1
|
Katsumata T, Nguyen-Tra Le M, Kawada-Matsuo M, Taniguchi Y, Ouhara K, Oogai Y, Nakata M, Mizuno N, Nishitani Y, Komatsuzawa H. KATSUMATA et al.Comprehensive characterization of sortase A-dependent surface proteins in Streptococcus mutansComprehensive characterization of sortase A-dependent surface proteins in Streptococcus mutans. Microbiol Immunol 2021; 66:145-156. [PMID: 34888908 DOI: 10.1111/1348-0421.12958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Streptococcus mutans, a cariogenic pathogen, adheres to the tooth surface and forms a biofilm. Bacterial cell surface proteins are associated with adherence to substrates. Sortase A (SrtA) mediates the localization of proteins with an LPXTG motif-containing proteins to the cell surface by covalent binding to peptidoglycan. In S. mutans UA159, 6 SrtA-dependent proteins, SpaP, WapA, WapE, DexA, FruA, and GbpC, were identified. Although some of these proteins were characterized, a comprehensive analysis of the 6 proteins has not been reported. In this study, we constructed mutants deficient in each of these proteins and the SrtA-deficient mutant. The SrtA-deficient mutant showed drastically decreased binding to salivary components, biofilm formation, bacterial coaggregation activity, hydrophobicity, and cellular matrix binding (collagen type I, fibronectin, and laminin). The SpaP-deficient mutant showed significantly reduced binding to salivary components and partially increased coaggregation with Porphyromonas gingivalis, and decreased hydrophobicity, and collagen binding. The WapA-deficient mutant showed slightly decreased coaggregation with Fusobacterium nucleatum. Although the SrtA-deficient mutant showed drastically altered phenotypes, all SrtA-dependent protein-deficient mutants, except the SpaP-deficient mutant, did not show considerable alterations in binding to salivary components. These results indicate that the 6 proteins may coordinately contribute to these activities. In addition, using genomic data of 125 S. mutans strains, we compared the amino acid sequences of each surface protein and found many variations among strains, which may affect the phenotype of cell surface proteins in S. mutans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tamaki Katsumata
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshihiro Nishitani
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
2
|
Järvå MA, Hirt H, Dunny GM, Berntsson RPA. Polymer Adhesin Domains in Gram-Positive Cell Surface Proteins. Front Microbiol 2020; 11:599899. [PMID: 33324381 PMCID: PMC7726212 DOI: 10.3389/fmicb.2020.599899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
Surface proteins in Gram-positive bacteria are often involved in biofilm formation, host-cell interactions, and surface attachment. Here we review a protein module found in surface proteins that are often encoded on various mobile genetic elements like conjugative plasmids. This module binds to different types of polymers like DNA, lipoteichoic acid and glucans, and is here termed polymer adhesin domain. We analyze all proteins that contain a polymer adhesin domain and classify the proteins into distinct classes based on phylogenetic and protein domain analysis. Protein function and ligand binding show class specificity, information that will be useful in determining the function of the large number of so far uncharacterized proteins containing a polymer adhesin domain.
Collapse
Affiliation(s)
- Michael A Järvå
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Helmut Hirt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Marx P, Sang Y, Qin H, Wang Q, Guo R, Pfeifer C, Kreth J, Merritt J. Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms. NPJ Biofilms Microbiomes 2020; 6:17. [PMID: 32221309 PMCID: PMC7101444 DOI: 10.1038/s41522-020-0128-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 01/28/2023] Open
Abstract
Transcription regulators from the LexA-like Protein Superfamily control a highly diverse assortment of genetic pathways in response to environmental stress. All characterized members of this family modulate their functionality and stability via a strict coordination with the coprotease function of RecA. Using the LexA-like protein IrvR from Streptococcus mutans, we demonstrate an exception to the RecA paradigm and illustrate how this evolutionary innovation has been coopted to diversify the stress responsiveness of S. mutans biofilms. Using a combination of genetics and biophysical measurements, we demonstrate how non-SOS stresses and SOS stresses each trigger separate regulatory mechanisms that stimulate production of a surface lectin responsible for remodeling the viscoelastic properties of extant biofilms during episodes of environmental stress. These studies demonstrate how changes in the external environment or even anti-biofilm therapeutic agents can activate biofilm-specific adaptive mechanisms responsible for bolstering the integrity of established biofilm communities. Such changes in biofilm community structure are likely to play central roles in the notorious recalcitrance of biofilm infections.
Collapse
Affiliation(s)
- Patrick Marx
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Yu Sang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Hua Qin
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Qingjing Wang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Rongkai Guo
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Carmem Pfeifer
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jens Kreth
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Justin Merritt
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
4
|
Senpuku H, Tuna EB, Nagasawa R, Nakao R, Ohnishi M. The inhibitory effects of polypyrrole on the biofilm formation of Streptococcus mutans. PLoS One 2019; 14:e0225584. [PMID: 31774855 PMCID: PMC6881011 DOI: 10.1371/journal.pone.0225584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023] Open
Abstract
Streptococcus mutans primary thrives on the biofilm formation on the tooth surface in sticky biofilms and under certain conditions can lead to carious lesions on the tooth surface. To search for a new preventive material for oral biofilm-associated diseases, including dental caries, we investigated the effects of polypyrrole, which contains an electrochemical polymer and causes protonation and incorporation of anion under low pH condition, on the biofilm formation of S. mutans and other streptococci. In this study, polypyrrole was applied in biofilm formation assays with the S. mutans strains UA159 and its gtfB and gtfC double mutant (gtfBC mutant), S. sanguinis, S. mitis and S. gordonii on human saliva and bovine serum albumin-coated 96-well microtiter plates in tryptic soy broth supplemented with 0.25% sucrose. The effects of polypyrrole on biofilm formation were quantitatively and qualitatively observed. High concentrations of polypyrrole significantly inhibited the biofilm formation of S. mutans UA159 and S. sanguinis. As an inhibition mechanism, polypyrrole attached to the surface of bacterial cells, increased chains and aggregates, and incorporated proteins involving GTF-I and GTF-SI produced by S. mutans. In contrast, the biofilm formation of gtfBC mutant, S. sanguinis, S. mitis and S. gordonii was temporarily induced by the addition of low polypyrrole concentrations on human saliva-coated plate but not on the uncoated and bovine serum albumin-coated plates. Moreover, biofilm formation depended on live cells and, likewise, specific interaction between cells and binding components in saliva. However, these biofilms were easily removed by increased frequency of water washing. In this regard, the physical and electrochemical properties in polypyrrole worked effectively in the removal of streptococci biofilms. Polypyrrole may have the potential to alter the development of biofilms associated with dental diseases.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Elif Bahar Tuna
- Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turky
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Glucan Binding Protein C of Streptococcus mutans Mediates both Sucrose-Independent and Sucrose-Dependent Adherence. Infect Immun 2018; 86:IAI.00146-18. [PMID: 29685986 DOI: 10.1128/iai.00146-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/18/2018] [Indexed: 01/11/2023] Open
Abstract
The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans, has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii, GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire.
Collapse
|
6
|
Hu X, Wang Y, Gao L, Jiang W, Lin W, Niu C, Yuan K, Ma R, Huang Z. The Impairment of Methyl Metabolism From luxS Mutation of Streptococcus mutans. Front Microbiol 2018; 9:404. [PMID: 29657574 PMCID: PMC5890193 DOI: 10.3389/fmicb.2018.00404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
The luxS gene is present in a wide range of bacteria and is involved in many cellular processes. LuxS mutation can cause autoinducer(AI)-2 deficiency and methyl metabolism disorder. The objective of this study was to demonstrate that, in addition to AI-2-mediated quorum sensing (QS), methyl metabolism plays an important role in LuxS regulation in Streptococcus mutans. The sahH gene from Pseudomonas aeruginosa was amplified and introduced into the S. mutans luxS-null strain to complement the methyl metabolism disruption in a defective QS phenotype. The intracellular activated methyl cycle (AMC) metabolites [S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine (HCY), and methionine] were quantified in wild-type S. mutans and its three derivatives to determine the metabolic effects of disrupting the AMC. Biofilm mass and structure, acid tolerance, acid production, exopolysaccharide synthesis of multispecies biofilms and the transcriptional level of related genes were determined. The results indicated that SAH and SAM were relatively higher in S. mutans luxS-null strain and S. mutans luxS null strain with plasmid pIB169 when cultured overnight, and HCY was significantly higher in S. mutans UA159. Consistent with the transcriptional profile, luxS deletion-mediated impairment of biofilm formation and acid tolerance was restored to wild-type levels using transgenic SahH. These results also suggest that methionine methyl metabolism contributes to LuxS regulation in S. mutans to a significant degree.
Collapse
Affiliation(s)
- Xuchen Hu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yuxia Wang
- Department of Endodontics, Tianjin Stomatological Hospital, Nankai University, Tianjin, China
| | - Li Gao
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenxin Jiang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenzhen Lin
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Iwamoto A, Nakamura T, Narisawa N, Kawasaki Y, Abe S, Torii Y, Senpuku H, Takenaga F. The Japanese Fermented Food Natto Inhibits Sucrose-dependent Biofilm Formation by Cariogenic Streptococci. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Aya Iwamoto
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Tomoyo Nakamura
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Yukimasa Kawasaki
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Shin Abe
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Yasuyoshi Torii
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Hidenobu Senpuku
- Department of Bacteriology, National Institute of Infectious Diseases
| | - Fumio Takenaga
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| |
Collapse
|
8
|
Senpuku H, Yonezawa H, Yoneda S, Suzuki I, Nagasawa R, Narisawa N. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2017; 33:47-58. [PMID: 28845576 DOI: 10.1111/omi.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Saori Yoneda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Pediatric Dentistry, Nihon University at Matsudo, Chiba, Japan
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Graduate School of Science and Engineering, Hosei University, Shinjuku-ku, Tokyo, Japan
| | - Naoki Narisawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
9
|
Suzuki Y, Nagasawa R, Senpuku H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans. J Infect Chemother 2017; 23:634-641. [PMID: 28729051 DOI: 10.1016/j.jiac.2017.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/22/2017] [Accepted: 06/16/2017] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans produces glucosyltransferases encoded by the gtfB and gtfC genes, which synthesize insoluble glucan, and both insoluble and soluble glucans by conversion of sucrose, and are known as principal agents to provide strong biofilm formation and demineralization on tooth surfaces. S. mutans possess a Com-dependent quorum sensing (QS) system, which is important for survival in severe conditions. The QS system is stimulated by the interaction between ComD {Receptor to competence-stimulating peptide (CSP)} encoded by the comD and CSP encoded by the comC, and importantly associated with bacteriocin production and genetic competence. Previously, we found enzyme fructanase (FruA) as a new inhibitor for the glucan-dependent biofilm formation. In the present study, inhibiting effects by FruA on glucan-independent biofilm formation of S. mutans UA159, UA159.gtfB-, UA159.gtfC-, and UA159.gtfBC- were observed in sucrose and no sucrose sugars-supplemented conditions using the plate assay. The reduction of UA159.comC- and UA159.comD- biofilm formation were also observed as compared with UA159 in same conditions. These results suggested that inhibitions of glucan-independent and Com-dependent biofilm formation were involved in the inhibiting mechanism by FruA. To more thoroughly investigate effects by FruA on the QS system, we examined on CSP-stimulated and Com-dependent bacteriocin production and genetic transformation. FruA inhibited bacteriocin production in collaboration with CSP and genetic transformation in bacterial cell conditions treated with FruA. Our findings show that FruA has multiple effects that inhibit survival functions of S. mutans, including biofilm formation and CSP-dependent QS responses, indicating its potential use as an agent for prevention of dental caries.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Maxillofacial Surgery, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan; Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
10
|
Mashburn-Warren L, Downey JS, Goodman SD. Novel method for the depletion of cariogenic bacteria using dextranomer microspheres. Mol Oral Microbiol 2017; 32:475-489. [PMID: 28502123 DOI: 10.1111/omi.12186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Streptococcus mutans is recognized as one of the key contributors to the dysbiotic state that results in dental caries. Existing treatment strategies reduce the incidence of tooth decay, but they also eliminate both the cariogenic and beneficial microbes. Here we introduce a novel treatment alternative using Sephadex, cross-linked dextranomer microspheres (DMs), typically used for gel filtration chromatography. In addition DM beads can be used for affinity purification of glucosyltransferases (GTFs) from S. mutans. In this study we take advantage of the native pathogenic mechanisms used by S. mutans to adhere, form a biofilm and induce dental caries through the expression of surface-associated GTFs. We demonstrate that planktonic and biofilm-grown (adhered to hydroxyapatite-coated pegs to mimic the tooth surface) S. mutans, specifically and competitively attach to DMs. Further investigation demonstrated that DMs are a specific affinity resin for S. mutans and other cariogenic/pathogenic oral streptococci, whereas other commensal and probiotic strains failed to readily adhere to DMs. Using antimicrobial cargo loaded into the DM lumen, we demonstrate that when in co-culture with non-binding to even modestly binding commensal species, S. mutans was selectively killed. This proof of concept study introduces a novel means to safely and effectively reduce the pool of S. mutans and other pathogenic streptococci in the oral cavity with limited disturbance of the necessary commensal (healthy) microbiota when compared with current oral healthcare products.
Collapse
Affiliation(s)
- L Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - J S Downey
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, CA, USA
| | - S D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Biomedical Sciences, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood. Infect Immun 2016; 84:3206-3219. [PMID: 27572331 DOI: 10.1128/iai.00406-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/20/2016] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Collapse
|
12
|
Morphological and proteomic analyses of the biofilms generated by Streptococcus mutans isolated from caries-active and caries-free adults. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
13
|
Liu N, Niu G, Xie Z, Chen Z, Itzek A, Kreth J, Gillaspy A, Zeng L, Burne R, Qi F, Merritt J. The Streptococcus mutans irvA gene encodes a trans-acting riboregulatory mRNA. Mol Cell 2015; 57:179-90. [PMID: 25574948 DOI: 10.1016/j.molcel.2014.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 09/12/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023]
Abstract
In both prokaryotes and eukaryotes, insight into gene function is typically obtained by in silico homology searches and/or phenotypic analyses of strains bearing mutations within open reading frames. However, the studies herein illustrate how mRNA function is not limited to the expression of a cognate protein. We demonstrate that a stress-induced protein-encoding mRNA (irvA) from the dental caries pathogen Streptococcus mutans directly modulates target mRNA (gbpC) stability through seed pairing interactions. The 5' untranslated region of irvA mRNA is a trans riboregulator of gbpC and a critical activator of the DDAG stress response, whereas IrvA functions independently in the regulation of natural competence. The irvA riboregulatory domain controls GbpC production by forming irvA-gbpC hybrid mRNA duplexes that prevent gbpC degradation by an RNase J2-mediated pathway. These studies implicate a potentially ubiquitous role for typical protein-encoding mRNAs as riboregulators, which could alter current concepts in gene regulation.
Collapse
Affiliation(s)
- Nan Liu
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA
| | - Guoqing Niu
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA
| | - Zhoujie Xie
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA
| | - Zhiyun Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA
| | - Andreas Itzek
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA
| | - Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA; Division of Oral Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Allison Gillaspy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA
| | - Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Robert Burne
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Fengxia Qi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA; Division of Oral Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin Merritt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 71304, USA; Division of Oral Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
14
|
Sato Y, Okamoto K, Kagami A, Yamamoto Y, Ohta K, Igarashi T, Kizaki H. Application ofIn VitroMutagenesis to Identify the Gene Responsible for Cold Agglutination Phenotype ofStreptococcus mutans. Microbiol Immunol 2013; 48:449-56. [PMID: 15215618 DOI: 10.1111/j.1348-0421.2004.tb03535.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A previously unidentified protein with an apparent molecular mass of 120 kDa was detected in some Streptococcus mutans strains including the natural isolate strain Z1. This protein was likely involved in the cold-agglutination of the strain, since a correlation between this phenotype and expression of the 120 kDa protein was found. We have applied random mutagenesis by in vitro transposition with the Himar1 minitransposon and isolated three cold-agglutination-negative mutants of this strain from approximately 2,000 mutants screened. A 2.5 kb chromosomal fragment flanking the minitransposon in one of the three mutants was amplified by PCR-based chromosome walking and the minitransposon insertion in the other two mutants occurred also within the same region. Nucleotide sequencing of the region revealed a 1617 nt open reading frame specifying a putative protein of 538 amino acid residues with a calculated molecular weight of 57,192. The deduced eight amino acid sequence following a putative signal sequence completely coincided with the N-terminal octapeptide sequence of the 120 kDa protein determined by the Edman degradation. Therefore, the 1617 nt gene unexpectedly encoded the 120 kDa protein from S. mutans. Interestingly, this gene encoded a collagen adhesin homologue. In vitro mutagenesis using the Himar1 minitransposon was successfully applied to S. mutans.
Collapse
Affiliation(s)
- Yutaka Sato
- Department of Biochemistry, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Morin Inhibits Sortase A and Subsequent Biofilm Formation in Streptococcus mutans. Curr Microbiol 2013; 68:47-52. [DOI: 10.1007/s00284-013-0439-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/09/2013] [Indexed: 11/29/2022]
|
16
|
Hu P, Huang P, Chen MW. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol 2013; 58:1343-8. [PMID: 23778072 DOI: 10.1016/j.archoralbio.2013.05.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Sortase A is an enzyme responsible for the covalent attachment of Pac proteins to the cell wall in Streptococcus mutans. It has been shown to play a role in modulating the surface properties and the biofilm formation and influence the cariogenicity of S. mutans. Curcumin, an active ingredient of turmeric, was reported to be an inhibitor for Staphylococcus aureus sortase A. The aim of this study was to investigate the inhibitory ability of curcumin against S. mutans sortase A and the effect of curcumin for biofilm formation. METHODS The antimicrobial activity of the curcumin to the S. mutans and inhibitory ability of the curcumin against the purified sortase A in vitro were detected. Western-blot and real-time PCR were used to analysis the sortase A mediated Pac protein changes when the S. mutans was cultured with curcumin. The curcumin on the S. mutans biofilm formation was determined by biofilm formation analysis. RESULTS Curcumin can inhibit purified S. mutans sortase A with a half-maximal inhibitory concentration (IC50) of (10.2±0.7)μmol/l, which is lower than minimum inhibitory concentration (MIC) of 175μmol/l. Curcumin (15μmol/l) was found to release the Pac protein to the supernatant and reduce S. mutans biofilm formation. CONCLUSIONS These results indicated that curcumin is an S. mutans sortase A inhibitor and has promising anti-caries characteristics through an anti-adhesion-mediated mechanism.
Collapse
Affiliation(s)
- Ping Hu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | | | | |
Collapse
|
17
|
Sato Y, Okamoto-Shibayama K, Takada K, Igarashi T, Hirasawa M. Genes responsible for dextran-dependent aggregation ofStreptococcus sobrinusstrain 6715. ACTA ACUST UNITED AC 2009; 24:224-30. [DOI: 10.1111/j.1399-302x.2008.00499.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Effect of biofilm formation on virulence factor secretion via the general secretory pathway in Streptococcus mutans. Arch Oral Biol 2008; 53:1179-85. [DOI: 10.1016/j.archoralbio.2008.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/16/2008] [Accepted: 07/25/2008] [Indexed: 12/14/2022]
|
19
|
Kagami A, Okamoto-Shibayama K, Yamamoto Y, Sato Y, Kizaki H. One of two gbpC gene homologues is involved in dextran-dependent aggregation of Streptococcus sobrinus. ACTA ACUST UNITED AC 2007; 22:240-7. [PMID: 17600535 DOI: 10.1111/j.1399-302x.2006.00347.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Streptococcus sobrinus exhibits marked dextran-dependent aggregation mediated by glucan-binding proteins (GBPs). In contrast to Streptococcus mutans, in which the gbpC gene responsible for dextran-dependent aggregation of this organism has been characterized, genes encoding the S. sobrinus GBPs have not yet been identified. METHODS Recently, we identified the gbpC gene homologue from Streptococcus macacae using polymerase chain reaction primers based on the conserved regions of the gbpC sequence exhibiting intraspecies variations. This method was applied to amplify a S. sobrinus homologue. RESULTS Unexpectedly, two gbpC gene homologues were identified in S. sobrinus strain 100-4. One homologue, named gbpC, was more similar to the S. mutans gbpC gene than the other and was approximately half the molecular size of its homologue with similar regions interrupted by several non-similar stretches. However, the dextran-binding activity of the protein expressed from gbpC in Escherichia coli was not detected in contrast to the other homologue, a protein designated as Dbl, expressing this activity. The gbpC gene was shown to be intact on the chromosome of strain OMZ176, which does not exhibit dextran-dependent aggregation, while the dbl gene of this strain contained a single adenine nucleotide insertion at approximately one-third the distance from the 5'-end. The insertion mutation in the dbl gene resulted in translation of a premature protein missing its LPXTG sequence signature sequence of the wall-anchored proteins. CONCLUSION These results suggest that the dbl gene is very likely responsible for S. sobrinus dextran-dependent aggregation.
Collapse
Affiliation(s)
- A Kagami
- Department of Biochemistry and Oral Health Science Centre, Tokyo Dental College, Mihama-ku, Chiba City, Japan
| | | | | | | | | |
Collapse
|
20
|
Lynch DJ, Fountain TL, Mazurkiewicz JE, Banas JA. Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol Lett 2006; 268:158-65. [PMID: 17214736 PMCID: PMC1804096 DOI: 10.1111/j.1574-6968.2006.00576.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Glucan plays a central role in sucrose-dependent biofilm formation by the dental pathogen Streptococcus mutans. This organism synthesizes several proteins capable of binding glucan. These are divided into the glucosyltransferases that catalyze the synthesis of glucan and the nonglucosyltransferase glucan-binding proteins (Gbps). The biological significance of the Gbps has not been thoroughly defined, but studies suggest that these proteins influence virulence and play a role in maintaining biofilm architecture by linking bacteria and extracellular molecules of glucan. We engineered a panel of Gbp mutants, targeting GbpA, GbpC, and GbpD, in which each gene encoding a Gbp was deleted individually and in combination. These strains were then analyzed by confocal microscopy and the biofilm properties were quantified by the biofilm quantification software comstat. All biofilms produced by mutant strains lost significant depth, but the basis for the reduction in height depended on which particular Gbp was missing. The loss of the cell-bound GbpC appeared dominant as might be expected based on losing the principal receptor for glucan. The loss of an extracellular Gbp, either GbpA or GbpD, also profoundly changed the biofilm architecture, each in a unique manner.
Collapse
Affiliation(s)
- David J Lynch
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
21
|
Zhu L, Kreth J, Cross SE, Gimzewski JK, Shi W, Qi F. Functional characterization of cell-wall-associated protein WapA in Streptococcus mutans. MICROBIOLOGY-SGM 2006; 152:2395-2404. [PMID: 16849803 DOI: 10.1099/mic.0.28883-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Streptococcus mutans is known as a primary pathogen responsible for dental caries. One of the virulence factors of S. mutans in cariogenicity is its ability to attach to the tooth surface and form a biofilm. Several surface proteins have been shown to be involved in this process. A 29 kDa surface protein named wall-associated protein A (WapA, antigen A or antigen III), was previously used as a vaccine in animal studies for immunization against dental caries. However, the function of WapA in S. mutans is still not clear. This study characterized the function of WapA in cell surface structure and biofilm formation. Compared to the wild-type, the wapA mutant had much-reduced cell chain length, diminished cell-cell aggregation, altered cell surface ultrastructure, and unstructured biofilm architecture. Furthermore, in vivo force spectroscopy revealed that the cell surface of the wapA mutant was less sticky than that of the wild-type cells. More interestingly, these phenotypic differences diminished as sucrose concentration in the medium was increased to 0.5 %. Real-time RT-PCR analysis demonstrated that sucrose strongly repressed wapA gene expression in both planktonic and biofilm cells. These results suggest that the WapA protein plays an important structural role on the cell surface, which ultimately affects sucrose-independent cell-cell aggregation and biofilm architecture.
Collapse
Affiliation(s)
- Lin Zhu
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Jens Kreth
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Sarah E Cross
- Institute for Cell Mimetic Space Exploration, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - James K Gimzewski
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Institute for Cell Mimetic Space Exploration, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Fengxia Qi
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Matsumoto M, Fujita K, Ooshima T. Binding of glucan-binding protein C to GTFD-synthesized soluble glucan in sucrose-dependent adhesion of Streptococcus mutans. ACTA ACUST UNITED AC 2006; 21:42-6. [PMID: 16390340 DOI: 10.1111/j.1399-302x.2005.00252.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Streptococcus mutans produces glucan-binding proteins (Gbp proteins) which promote the adhesion of the organism to teeth. Three Gbp proteins, GbpA protein, GbpB protein, and GbpC protein have been identified; however, the mechanism of adhesion between glucans and bacterial cell surfaces is unknown. We used glucosyltransferase (GTF)- and/or Gbp-deficient mutants to examine the role of GbpC protein in the sucrose-dependent cellular adhesion of S. mutans to glass surfaces. The wild-type strain MT8148 and a GbpA-deficient mutant strain displayed increased sucrose-dependent adhesion following the addition of rGTFD. However, a GbpC-deficient mutant strain demonstrated no changes in the level of sucrose-dependent adhesion in spite of the addition of rGTFD. Further, the binding of rGbpC protein to the glucan synthesized by rGTFD was significantly higher than that to the glucan synthesized by either rGTFB or rGTFC. These results suggest that GbpC protein may play an important role in sucrose-dependent adhesion by binding to the soluble glucan synthesized by GTFD.
Collapse
Affiliation(s)
- M Matsumoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Japan
| | | | | |
Collapse
|
23
|
Okamoto-Shibayama K, Sato Y, Yamamoto Y, Ohta K, Kizaki H. Identification of a glucan-binding protein C gene homologue in Streptococcus macacae. ACTA ACUST UNITED AC 2006; 21:32-41. [PMID: 16390339 DOI: 10.1111/j.1399-302x.2005.00251.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIMS The past few decades have seen the isolation of certain glucosyltransferases and a number of proteins from mutans streptococci. Some of these proteins have been shown to possess glucan-binding capabilities which confer an important virulence property on mutans streptococci for the role of these bacteria play in dental caries. Among these proteins is glucan-binding protein C, which is encoded by the gbpC gene, and which we have identified as being involved in the dextran-dependent aggregation of Streptococcus mutans. However, gbpC homologues have yet to be identified in other mutans streptococci. METHODS We carried out polymerase chain reaction amplification of Streptococcus macacae using primers that were designed based on conserved sequences of S. mutans gbpC and identified a gbpC gene homologue. The gene of that homologue was then characterized. RESULTS Nucleotide sequencing of the S. macacae gbpC homologue revealed a 1854 bp open reading frame encoding a protein with an N-terminal signal peptide. The molecular mass of the processed protein was calculated to be 67 kDa. We also found an LPxTG motif, the consensus sequence for gram-positive cocci cell wall-anchored surface proteins, which was followed by a characteristic sequence at the carboxal terminal region of the putative protein. This suggests that the S. macacae GbpC homologue protein was tethered to the cell wall. CONCLUSION Based on these results, together with the demonstrated glucan-binding ability of the S. macacae GbpC homologue protein, we suggest that S. macacae cells are capable of binding dextran via the GbpC homologue protein, which is similar to the S. mutans GbpC protein. In addition, Southern hybridization analysis using the S. macacae gbpC homologue as a probe showed a distribution of gbpC homologues throughout the mutans streptococci.
Collapse
Affiliation(s)
- K Okamoto-Shibayama
- Department of Biochemistry, Oral Health Science Center, Tokyo Dental College, Chiba City, Japan.
| | | | | | | | | |
Collapse
|
24
|
Cross SE, Kreth J, Zhu L, Qi F, Pelling AE, Shi W, Gimzewski JK. Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans. NANOTECHNOLOGY 2006; 17:S1-S7. [PMID: 21727347 DOI: 10.1088/0957-4484/17/4/001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.
Collapse
Affiliation(s)
- Sarah E Cross
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Merritt J, Kreth J, Shi W, Qi F. LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 2005; 57:960-9. [PMID: 16091037 DOI: 10.1111/j.1365-2958.2005.04733.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oral pathogen Streptococcus mutans employs a variety of mechanisms to maintain a competitive advantage over many other oral bacteria which occupy the same ecological niche. Production of the bacteriocin, mutacin I, is one such mechanism. However, little is known about the regulatory mechanisms associated with mutacin I production. Previous work has demonstrated that the production of mutacin I greatly increased with cell density. In this study, we found that high cell density also triggered high level mutacin I gene transcription. However, this response was abolished upon deletion of luxS. Further analysis using real-time reverse transcription polymerase chain reaction (RT-PCR) demonstrated that in the luxS mutant transcription of both the mutacin I structural gene mutA and the mutacin I transcriptional activator mutR was impaired. Through microarray analysis, a putative transcription repressor annotated as Smu1274 in the Los Alamos National Laboratory Oral Pathogens Sequence Database was identified, which was strongly induced in the luxS mutant. Characterization of Smu1274, which we referred to as irvA, suggested that it may act as an inducible repressor to suppress mutacin I gene expression. A luxS and irvA double mutant regained the ability to produce mutacin I; whereas a constitutive irvA-producing strain was impaired in mutacin I production. These findings reveal a novel regulatory pathway for mutacin I gene expression, which may provide clues to the regulatory mechanisms of other cellular functions regulated by luxS in S. mutans.
Collapse
Affiliation(s)
- Justin Merritt
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
26
|
Lévesque CM, Voronejskaia E, Huang YCC, Mair RW, Ellen RP, Cvitkovitch DG. Involvement of sortase anchoring of cell wall proteins in biofilm formation by Streptococcus mutans. Infect Immun 2005; 73:3773-7. [PMID: 15908410 PMCID: PMC1111851 DOI: 10.1128/iai.73.6.3773-3777.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans is one of the best-known biofilm-forming organisms associated with humans. We investigated the role of the sortase gene (srtA) in monospecies biofilm formation and observed that inactivation of srtA caused a decrease in biofilm formation. Genes encoding three putative sortase-dependent proteins were also found to be up-regulated in biofilms versus planktonic cells and mutations in these genes resulted in reduced biofilm biomass.
Collapse
Affiliation(s)
- Céline M Lévesque
- Oral Microbiology, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G 1G6
| | | | | | | | | | | |
Collapse
|
27
|
Sato Y, Okamoto-Shibayamal K, Kagami A, Yamamoto Y, Kizaki H. Single Nucleotide Polymorphisms (SNPs) Detected in the gbpC Gene Coding Region of Streptococcus mutans. J Oral Biosci 2005. [DOI: 10.1016/s1349-0079(05)80025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Sato Y, Okamoto K, Kagami A, Yamamoto Y, Igarashi T, Kizaki H. Streptococcus mutans strains harboring collagen-binding adhesin. J Dent Res 2004; 83:534-9. [PMID: 15218042 DOI: 10.1177/154405910408300705] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A previously unidentified 120-kDa protein was detected in Streptococcus mutans strain Z1 and was involved in the cold-agglutination of the strain. We have identified the gene, designated cnm, as being involved in the agglutination of strain Z1 following random mutagenesis. The amino acid sequence of the deduced Cnm protein exhibited high similarity to those of collagen-binding adhesins from staphylococci and other organisms. To confirm whether the protein is involved in collagen-binding, we cloned a cnm gene fragment, overexpressed it in E.coli, and prepared crude extracts. The extracts containing recombinant protein exhibited binding to immobilized collagen and laminin but not to fibronectin. Compared with the parental strain Z1, the cold-agglutination-negative mutant 05A02 exhibited reduced binding to collagen and laminin but retained that to fibronectin. This gene was detected in some strains of S. mutans. Therefore, the cnm gene encoded a new strain-specific member of the collagen-binding adhesin family.
Collapse
Affiliation(s)
- Y Sato
- Department of Biochemistry and Oral Health Science Center, Tokyo Dental College, Chiba City, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Igarashi T, Asaga E, Sato Y, Goto N. Inactivation of srtA gene of Streptococcus mutans inhibits dextran-dependent aggregation by glucan-binding protein C. ACTA ACUST UNITED AC 2004; 19:57-60. [PMID: 14678475 DOI: 10.1046/j.0902-0055.2003.00104.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sortase-deficient mutant of Streptococcus mutans was prepared by insertional inactivation of a sortase gene (srtA). The srtA mutant was defective in cell wall-anchoring of two surface proteins 200 and 75 kDa in size. A previous study has shown that the 200 kDa protein is a surface protein antigen PAc and that the sortase catalyzes cell wall-anchoring of PAc in S. mutans. In this study another surface protein 75 kDa in size was examined by immunologic and physiologic methods. Western blot analysis with a specific antiserum showed that the 75 kDa protein was a surface protein, glucan-binding protein C. The protein was overexpressed under a stress condition including a sublethal concentration of tetracycline. The srtA mutant cells also lost the ability of dextran-dependent aggregation. These results suggest that the S. mutans sortase mediates cell wall-anchoring of the glucan-binding protein C and dextran-dependent aggregation of this organism.
Collapse
Affiliation(s)
- T Igarashi
- Department of Oral Microbiology, Showa University School of Dentistry, Tokyo, Japan.
| | | | | | | |
Collapse
|
30
|
Sato Y, Okamoto K, Kizaki H. gbpC and pac gene mutations detected in Streptococcus mutans strain GS-5. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:263-6. [PMID: 12121478 DOI: 10.1034/j.1399-302x.2002.170410.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Streptococcus mutans gbpC gene encoding cell wall-anchoring glucan-binding protein C is involved in the dextran(alpha-1,6 glucan)-dependent aggregation (ddag) of this organism. Unlike cells of other strains of S. mutans, strain GS-5 cells did not exhibit dextran(alpha-1,6 glucan)-dependent aggregation under any conditions. We therefore hypothesized that the gbpC gene may be mutated in strain GS-5. Sequencing analysis of the 1752-nucleotide GS-5 gbpC gene revealed a point mutation that switched codon 65 to a TAA termination codon. Strain GS-5 was previously reported also to have a mutation in the pac gene encoding the cell wall-anchored major protein antigen. The laboratory-maintained strain GS-5 is regarded as having lower cariogenicity than the original isolate. The decreased cariogenicity developed during the laboratory culture of strain GS-5 may have been caused by mutations in an environment lacking appropriate selective pressures.
Collapse
Affiliation(s)
- Y Sato
- Department of Biochemistry, Tokyo Dental College, 2-2, Masago 1-chome, Mihama-ku, Chiba City, 261-8502 Japan
| | | | | |
Collapse
|