translocation is exclusively physically driven which appears to be dependent on a very high affinity for the phospholipid bilayer in the cell membrane. In this study, pep-1-lipid interactions were further explored by characterization of the pep-1-lipid association/dissociation by surface plasmon resonance. Although a high affinity of pep-1 for lipid bilayers was observed in all conditions tested, negatively charged phospholipids resulted in a larger peptide/lipid ratio. We also show that pep-1-membrane interaction is a fast process described by a multistep model initiated by peptide adsorption, primarily governed by electrostatic attractions, and followed by peptide insertion in the hydrophobic membrane core. In the context of a cell-based process, the translocation of pep-1 is a physical mechanism promoted by peptide primary amphipathicity and asymmetric properties of the membrane. This explains the high efficiency rates of pep-1 when compared with other CPPs.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | | | | | | |
Collapse
|
21
|
Lee TH, Hall KN, Swann MJ, Popplewell JF, Unabia S, Park Y, Hahm KS, Aguilar MI. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:544-57. [PMID: 20100457 DOI: 10.1016/j.bbamem.2010.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/08/2023]
Abstract
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Vic, 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Role of membranotropic sequences from herpes simplex virus type I glycoproteins B and H in the fusion process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:579-91. [PMID: 20085747 DOI: 10.1016/j.bbamem.2010.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 02/03/2023]
Abstract
The entry of enveloped viruses involves attachment followed by close apposition of the viral and plasma membranes. Then, either on the cell surface or in an endocytotic vesicle, the two membranes fuse by an energetically unfavourable process requiring the destabilisation of membrane microenvironment in order to release the viral nucleocapsid into the cytoplasm. The core fusion machinery, conserved throughout the herpesvirus family, involves glycoprotein B (gB) and the non-covalently associated complex of glycoproteins H and L (gH/gL). Both gB and gH possess several hydrophobic domains necessary for efficient induction of fusion, and synthetic peptides corresponding to these regions are able to associate to membranes and induce fusion of artificial liposomes. Here, we describe the first application of surface plasmon resonance (SPR) to the study of the interaction of viral membranotropic peptides with model membranes in order to enhance our molecular understanding of the mechanism of membrane fusion. SPR spectroscopy data are supported by tryptophan fluorescence, circular dichroism and electron spin resonance spectroscopy (ESR). We selected peptides from gB and gH and also analysed the behaviour of HIV gp41 fusion peptide and the cationic antimicrobial peptide melittin. The combined results of SPR and ESR showed a marked difference between the mode of action of the HSV peptides and the HIV fusion peptide compared to melittin, suggesting that viral-derived membrane interacting peptides all act via a similar mechanism, which is substantially different from that of the non-cell selective lytic peptide melittin.
Collapse
|
23
|
Olaru A, Gheorghiu M, David S, Wohland T, Gheorghiu E. Assessment of the Multiphase Interaction between a Membrane Disrupting Peptide and a Lipid Membrane. J Phys Chem B 2009; 113:14369-80. [DOI: 10.1021/jp905170u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreea Olaru
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Mihaela Gheorghiu
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Sorin David
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Thorsten Wohland
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| | - Eugen Gheorghiu
- International Centre of Biodynamics, Bucharest, Romania, and Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
24
|
Studer A, Han X, Winkler FK, Tiefenauer LX. Formation of individual protein channels in lipid bilayers suspended in nanopores. Colloids Surf B Biointerfaces 2009; 73:325-31. [DOI: 10.1016/j.colsurfb.2009.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
|
25
|
Henriques ST, Pattenden LK, Aguilar MI, Castanho MARB. The Toxicity of Prion Protein Fragment PrP(106−126) is Not Mediated by Membrane Permeabilization as Shown by a M112W Substitution. Biochemistry 2009; 48:4198-208. [DOI: 10.1021/bi900009d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sónia Troeira Henriques
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Leonard Keith Pattenden
- Department of Biochemistry & Molecular Biology, Monash University, Victoria, 3800 Clayton, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University, Victoria, 3800 Clayton, Australia
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
26
|
van den Bogaart G, Guzmán JV, Mika JT, Poolman B. On the mechanism of pore formation by melittin. J Biol Chem 2008; 283:33854-7. [PMID: 18819911 DOI: 10.1074/jbc.m805171200] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of pore formation of lytic peptides, such as melittin from bee venom, is thought to involve binding to the membrane surface, followed by insertion at threshold levels of bound peptide. We show that in membranes composed of zwitterionic lipids, i.e. phosphatidylcholine, melittin not only forms pores but also inhibits pore formation. We propose that these two modes of action are the result of two competing reactions: direct insertion into the membrane and binding parallel to the membrane surface. The direct insertion of melittin leads to pore formation, whereas the parallel conformation is inactive and prevents other melittin molecules from inserting, hence preventing pore formation.
Collapse
Affiliation(s)
- Geert van den Bogaart
- Department of Biochemistry, the Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9747AG The Netherlands
| | | | | | | |
Collapse
|
27
|
Amon MA, Ali M, Bender V, Hall K, Aguilar MI, Aldrich-Wright J, Manolios N. Kinetic and conformational properties of a novel T-cell antigen receptor transmembrane peptide in model membranes. J Pept Sci 2008; 14:714-24. [PMID: 18240131 DOI: 10.1002/psc.987] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC). Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.
Collapse
Affiliation(s)
- Michael A Amon
- Rheumatology Department, Westmead Hospital, Westmead, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Ovchinnikova TV, Shenkarev ZO, Balandin SV, Nadezhdin KD, Paramonov AS, Kokryakov VN, Arseniev AS. Molecular insight into mechanism of antimicrobial action of the beta-hairpin peptide arenicin: specific oligomerization in detergent micelles. Biopolymers 2008; 89:455-64. [PMID: 17937399 DOI: 10.1002/bip.20865] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Arenicins are 21-residue cationic antimicrobial peptides isolated from marine polychaeta Arenicola marina. The peptides exhibit potent broad-spectrum antimicrobial activity. In water solution arenicin-2 adopts a beta-hairpin conformation, stabilized by one disulfide and nine hydrogen bonds. To determine the propensity for the peptide oligomerization in membrane mimetic systems, the recombinant arenicin-2 was overexpressed as a fused form in Escherichia coli. The arenicin-2 oligomerization and intermolecular packing in membrane mimicking environment were investigated using high-resolution NMR spectroscopy. The present studies show that arenicin-2 preserves a beta-hairpin structure and forms asymmetric dimers upon incorporation into the dodecylphosphocholine micelle. Two monomers of arenicin-2 are aligned parallel to each other by the N-terminal strands of the beta-hairpin (CN upward arrow upward arrowNC type of association). Polyacrylamide gel electrophoresis analysis indicated that in environment of anionic SDS micelles the arenicin-2 might undergo further oligomerization and form tetramers. Our results afford further molecular insight into possible mechanism of antimicrobial action of arenicins.
Collapse
Affiliation(s)
- Tatiana V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
30
|
Davies-Tuck M, Lee TH, Apffel A, Aguilar MI. Hydrophobic and electrostatic forces control the retention of membrane peptides and proteins with an immobilised phosphatidic acid column. J Chromatogr A 2007; 1156:167-73. [PMID: 17397853 DOI: 10.1016/j.chroma.2007.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 03/07/2007] [Accepted: 03/15/2007] [Indexed: 11/19/2022]
Abstract
The retention behaviour of four membrane-associated peptides and proteins with an immobilized phosphatidic acid (PA) stationary phase was evaluated. The solutes included the cytolytic peptides gramicidin A and melittin, the integral membrane protein bacteriorhodpsin and cytochrome c, a peripheral membrane protein. Gramicidin has no nett charge and exhibited normal reversed phase-like behaviour which was largely independent of mobile phase pH. In contrast, melittin, which has a positively charged C-terminal tail, exhibited reversed phase like retention at pH 5.4 and 7.4, and was not retained at pH 3 reflecting the influence of electrostatic interactions with the negatively charged phosphatidic acid ligand. Bacteriorhodpsin was eluted at high acetonitrile concentrations at pH 3 and 5.4 and cytochrome c was only eluted at pH 3. Moreover, cytochrome c eluted in the breakthrough peak between 0 and 100% acetonitrile, demonstrating the role of electrostatic interactions with the PA surface. Overall, the results demonstrate that pH can be used to optimize the fractionation and separation of membrane proteins with immobilized lipid stationary phases.
Collapse
Affiliation(s)
- Miranda Davies-Tuck
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic 3800, Australia
| | | | | | | |
Collapse
|
31
|
Lad MD, Birembaut F, Clifton LA, Frazier RA, Webster JRP, Green RJ. Antimicrobial peptide-lipid binding interactions and binding selectivity. Biophys J 2007; 92:3575-86. [PMID: 17325007 PMCID: PMC1853145 DOI: 10.1529/biophysj.106.097774] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/22/2007] [Indexed: 11/18/2022] Open
Abstract
Surface pressure measurements, external reflection-Fourier transform infrared spectroscopy, and neutron reflectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-(phosphor-rac-(1-glycerol)) (DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG (from 0.7 microM solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin>magainin>cecropin. External reflection-Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an air-water interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.
Collapse
Affiliation(s)
- Mitaben D Lad
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Popplewell JF, Swann MJ, Freeman NJ, McDonnell C, Ford RC. Quantifying the effects of melittin on liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:13-20. [PMID: 17092481 DOI: 10.1016/j.bbamem.2006.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 11/19/2022]
Abstract
Melittin, the soluble peptide of bee venom, has been demonstrated to induce lysis of phospholipid liposomes. We have investigated the dependence of the lytic activity of melittin on lipid composition. The lysis of liposomes, measured by following their mass and dimensions when immobilised on a solid substrate, was close to zero when the negatively charged lipids phosphatidyl glycerol or phosphatidyl serine were used as the phospholipid component of the liposome. Whilst there was significant binding of melittin to the liposomes, there was little net change in their diameter with melittin binding reversed upon salt injection. For the zwitterionic phosphatidyl choline the lytic ability of melittin is dependent on the degree of acyl chain unsaturation, with melittin able to induce lysis of liposomes in the liquid crystalline state, whilst those in the gel state showed strong resistance to lysis. By directly measuring the dimensions and mass changes of liposomes on exposure to melittin using Dual Polarisation Interferometry, rather than following the florescence of entrapped dyes we attained further information about the initial stages of melittin binding to liposomes.
Collapse
Affiliation(s)
- J F Popplewell
- Farfield Scientific Ltd, Farfield House, Southmere Court, Electra Way, Crewe Business Park, Crewe CW1 6GU2, UK
| | | | | | | | | |
Collapse
|
33
|
Lee TH, Aguilar MI. Trends in the development and application of functional biomembrane surfaces. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:85-136. [PMID: 17045193 DOI: 10.1016/s1387-2656(06)12004-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
34
|
Pratt JP, Ravnic DJ, Huss HT, Jiang X, Orozco BS, Mentzer SJ. Melittin-induced membrane permeability: A nonosmotic mechanism of cell death. In Vitro Cell Dev Biol Anim 2005; 41:349-55. [PMID: 16448225 DOI: 10.1007/s11626-005-0007-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Derived from honeybees, melittin is a 26-amino acid, alpha-helical, membrane-attack protein that efficiently kills mammalian cells. To investigate the contribution of colloid-osmotic effects to the mechanism of cell death, we studied the effect of melittin on lymphocyte membrane permeability and cell volumes. Melittin concentrations of 0.5 to 2.0 microM induced release of membrane permeability markers without total disruption of the cell membrane. At these melittin concentrations, electrical-impedance cytometry demonstrated melittin-induced changes in red blood cell volumes (P<0.01), but no change in lymphocyte cell volumes (P>0.05). Streaming video microscopy, obtaining images of melittin-treated lymphocytes at 80-ms intervals, demonstrated a loss of optical density (P<0.001) suggesting a flattening of the cell but no significant increase in cell perimeter (P>0.05). Real-time multiparameter flow cytometry of melittin-treated lymphocytes confirmed simultaneous loss of the cytoplasmic marker, calcein, and uptake of the DNA dye, ethidium homodimer, but demonstrated no increase in forward light scatter. Transmission-electron microscopy of melittin-treated lymphocytes showed normal cell volumes but discontinuities in the cell membrane suggesting direct membrane toxicity. We conclude that melittin causes lymphocyte death by a "leaky patch" mechanism that is independent of colloid-osmotic effects.
Collapse
Affiliation(s)
- Juan Pablo Pratt
- Laboratory of Immunophysiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Bader R, Zerbe O. Are Hormones from the Neuropeptide Y Family Recognized by Their Receptors from the Membrane-Bound State? Chembiochem 2005; 6:1520-34. [PMID: 16038001 DOI: 10.1002/cbic.200400439] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hormones and many other neurotransmitters, growth factors, odorant molecules, and light all present stimuli for a class of membrane-anchored receptors called G protein-coupled receptors (GPCRs). The GPCRs are the largest family of cell-surface receptors involved in signal transduction. About 1% of all known genes of Drosophila and more than 5% of the genes of Caenorhabditis elegans encode GPCRs. In addition, more than 50% of current therapeutic agents on the market target these receptors. When the enormous biological and pharmaceutical importance of these receptors is considered, it is surprising how little is known about the mechanism with which these receptors recognize their natural ligands. In this review we present a structural approach, utilizing techniques of high-resolution NMR spectroscopy, to address the question of whether peptides from the neuropeptide Y family of neurohormones are recognized directly from solution or from the membrane-bound state. In our studies we discovered that the structures of the membrane-bound species are better correlated to the pharmacological properties of these peptides than the solution structures are. These findings are supported by the observation that many biophysical properties of these peptides seem to be optimized for membrane binding. We finally present a scenario of possible events during receptor recognition.
Collapse
Affiliation(s)
- Reto Bader
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
36
|
Kamimori H, Hall K, Craik DJ, Aguilar MI. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal Biochem 2005; 337:149-53. [PMID: 15649388 DOI: 10.1016/j.ab.2004.10.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 10/26/2022]
Abstract
In this study we have demonstrated the interactions of kalata B1 and its naturally occurring analogue kalata B6 with five model lipid membranes and have analyzed the binding kinetics using surface plasmon resonance. Two kalata peptides showed a higher affinity for the phosphatidylethanolamine-containing membranes, indicating that the peptides would bind selectively to bacterial membranes. Also we have optimized the procedure for the immobilization of five liposome mixtures and have shown that the procedure provides reproducible levels of immobilized liposomes and could be used to screen the selective binding of putative antimicrobial peptides to model mammalian or microbial phospholipid membranes.
Collapse
Affiliation(s)
- Hiroshi Kamimori
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | | | | | | |
Collapse
|
37
|
Kamimori H, Blazyk J, Aguilar MI. Lipid membrane-binding properties of tryptophan analogues of linear amphipathic beta-sheet cationic antimicrobial peptides using surface plasmon resonance. Biol Pharm Bull 2005; 28:148-50. [PMID: 15635180 DOI: 10.1248/bpb.28.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a surface plasmon resonance (SPR) system, we investigated the lipid membrane-binding properties of four analogues of the 18-residue linear amphipathic beta-sheet cationic antimicrobial peptide (KIGAKI)3-NH2, each of which contains a single isoleucine-to-tryptophan substitution. The results of the SPR study revealed significant differences in the binding characteristics of the peptides depending upon the position of tryptophan residues. These peptides showed higher binding affinity to membranes containing acidic phospholipids than zwitterionic phospholipids. The addition of dimethylsulfoxide to the running buffer was effective in maintaining the solubility of these peptide solutions and obtaining concentration-dependent sensorgrams for the kinetic analysis in this study. The kinetic binding data of SPR correlated closely with both the ability of the peptides to lyse liposomes with the same phospholipid composition and bactericidal activity. The results demonstrate that SPR may be a valuable tool to predict the membrane lytic properties of antimicrobial peptides.
Collapse
Affiliation(s)
- Hiroshi Kamimori
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
38
|
Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG, Kokryakov VN. Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 2005; 577:209-14. [PMID: 15527787 DOI: 10.1016/j.febslet.2004.10.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/01/2004] [Accepted: 10/05/2004] [Indexed: 11/17/2022]
Abstract
Two novel 21-residue antimicrobial peptides, arenicin-1 and arenicin-2, exhibiting activity against Gram-positive and Gram-negative bacteria and fungi, were purified from coelomocytes of marine polychaeta Arenicola marina (lugworm) by preparative gel electrophoresis and RP-HPLC. Molecular masses (2758.3 and 2772.3 Da) and complete amino acid sequences (RWCVYAYVRVRGVLVRYRRCW and RWCVYAYVRIRGVLVRYRRCW) were determined for each isoform. Each arenicin has one disulfide bond (Cys3-Cys20). The total RNA was isolated from the lugworm coelomocytes, RT-PCR and cloning were performed, and cDNA was sequenced. A 202-residue preproarenicin contains a putative signal peptide (25 amino acids) and a long prodomain. Arenicins have no structure similarity to any previously identified antimicrobial peptides.
Collapse
Affiliation(s)
- Tatiana V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kamimori H, Unabia S, Thomas WG, Aguilar MI. Evaluation of the Membrane-binding Properties of the Proximal Region of the Angiotensin II Receptor (AT1A) Carboxyl Terminus by Surface Plasmon Resonance. ANAL SCI 2005; 21:171-4. [PMID: 15732479 DOI: 10.2116/analsci.21.171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The proximal region of the angiotensin II receptor (AT1A) carboxyl-terminus (known as helix VIII) is important for receptor function. In this study, we used surface plasmon resonance (SPR) to examine the interaction of helix VIII-derived peptides with three model lipid membranes. The membrane-binding properties of these synthetic peptides, as well as a series of peptide analogues with modified amino acid sequences, could be explained by both amino acid sequence and kinetic binding data by SPR. The helix VIII peptides showed a higher affinity for lipid membranes that contained negatively charged phospholipid, rather than zwitterionic phospholipid. The findings of an SPR study may be useful for estimating the cooperative binding of intracellular receptor domains with G proteins and the components of the lipid bilayer.
Collapse
Affiliation(s)
- Hiroshi Kamimori
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
40
|
Raghuraman H, Chattopadhyay A. Effect of micellar charge on the conformation and dynamics of melittin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:611-22. [PMID: 15071759 DOI: 10.1007/s00249-004-0402-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 02/12/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
Electrostatic interactions play a crucial role in modulating and stabilizing molecular interactions in membranes and membrane-mimetic systems such as micelles. We have monitored the change in the conformation and dynamics of the cationic hemolytic peptide melittin bound to micelles of various charge types, utilizing fluorescence and circular dichroism (CD) spectroscopy. The sole tryptophan of melittin displays a red-edge excitation shift (REES) of 3-6 nm when bound to anionic, nonionic, and zwitterionic micelles. This suggests that melittin is localized in a restricted environment, probably in the interfacial region of the micelles, and this region offers considerable restriction to the reorientational motion of the solvent dipoles around the excited state tryptophan in melittin. Further, the rotational mobility of melittin is considerably reduced in these micelles and is found to be dependent on the surface charge of micelles. Interestingly, our results show that melittin does not partition into cetyltrimethylammonium bromide (CTAB) micelles owing to electrostatic repulsion between melittin and CTAB micelles, both of which carry a positive charge. In addition, the fluorescence lifetime of melittin is modulated in micelles of different charge types. The lowest mean fluorescence lifetime is observed in the case of melittin bound to anionic sodium dodecyl sulfate (SDS) micelles. CD spectroscopy shows that micelles induce significant helicity to melittin, with maximum helicity being induced in the case of melittin bound to SDS micelles. Fluorescence quenching measurements using the neutral aqueous quencher acrylamide show differential accessibility of melittin in various types of micelles. Taken together, our results show that micellar surface charge can modulate the conformation and dynamics of melittin. These results could be relevant to understanding the role of the surface charge of membranes in the interaction of membrane-active, amphiphilic peptides with membranes.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Uppal Road, 500 007 Hyderabad, India
| | | |
Collapse
|
41
|
Mozsolits H, Lee TH, Clayton AHA, Sawyer WH, Aguilar MI. The membrane-binding properties of a class A amphipathic peptide. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2004; 33:98-108. [PMID: 12879312 DOI: 10.1007/s00249-003-0332-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 05/12/2003] [Accepted: 05/13/2003] [Indexed: 10/26/2022]
Abstract
The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide-membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.
Collapse
Affiliation(s)
- H Mozsolits
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Vic, Australia
| | | | | | | | | |
Collapse
|
42
|
Hall K, Mozsolits H, Aguilar MI. Surface plasmon resonance analysis of antimicrobial peptide–membrane interactions: affinity & mechanism of action. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-2407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Sheynis T, Sykora J, Benda A, Kolusheva S, Hof M, Jelinek R. Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. ACTA ACUST UNITED AC 2003; 270:4478-87. [PMID: 14622276 DOI: 10.1046/j.1432-1033.2003.03840.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depth of bilayer penetration and effects on lipid mobility conferred by the membrane-active peptides magainin, melittin, and a hydrophobic helical sequence KKA(LA)7KK (denoted KAL), were investigated by colorimetric and time-resolved fluorescence techniques in biomimetic phospholipid/poly(diacetylene) vesicles. The experiments demonstrated that the extent of bilayer permeation and peptide localization within the membrane was dependent upon the bilayer composition, and that distinct dynamic modifications were induced by each peptide within the head-group environment of the phospholipids. Solvent relaxation, fluorescence correlation spectroscopy and fluorescence quenching analyses, employing probes at different locations within the bilayer, showed that magainin and melittin inserted close to the glycerol residues in bilayers incorporating negatively charged phospholipids, but predominant association at the lipid-water interface occurred in bilayers containing zwitterionic phospholipids. The fluorescence and colorimetric analyses also exposed the different permeation properties and distinct dynamic influence of the peptides: magainin exhibited the most pronounced interfacial attachment onto the vesicles, melittin penetrated more into the bilayers, while the KAL peptide inserted deepest into the hydrophobic core of the lipid assemblies. The solvent relaxation results suggest that decreasing the lipid fluidity might be an important initial factor contributing to the membrane activity of antimicrobial peptides.
Collapse
Affiliation(s)
- Tanya Sheynis
- Department of Chemistry and the Stadler Minerva Center for Mesoscopic Macromolecular Engineering, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Hall K, Mozsolits H, Aguilar MI. Surface plasmon resonance analysis of antimicrobial peptide-membrane interactions: affinity & mechanism of action. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf02442579] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Mozsolits H, Aguilar MI. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers 2003; 66:3-18. [PMID: 12228917 DOI: 10.1002/bip.10200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interactions between peptides and membranes mediate a wide variety of biological processes, and characterization of the molecular details of these interactions is central to our understanding of cellular events such as protein trafficking, cellular signaling and ion-channel formation. A wide variety of biophysical techniques have been combined with the use of model membrane systems to study peptide-membrane interactions, and have provided important information on the relationship between membrane-active peptide structure and their biological function. However, what has generally not been reported is a detailed analysis of the affinity of peptide for different membrane systems, which has largely been due to the difficulty in obtaining this information. To address this issue, surface plasmon resonance (SPR) spectroscopy has recently been applied to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. This article provides an overview of these recent applications that demonstrate the potential of SPR to enhance our molecular understanding of membrane-mediated peptide function.
Collapse
Affiliation(s)
- Henriette Mozsolits
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | |
Collapse
|
46
|
Abstract
We have assembled references of 700 articles published in 2001 that describe work performed using commercially available optical biosensors. To illustrate the technology's diversity, the citation list is divided into reviews, methods and specific applications, as well as instrument type. We noted marked improvements in the utilization of biosensors and the presentation of kinetic data over previous years. These advances reflect a maturing of the technology, which has become a standard method for characterizing biomolecular interactions.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|