1
|
Muhammad N, Liu Z, Wang L, Yang M, Liu M. The underlying molecular mechanisms of hormonal regulation of fruit color in fruit-bearing plants. PLANT MOLECULAR BIOLOGY 2024; 114:104. [PMID: 39316226 DOI: 10.1007/s11103-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Fruit color is a key feature of fruit quality, primarily influenced by anthocyanin or carotenoid accumulation or chlorophyll degradation. Adapting the pigment content is crucial to improve the fruit's nutritional and commercial value. Genetic factors along with other environmental components (i.e., light, temperature, nutrition, etc.) regulate fruit coloration. The fruit coloration process is influenced by plant hormones, which also play a vital role in various physiological and biochemical metabolic processes. Additionally, phytohormones play a role in the regulation of a highly conserved transcription factor complex, called MBW (MYB-bHLH-WD40). The MBW complex, which consists of myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD40 repeat (WDR) proteins, coordinates the expression of downstream structural genes associated with anthocyanin formation. In fruit production, the application of plant hormones may be important for promoting coloration. However, concerns such as improper concentration or application time must be addressed. This article explores the molecular processes underlying pigment formation and how they are influenced by various plant hormones. The ABA, jasmonate, and brassinosteroid increase anthocyanin and carotenoid formation, but ethylene, auxin, cytokinin, and gibberellin have positive as well as negative effects on anthocyanin formation. This article establishes the necessary groundwork for future studies into the molecular mechanisms of plant hormones regulating fruit color, ultimately aiding in their effective and scientific application towards fruit coloration.
Collapse
Grants
- (HBCT2024190201) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (CARS-30-2-07) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (2020YFD1000705 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2019YFD1001605 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2018YFD1000607) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
Collapse
Affiliation(s)
- Noor Muhammad
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lixin Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
2
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
3
|
Schluchter WM, Babin CH, Liu X, Bieller A, Shen G, Alvey RM, Bryant DA. Loss of Biliverdin Reductase Increases Oxidative Stress in the Cyanobacterium Synechococcus sp. PCC 7002. Microorganisms 2023; 11:2593. [PMID: 37894251 PMCID: PMC10608806 DOI: 10.3390/microorganisms11102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxygenic photosynthesis requires metal-rich cofactors and electron-transfer components that can produce reactive oxygen species (ROS) that are highly toxic to cyanobacterial cells. Biliverdin reductase (BvdR) reduces biliverdin IXα to bilirubin, which is a potent scavenger of radicals and ROS. The enzyme is widespread in mammals but is also found in many cyanobacteria. We show that a previously described bvdR mutant of Synechocystis sp. PCC 6803 contained a secondary deletion mutation in the cpcB gene. The bvdR gene from Synechococcus sp. PCC 7002 was expressed in Escherichia coli, and recombinant BvdR was purified and shown to reduce biliverdin to bilirubin. The bvdR gene was successfully inactivated in Synechococcus sp. PCC 7002, a strain that is naturally much more tolerant of high light and ROS than Synechocystis sp. PCC 6803. The bvdR mutant strain, BR2, had lower total phycobiliprotein and chlorophyll levels than wild-type cells. As determined using whole-cell fluorescence at 77 K, the photosystem I levels were also lower than those in wild-type cells. The BR2 mutant had significantly higher ROS levels compared to wild-type cells after exposure to high light for 30 min. Together, these results suggest that bilirubin plays an important role as a scavenger for ROS in Synechococcus sp. PCC 7002. The oxidation of bilirubin by ROS could convert bilirubin to biliverdin IXα, and thus BvdR might be important for regenerating bilirubin. These results further suggest that BvdR is a key component of a scavenging cycle by which cyanobacteria protect themselves from the toxic ROS byproducts generated during oxygenic photosynthesis.
Collapse
Affiliation(s)
- Wendy M. Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Courtney H. Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Xindi Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Amori Bieller
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
| | - Richard M. Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
- Biology Department, Bloomington, Illinois Wesleyan University, Bloomington, IL 61702, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
| |
Collapse
|
4
|
Zhang X, Zhao Z, Zhang M, Wang J, Cheng T, Zhang Q, Pan H. FsHemF is involved in the formation of yellow Forsythia leaves by regulating chlorophyll synthesis in response to light intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107746. [PMID: 37210861 DOI: 10.1016/j.plaphy.2023.107746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
The leaves of Forsythia koreana 'Suwon Gold' are yellow under natural light condition and can revert to green when the light intensity is reduced. To understand the molecular mechanism of leaf color changes in response to light intensity, we compared the chlorophyll content and precursor content between yellow- and green-leaf Forsythia under shade and light-recovery conditions. We identified the conversion of coproporphyrin III (Coprogen III) to protoporphyrin IX (Proto IX) as the primary rate-limiting step of chlorophyll biosynthesis in yellow-leaf Forsythia. Further analysis of the activity of the enzymes that catalyze this step and the expression pattern of the chlorophyll biosynthesis-related genes under different light intensities revealed that the negatively regulated expression of FsHemF by light intensity was the major cause affecting the leaf color change in response to light intensity in yellow-leaf Forsythia. To further understand the cause of differential expression pattern of FsHemF in yellow- and green-leaf lines, we compared the coding sequence and promoter sequence of FsHemF between yellow- and green-leaf Forsythia. We found that one G-box light-responsive cis-element was absent in the promoter region of green-leaf lines. To investigate the functional role of FsHemF, we performed virus-induced gene silencing (VIGS) of FsHemF in green-leaf Forsythia, which leads to yellowing leaf veins, decreased chlorophyll b content, and inhibition of chlorophyll biosynthesis. The results will assist in elucidating the mechanism of yellow-leaf Forsythia in response to light intensity.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhengtian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Light regulates chlorophyll biosynthesis via ELIP1 during the storage of Chinese cabbage. Sci Rep 2022; 12:11098. [PMID: 35773334 PMCID: PMC9247097 DOI: 10.1038/s41598-022-15451-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
Chlorophyll loss is a major problem during green vegetable storage. However, the molecular mechanism is still unclear. In this study, a 21 days of storage experiments showed chlorophyll content was higher in light-stored Chinese cabbage (Brassica chinensis L.) leaves than those in dark-stored samples. Transcriptome analyses were performed on these samples to determine the effects of light. Among 311 differentially expressed genes (DEGs), early light-induced protein 1 (ELIP1) was identified as the main control gene for chlorophyll synthesis. Tissues and subcellular localization indicated that ELIP1 was localized in the nucleus. Motifs structure analyses, chromatin immunoprecipitation (ChIP) assays, luciferase reporter assays, and overexpression experiments demonstrated that ELIP1 regulated the expressions of genomes uncoupled 4 (GUN4), Glutamyl-tRNA reductase family protein (HEMA1), and Mg-protoporphyrin IX methyltransferase (CHLM) by binding to G-box-like motifs and affected chlorophyll biosynthesis during the storage of Chinese cabbage. It is a possible common tetrapyrrole biosynthetic pathway for chlorophylls, hemes, and bilin pigments in photosynthetic organisms. Our research also revealed that white light can be used as a regulatory factor to improve the storage ability and extent shelf life of Chinese cabbage.
Collapse
|
6
|
Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, Sporre E, Branco Dos Santos F, Hudson EP. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab Eng 2021; 68:131-141. [PMID: 34601120 DOI: 10.1016/j.ymben.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023]
Abstract
Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.
Collapse
Affiliation(s)
- Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Pineda Hernández
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Ljungqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Hallman
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Sporre
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
7
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
8
|
Brandenburg F, Theodosiou E, Bertelmann C, Grund M, Klähn S, Schmid A, Krömer JO. Trans-4-hydroxy-L-proline production by the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng Commun 2020; 12:e00155. [PMID: 33511031 PMCID: PMC7815826 DOI: 10.1016/j.mec.2020.e00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
Cyanobacteria play an important role in photobiotechnology. Yet, one of their key central metabolic pathways, the tricarboxylic acid (TCA) cycle, has a unique architecture compared to most heterotrophs and still remains largely unexploited. The conversion of 2-oxoglutarate to succinate via succinyl-CoA is absent but is by-passed by several other reactions. Overall, fluxes under photoautotrophic growth conditions through the TCA cycle are low, which has implications for the production of chemicals. In this study, we investigate the capacity of the TCA cycle of Synechocystis sp PCC 6803 for the production of trans-4-hydroxy-L-proline (Hyp), a valuable chiral building block for the pharmaceutical and cosmetic industries. For the first time, photoautotrophic Hyp production was achieved in a cyanobacterium expressing the gene for the L-proline-4-hydroxylase (P4H) from Dactylosporangium sp. strain RH1. Interestingly, while elevated intracellular Hyp concentrations could be detected in the recombinant Synechocystis strains under all tested conditions, detectable Hyp secretion into the medium was only observed when the pH of the medium exceeded 9.5 and mostly in the late phases of the cultivation. We compared the rates obtained for autotrophic Hyp production with published sugar-based production rates in E. coli. The land-use efficiency (space-time yield) of the phototrophic process is already in the same order of magnitude as the heterotrophic process considering sugar farming as well. But, the remarkable plasticity of the cyanobacterial TCA cycle promises the potential for a 23–55 fold increase in space-time yield when using Synechocystis. Altogether, these findings contribute to a better understanding of bioproduction from the TCA cycle in photoautotrophs and broaden the spectrum of chemicals produced in metabolically engineered cyanobacteria. Phototrophic production of trans-4-hydroxy-L-prolin. pH dependency of product accumulation in Synechocystis PCC6803. Comparative analysis of land use efficiency in phototrophs & heterotrophs.
Collapse
|
9
|
Zhang Z, Xia B, Li Y, Lin Y, Xie J, Wu P, Lin L, Liao D. Comparative proteomic analysis of Prunella vulgaris L. spica ripening. J Proteomics 2020; 232:104028. [PMID: 33129985 DOI: 10.1016/j.jprot.2020.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Prunella vulgaris L., better known as 'self-heal', has been extensively used in the traditional system of medicines. To reveal the regulatory mechanism of its development, TMT-based quantitative proteome analysis was performed in the Prunella vulgaris L. spica before and during ripening (Group A and Group B, respectively). This analysis resulted in the identification of 7655 proteins, of which 1910 showed differential abundance between the two groups. Pronounced changes in the proteomic profile included the following: 1) Stress-responsive proteins involved in protecting cells and promoting fruit ripening and seed development were highly abundant during ripening. 2) The degradation of chlorophyll, inhibition of chlorophyll biosynthesis and increased abundance of transketolase occurred simultaneously in the spica of Prunella vulgaris L., resulting in the spica changing color from green to brownish red. 3) The abundance of protein species related to phenylpropanoid biosynthesis mainly increased during ripening, while flavonoid and terpenoid backbone biosynthesis mostly occurred before ripening. SIGNIFICANCE: This study establishes a link between protein profiles and mature phenotypes, which will help to improve our understanding of the molecular mechanisms involved in the maturation of Prunella vulgaris L. at the proteome level and reveal the scientific connotation for the best time to harvest Prunella vulgaris L. This work provides a scientific basis for the production of high-quality medicinal Prunella vulgaris L., as well as a typical demonstration of molecular research used for the harvest period of traditional Chinese medicine. BIOLOGICAL SIGNIFICANCE: This work provided a comprehensive overview on the functional protein profile changes of Prunella vulgaris L. spica at different growing stages, as well as the scientific rationale of Prunella vulgaris L. harvested in summer after brownish red, thus laid an intriguing stepping stone for elucidating the molecular mechanisms of quality development.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
10
|
Photosynthetic Responses of Canola to Exogenous Application or Endogenous Overproduction of 5-Aminolevulinic Acid (ALA) under Various Nitrogen Levels. PLANTS 2020; 9:plants9111419. [PMID: 33114095 PMCID: PMC7690814 DOI: 10.3390/plants9111419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Limited data are available on the effects of 5-aminolevulinic acid (ALA) on plant photosynthesis in relation to the nitrogen (N) level. In this study, we investigate photosynthetic responses to ALA in canola plants (Brassica napus L.). We used wild-type plants without ALA addition (controls), wild-type plants with exogenous ALA application, and transgenic plants that endogenously overproduced ALA. The plants were grown hydroponically in nutrient solutions with low, middle, and high concentrations of N. Our results indicate that plants in both treatment groups had higher chlorophyll contents and net photosynthetic rates and lower intracellular CO2 concentrations in the leaves, as compared to controls. Furthermore, simultaneous measurement of prompt chlorophyll fluorescence and modulated 820-nm reflections showed that the active photosystem II (PS II) reaction centers, electron transfer capacity, and photosystem I (PS I) activity were all higher in treated plants than controls at all N levels; however, the responses of some photochemical processes to ALA were significantly affected by the N level. For example, under low N conditions only, a negative ΔK peak appeared in the prompt chlorophyll fluorescence curve, indicating a protective effect of ALA on electron donation via activation of the oxygen-evolving complex. Taken together, our findings suggest that ALA contributes to the promotion of photosynthesis by regulating photosynthetic electron transport under various N levels. These findings may provide a new strategy for improving photosynthesis in crops grown in N-poor conditions or reduced N-fertilization requirements.
Collapse
|
11
|
Zhao Y, Han Q, Ding C, Huang Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, Yuan S, Yuan M. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. Int J Mol Sci 2020; 21:ijms21041390. [PMID: 32092859 PMCID: PMC7073065 DOI: 10.3390/ijms21041390] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Rice (Oryza sativa L.) frequently suffers in late spring from severe damage due to cold spells, which causes the block of chlorophyll biosynthesis during early rice seedling greening. However, the inhibitory mechanism by which this occurs is still unclear. To explore the responsive mechanism of rice seedlings to low temperatures during greening, the effects of chilling stress on chlorophyll biosynthesis and plastid development were studied in rice seedlings. Chlorophyll biosynthesis was obviously inhibited and chlorophyll accumulation declined under low temperatures during greening. The decrease in chlorophyll synthesis was due to the inhibited synthesis of δ-aminolevulinic acid (ALA) and the suppression of conversion from protochlorophyllide (Pchlide) into chlorophylls (Chls). Meanwhile, the activities of glutamate-1-semialdehyde transaminase (GSA-AT), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were downregulated under low temperatures. Further investigations showed that chloroplasts at 18 °C had loose granum lamellae, while the thylakoid and lamellar structures of grana could hardly develop at 12 °C after 48 h of greening. Additionally, photosystem II (PSII) and photosystem I (PSI) proteins obviously declined in the stressed seedlings, to the point that the PSII and PSI proteins could hardly be detected after 48 h of greening at 12 °C. Furthermore, the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) and cell death were all induced by low temperature. Chilling stress had no effect on the development of epidermis cells, but the stomata were smaller under chilling stress than those at 28 °C. Taken together, our study promotes more comprehensive understanding in that chilling could inhibit chlorophyll biosynthesis and cause oxidative damages during greening.
Collapse
Affiliation(s)
- Yuqing Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Qiaohong Han
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Yan Huang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Zhongwei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (S.Y.)
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (S.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
- Correspondence:
| |
Collapse
|
12
|
Pohland AC, Schneider D. Mg2+ homeostasis and transport in cyanobacteria - at the crossroads of bacterial and chloroplast Mg2+ import. Biol Chem 2020; 400:1289-1301. [PMID: 30913030 DOI: 10.1515/hsz-2018-0476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes appear to contain the well-characterized Mg2+ channels CorA and/or MgtE, which both facilitate transmembrane Mg2+ flux down the electrochemical gradient. Both Mg2+ channels are typical for non-photosynthetic bacteria. Furthermore, Mg2+ transporters of the MgtA/B family are also present in the cytoplasmic membrane to mediate active Mg2+ import into the bacterial cell. While the cytoplasmic membrane of cyanobacteria resembles a 'classical' bacterial membrane, essentially nothing is known about Mg2+ channels and/or transporters in thylakoid membranes of cyanobacteria or chloroplasts. As discussed here, at least one Mg2+ channelling protein must be localized within thylakoid membranes. Thus, either one of the 'typical' bacterial Mg2+ channels has a dual localization in the cytoplasmic plus the thylakoid membrane, or another, yet unidentified channel is present in cyanobacterial thylakoid membranes.
Collapse
Affiliation(s)
- Anne-Christin Pohland
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| |
Collapse
|
13
|
Rangwala T, Bafna A, Vyas N, Gupta R. Beneficial Role of Soluble Silica in Enhancing Chlorophyll Content in Onion Leaves. ACTA ACUST UNITED AC 2019. [DOI: 10.12944/carj.7.3.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Silicon which is not considered essential element, improves growth and development in onion. The present study was designed to investigate beneficial role of soluble silica in increasing chlorophyll content in onion leaves. Soluble silica under tradename AgriboosterTM was used to alleviate environmental stress. Eight treatments were given at the interval of 15 days after one month of sowing in randomised block design as follows: T1- without fertilizer and soluble silica (Control), T2, T3, T4- foliar spray of soluble silica viz, 7.5, 10 and 12.5 ml/ lit respectively,T5- only fertilizer,T6, T7, T8- fertilizer + foliar spray of soluble silica viz, 7.5, 10 and 12.5 ml/ lit respectively. Chlorophyll a, b and carotenoid content were determined. Malondialdehyde was estimated in leaves to determine level of stress. Malondialdehyde content was found to be significantly higher in control and only fertilizer treated leaves of onion indicating stress in plants which significantly decreased level of chlorophyll a as well as chlorophyll b. This negative effect of stress in chlorophyll content was counteracted by soluble silica. Soluble silica could be used to increase chlorophyll content which will improve photosynthesis.
Collapse
Affiliation(s)
| | - Angurbala Bafna
- Department of Biochemistry, Govt. Holkar Science College, Indore-452017, M.P., India
| | - Nagesh Vyas
- Noble Alchem Pvt. Ltd.,Sanwer Road, Indore, M.P., India
| | - Rohan Gupta
- Noble Alchem Pvt. Ltd.,Sanwer Road, Indore, M.P., India
| |
Collapse
|
14
|
Freitas S, Silva NG, Sousa ML, Ribeiro T, Rosa F, Leão PN, Vasconcelos V, Reis MA, Urbatzka R. Chlorophyll Derivatives from Marine Cyanobacteria with Lipid-Reducing Activities. Mar Drugs 2019; 17:md17040229. [PMID: 30999602 PMCID: PMC6520785 DOI: 10.3390/md17040229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022] Open
Abstract
Marine organisms, particularly cyanobacteria, are important resources for the production of bioactive secondary metabolites for the treatment of human diseases. In this study, a bioassay-guided approach was used to discover metabolites with lipid-reducing activity. Two chlorophyll derivatives were successfully isolated, the previously described 132-hydroxy-pheophytin a (1) and the new compound 132-hydroxy-pheofarnesin a (2). The structure elucidation of the new compound 2 was established based on one- and two-dimensional (1D and 2D) NMR spectroscopy and mass spectrometry. Compounds 1 and 2 showed significant neutral lipid-reducing activity in the zebrafish Nile red fat metabolism assay after 48 h of exposure with a half maximal effective concentration (EC50) of 8.9 ± 0.4 µM for 1 and 15.5 ± 1.3 µM for 2. Both compounds additionally reduced neutral lipid accumulation in 3T3-L1 multicellular spheroids of murine preadipocytes. Molecular profiling of mRNA expression of some target genes was evaluated for the higher potent compound 1, which indicated altered peroxisome proliferator activated receptor gamma (PPARγ) mRNA expression. Lipolysis was not affected. Different food materials (Spirulina, Chlorella, spinach, and cabbage) were evaluated for the presence of 1, and the cyanobacterium Spirulina, with GRAS (generally regarded as safe) status for human consumption, contained high amounts of 1. In summary, known and novel chlorophyll derivatives were discovered from marine cyanobacteria with relevant lipid-reducing activities, which in the future may be developed into nutraceuticals.
Collapse
Affiliation(s)
- Sara Freitas
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- FCUP, Faculty of Science, Department of Biology, University of Porto, Rua do Campo, Alegre, 4169-007 Porto, Portugal.
| | - Natália Gonçalves Silva
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Maria Lígia Sousa
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Tiago Ribeiro
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Filipa Rosa
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Pedro N Leão
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- FCUP, Faculty of Science, Department of Biology, University of Porto, Rua do Campo, Alegre, 4169-007 Porto, Portugal.
| | - Mariana Alves Reis
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Ralph Urbatzka
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- FCUP, Faculty of Science, Department of Biology, University of Porto, Rua do Campo, Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
15
|
Wang C, Han XS, Li FF, Huang S, Qin YW, Zhao XX, Jing Q. Forkhead containing transcription factor Albino controls tetrapyrrole-based body pigmentation in planarian. Cell Discov 2016; 2:16029. [PMID: 27551436 PMCID: PMC4969599 DOI: 10.1038/celldisc.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023] Open
Abstract
Pigmentation processes occur from invertebrates to mammals. Owing to the complexity of the pigmentary system, in vivo animal models for pigmentation study are limited. Planarians are capable of regenerating any missing part including the dark-brown pigments, providing a promising model for pigmentation study. However, the molecular mechanism of planarian body pigmentation is poorly understood. We found in an RNA interference screen that a forkhead containing transcription factor, Albino, was required for pigmentation without affecting survival or other regeneration processes. In addition, the body color recovered after termination of Albino double stranded RNA feeding owing to the robust stem cell system. Further expression analysis revealed a spatial and temporal correlation between Albino and pigmentation process. Gene expression arrays revealed that the expression of three tetrapyrrole biosynthesis enzymes, ALAD, ALAS and PBGD, was impaired upon Albino RNA interference. RNA interference of PBGD led to a similar albinism phenotype caused by Albino RNA interference. Moreover, PBGD was specifically expressed in pigment cells and can serve as a pigment cell molecular marker. Our results revealed that Albino controls planarian body color pigmentation dominantly via regulating tetrapyrrole biogenesis. These results identified Albino as the key regulator of the tetrapyrrole-based planarian body pigmentation, suggesting a role of Albino during stem cell-pigment cell fate decision and provided new insights into porphyria pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xiao-Shuai Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Fang-Fang Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
16
|
González A, Sevilla E, Bes MT, Peleato ML, Fillat MF. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Adv Microb Physiol 2016; 68:169-217. [PMID: 27134024 DOI: 10.1016/bs.ampbs.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms.
Collapse
Affiliation(s)
| | - E Sevilla
- University of Zaragoza, Zaragoza, Spain
| | - M T Bes
- University of Zaragoza, Zaragoza, Spain
| | | | - M F Fillat
- University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
17
|
Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins — Protectors of chlorophyll–protein synthesis and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:288-95. [DOI: 10.1016/j.bbabio.2015.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/24/2022]
|
18
|
Phytol in a pharma-medico-stance. Chem Biol Interact 2015; 240:60-73. [DOI: 10.1016/j.cbi.2015.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 01/02/2023]
|
19
|
Xiong W, Brune D, Vermaas WFJ. The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle inSynechocystissp. PCC 6803. Mol Microbiol 2014; 93:786-96. [DOI: 10.1111/mmi.12699] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Xiong
- School of Life Sciences and Center for Bioenergy and Photosynthesis; Arizona State University; Tempe Arizona 85287-4501 USA
| | - Daniel Brune
- School of Life Sciences and Center for Bioenergy and Photosynthesis; Arizona State University; Tempe Arizona 85287-4501 USA
| | - Wim F. J. Vermaas
- School of Life Sciences and Center for Bioenergy and Photosynthesis; Arizona State University; Tempe Arizona 85287-4501 USA
| |
Collapse
|
20
|
Peresson C, Petrussa E, Filippi A, Tramer F, Passamonti S, Rajcevic U, Montanič S, Terdoslavich M, Čurin Šerbec V, Vianello A, Braidot E. Involvement of mammalian bilitranslocase-like protein(s) in chlorophyll catabolism of Pisum sativum L. tissues. J Bioenerg Biomembr 2014; 46:109-17. [PMID: 24510308 DOI: 10.1007/s10863-014-9539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
Putative pea bilin and cyclic tetrapyrrole transporter proteins were identified by means of an antibody raised against a bilirubin-interacting aminoacidic sequence of mammalian bilitranslocase (TC No. 2.A.65.1.1). The immunochemical approach showed the presence of several proteins mostly in leaf microsomal, chloroplast and tonoplast vesicles. In these membrane fractions, electrogenic bromosulfalein transport activity was also monitored, being specifically inhibited by anti-bilitranslocase sequence antibody. Moreover, the inhibition of transport activity in pea leaf chloroplast vesicles, by both the synthetic cyclic tetrapyrrole chlorophyllin and the heme catabolite biliverdin, supports the involvement of some of these proteins in the transport of linear/cyclic tetrapyrroles during chlorophyll metabolism. Immunochemical localization in chloroplast sub-compartments revealed that these putative bilitranslocase-like transporters are restricted to the thylakoids only, suggesting their preferential implication in the uptake of cyclic tetrapyrrolic intermediates from the stroma during chlorophyll biosynthesis. Finally, the presence of a conserved bilin-binding sequence in different proteins (enzymes and transporters) from divergent species is discussed in an evolutionary context.
Collapse
Affiliation(s)
- Carlo Peresson
- Department of Agricultural and Environmental Sciences, Section of Plant Biology, University of Udine, Via delle Scienze 91, 33100, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Richter AS, Grimm B. Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:371. [PMID: 24065975 PMCID: PMC3778395 DOI: 10.3389/fpls.2013.00371] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/30/2013] [Indexed: 05/20/2023]
Abstract
The last decades of research brought substantial insights into tetrapyrrole biosynthetic pathway in photosynthetic organisms. Almost all genes have been identified and roles of seemingly all essential proteins, leading to the synthesis of heme, siroheme, phytochromobilin, and chlorophyll (Chl), have been characterized. Detailed studies revealed the existence of a complex network of transcriptional and post-translational control mechanisms for maintaining a well-adjusted tetrapyrrole biosynthesis during plant development and adequate responses to environmental changes. Among others one of the known post-translational modifications is regulation of enzyme activities by redox modulators. Thioredoxins and NADPH-dependent thioredoxin reductase C (NTRC) adjust the activity of tetrapyrrole synthesis to the redox status of plastids. Excessive excitation energy of Chls in both photosystems and accumulation of light-absorbing unbound tetrapyrrole intermediates generate reactive oxygen species, which interfere with the plastid redox poise. Recent reports highlight ferredoxin-thioredoxin and NTRC-dependent control of key steps in tetrapyrrole biosynthesis in plants. In this review we introduce the regulatory impact of these reductants on the stability and activity of enzymes involved in 5-aminolevulinic acid synthesis as well as in the Mg-branch of the tetrapyrrole biosynthetic pathway and we propose molecular mechanisms behind this redox control.
Collapse
Affiliation(s)
| | - Bernhard Grimm
- *Correspondence: Bernhard Grimm, Department of Plant Physiology, Institute of Biology, Mathematisch-Naturwissenschaftliche-Fakultät I, Humboldt-University Berlin, Philippstrasse 13, 10115 Berlin, Germany e-mail:
| |
Collapse
|
23
|
Brear EM, Day DA, Smith PMC. Iron: an essential micronutrient for the legume-rhizobium symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:359. [PMID: 24062758 PMCID: PMC3772312 DOI: 10.3389/fpls.2013.00359] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 05/19/2023]
Abstract
Legumes, which develop a symbiosis with nitrogen-fixing bacteria, have an increased demand for iron. Iron is required for the synthesis of iron-containing proteins in the host, including the highly abundant leghemoglobin, and in bacteroids for nitrogenase and cytochromes of the electron transport chain. Deficiencies in iron can affect initiation and development of the nodule. Within root cells, iron is chelated with organic acids such as citrate and nicotianamine and distributed to other parts of the plant. Transport to the nitrogen-fixing bacteroids in infected cells of nodules is more complicated. Formation of the symbiosis results in bacteroids internalized within root cortical cells of the legume where they are surrounded by a plant-derived membrane termed the symbiosome membrane (SM). This membrane forms an interface that regulates nutrient supply to the bacteroid. Consequently, iron must cross this membrane before being supplied to the bacteroid. Iron is transported across the SM as both ferric and ferrous iron. However, uptake of Fe(II) by both the symbiosome and bacteroid is faster than Fe(III) uptake. Members of more than one protein family may be responsible for Fe(II) transport across the SM. The only Fe(II) transporter in nodules characterized to date is GmDMT1 (Glycine max divalent metal transporter 1), which is located on the SM in soybean. Like the root plasma membrane, the SM has ferric iron reductase activity. The protein responsible has not been identified but is predicted to reduce ferric iron accumulated in the symbiosome space prior to uptake by the bacteroid. With the recent publication of a number of legume genomes including Medicago truncatula and G. max, a large number of additional candidate transport proteins have been identified. Members of the NRAMP (natural resistance-associated macrophage protein), YSL (yellow stripe-like), VIT (vacuolar iron transporter), and ZIP (Zrt-, Irt-like protein) transport families show enhanced expression in nodules and are expected to play a role in the transport of iron and other metals across symbiotic membranes.
Collapse
Affiliation(s)
- Ella M. Brear
- School of Biological Sciences, The University of SydneySydney, NSW, Australia
| | - David A. Day
- School of Biological Sciences, Flinders UniversityBedford Park, Adelaide, SA, Australia
| | | |
Collapse
|
24
|
Tai HH, Goyer C, Bud Platt HW, De Koeyer D, Murphy A, Uribe P, Halterman D. Decreased defense gene expression in tolerance versus resistance to Verticillium dahliae in potato. Funct Integr Genomics 2013. [PMID: 23842988 DOI: 10.1007/s10142‐013‐0329‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Verticillium dahliae Kleb., a soil-borne fungus that colonizes vascular tissues, induces wilting, chlorosis and early senescence in potato. Difference in senescence timing found in two diploid potato clones, 07506-01 and 12120-03, was studied and genetic variation in response to V. dahliae infection was identified as a causal factor. The clone, 07506-01, was infected with V. dahliae but did not develop symptoms, indicating tolerance to the pathogen. The other diploid clone, 12120-03 had low levels of pathogen with infection and moderate symptoms indicating partial resistance. 07506-01 was found to carry two susceptible alleles of the Ve2 gene and 12120-03 carried one Ve2 resistant and one susceptible allele. Infected leaves of the two clones were compared using gene expression profiling with the Potato Oligonucleotide Chip Initiative (POCI) microrarray. The results provide further evidence for differences in response of the two clones to infection with V. dahliae. Chlorophyll biosynthesis was higher in the tolerant 07506-01 compared to partially resistant 12120-03. On the other hand, expression of fungal defense genes, Ve resistance genes and defense phytohormone biosynthetic enzyme genes was decreased in 07506-01 compared to 12120-03 suggesting defense responses were suppressed in tolerance compared to resistance. Transcription factor gene expression differences pointed to the WRKY family as potential regulators of V. dahliae responses in potato.
Collapse
Affiliation(s)
- Helen H Tai
- Potato Research Centre, Agriculture and Agri-Food Canada, PO Box 20280, Fredericton, NB E3B 4Z7, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Decreased defense gene expression in tolerance versus resistance to Verticillium dahliae in potato. Funct Integr Genomics 2013; 13:367-78. [PMID: 23842988 DOI: 10.1007/s10142-013-0329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
Verticillium dahliae Kleb., a soil-borne fungus that colonizes vascular tissues, induces wilting, chlorosis and early senescence in potato. Difference in senescence timing found in two diploid potato clones, 07506-01 and 12120-03, was studied and genetic variation in response to V. dahliae infection was identified as a causal factor. The clone, 07506-01, was infected with V. dahliae but did not develop symptoms, indicating tolerance to the pathogen. The other diploid clone, 12120-03 had low levels of pathogen with infection and moderate symptoms indicating partial resistance. 07506-01 was found to carry two susceptible alleles of the Ve2 gene and 12120-03 carried one Ve2 resistant and one susceptible allele. Infected leaves of the two clones were compared using gene expression profiling with the Potato Oligonucleotide Chip Initiative (POCI) microrarray. The results provide further evidence for differences in response of the two clones to infection with V. dahliae. Chlorophyll biosynthesis was higher in the tolerant 07506-01 compared to partially resistant 12120-03. On the other hand, expression of fungal defense genes, Ve resistance genes and defense phytohormone biosynthetic enzyme genes was decreased in 07506-01 compared to 12120-03 suggesting defense responses were suppressed in tolerance compared to resistance. Transcription factor gene expression differences pointed to the WRKY family as potential regulators of V. dahliae responses in potato.
Collapse
|
26
|
Amino Acid biosynthesis pathways in diatoms. Metabolites 2013; 3:294-311. [PMID: 24957993 PMCID: PMC3901274 DOI: 10.3390/metabo3020294] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/16/2022] Open
Abstract
Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity.
Collapse
|
27
|
Tian X, Ling Y, Fang L, Du P, Sang X, Zhao F, Li Y, Xie R, He G. Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0069-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Storm P, Tibiletti T, Hall M, Funk C. Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2013; 8:e55569. [PMID: 23390541 PMCID: PMC3563542 DOI: 10.1371/journal.pone.0055569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.
Collapse
Affiliation(s)
- Patrik Storm
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Tania Tibiletti
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Michael Hall
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Christiane Funk
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
29
|
Rueschhoff EE, Gillikin JW, Sederoff HW, Daub ME. The SOS4 pyridoxal kinase is required for maintenance of vitamin B6-mediated processes in chloroplasts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:281-91. [PMID: 23321022 DOI: 10.1016/j.plaphy.2012.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/14/2012] [Indexed: 05/01/2023]
Abstract
Vitamin B(6) (pyridoxal 5'-phosphate and its vitamers) is an important cofactor in numerous enzymatic reactions. In spite of its importance, the consequences of altering vitamin B(6) content on plant growth and development are not well understood. This study compares two mutants for vitamin B(6)-metabolizing enzymes in Arabidopsis thaliana: a pdx1.3 mutant in the de novo synthesis pathway and a salvage pathway sos4 mutant that accumulates more vitamin B(6). We show that despite a difference in total B(6) content in leaf tissue, both mutants share similar phenotypes, including chlorosis, decreased size, altered chloroplast ultrastructure, and root sensitivity to sucrose. Assay of B(6) vitamer content from isolated chloroplasts showed that, despite differing B(6) vitamer content in whole leaf tissue, both mutants share a common deficiency in total and phosphorylated vitamers in chloroplasts. One of the splice variants of the SOS4 proteins was shown to be located in the chloroplast. Our data indicate that some of the phenotypic consequences shared between the pdx1.3 and sos4 mutants are due to B(6) deficiency in chloroplasts, and show that SOS4 is required for maintenance of phosphorylated B(6) vitamer concentrations in chloroplasts. Further, our data are consistent with a diffusion model for transport of vitamin B(6) into chloroplasts.
Collapse
Affiliation(s)
- Elizabeth E Rueschhoff
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7612, USA.
| | | | | | | |
Collapse
|
30
|
Zhang L, Selão TT, Pisareva T, Qian J, Sze SK, Carlberg I, Norling B. Deletion of Synechocystis sp. PCC 6803 leader peptidase LepB1 affects photosynthetic complexes and respiration. Mol Cell Proteomics 2013; 12:1192-203. [PMID: 23358502 DOI: 10.1074/mcp.m112.022145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 possesses two leader peptidases, LepB1 (Sll0716) and LepB2 (Slr1377), responsible for the processing of signal peptide-containing proteins. Deletion of the gene for LepB1 results in an inability to grow photoautotrophically and an extreme light sensitivity. Here we show, using a combination of Blue Native/SDS-PAGE, Western blotting and iTRAQ analysis, that lack of LepB1 strongly affects the cell's ability to accumulate wild-type levels of both photosystem I (PSI) and cytochrome (Cyt) b6f complexes. The impaired assembly of PSI and Cyt b6f is considered to be caused by the no or slow processing of the integral subunits PsaF and Cyt f respectively. In particular, PsaF, one of the PSI subunits, was found incorporated into PSI in its unprocessed form, which could influence the assembly and/or stability of PSI. In contrast to these results, we found the amount of assembled photosystem II (PSII) unchanged, despite a slower processing of PsbO. Thus, imbalance in the ratios of PSI and Cyt b6f to photosystem II leads to an imbalanced photosynthetic electron flow up- and down-stream of the plastoquinone pool, resulting in the observed light sensitivity of the mutant. We conclude that LepB1 is the natural leader peptidase for PsaF, PsbO, and Cyt f. The maturation of PsbO and Cyt f can be partially performed by LepB2, whereas PsaF processing is completely dependent on LepB1. iTRAQ analysis also revealed a number of indirect effects accompanying the mutation, primarily a strong induction of the CydAB oxidase as well as a significant decrease in phycobiliproteins and chlorophyll/heme biosynthesis enzymes.
Collapse
Affiliation(s)
- Lifang Zhang
- Nanyang Technological University, School of Biological Sciences, 637551 Singapore
| | | | | | | | | | | | | |
Collapse
|
31
|
González A, Bes MT, Valladares A, Peleato ML, Fillat MF. FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes inAnabaenasp. PCC 7120. Environ Microbiol 2012; 14:3175-87. [DOI: 10.1111/j.1462-2920.2012.02897.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/06/2012] [Accepted: 09/09/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; CSIC-Universidad de Sevilla; E-41092; Seville; Spain
| | | | | |
Collapse
|
32
|
Czarnecki O, Grimm B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1675-87. [PMID: 22231500 DOI: 10.1093/jxb/err437] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tetrapyrrole biosynthetic pathway provides the vital cofactors and pigments for photoautotrophic growth (chlorophyll), several essential redox reactions in electron transport chains (haem), N- and S-assimilation (sirohaem), and photomorphogenic processes (phytochromobilin). While the biochemistry of the pathway is well understood and almost all genes encoding enzymes of tetrapyrrole biosynthesis have been identified in plants, the post-translational control and organization of the pathway remains to be clarified. Post-translational mechanisms controlling metabolic activities are of particular interest since tetrapyrrole biosynthesis needs adaptation to environmental challenges. This review surveys post-translational mechanisms that have been reported to modulate metabolic activities and organization of the tetrapyrrole biosynthesis pathway.
Collapse
Affiliation(s)
- Olaf Czarnecki
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|
33
|
Hedtke B, Alawady A, Albacete A, Kobayashi K, Melzer M, Roitsch T, Masuda T, Grimm B. Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue. PLANT MOLECULAR BIOLOGY 2012; 78:77-93. [PMID: 22081402 DOI: 10.1007/s11103-011-9846-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/29/2011] [Indexed: 05/03/2023]
Abstract
Tetrapyrrole biosynthesis is controlled by multiple environmental and endogenous cues. Etiolated T-DNA insertion mutants were screened for red fluorescence as result of elevated levels of protochlorophyllide and four red fluorescent in the dark (rfd) mutants were isolated and identified. rfd3 and rfd4 belong to the group of photomorphogenic cop/det/fus mutants. rfd1 and rfd2 had genetic lesions in RIBA1 and FLU encoding the dual-functional protein GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase and a negative regulator of tetrapyrrole biosynthesis, respectively. RIBA1 catalyses the initial reaction of the metabolic pathway of riboflavin biosynthesis and rfd1 contains reduced contents of riboflavin and the flavo-coenzymes FMN and FAD. Transcriptome analysis of rfd1 revealed up-regulated genes encoding nucleus-localized factors involved in cytokinin signalling and numerous down-regulated LEA genes as well as an auxin-inducible GH3 gene. Alteration of cytokinin metabolism of rfd1was confirmed by elevated contents of active forms of cytokinin and stimulated expression of an ARR6::GUS reporter construct. An etiolated quadruple ckx (cytokinin oxidase) mutant with impaired cytokinin degradation as well as different knockout mutants for the negative AUX/IAA regulators shy2-101 (iaa3), axr2-1 (iaa7) and slr-1 (iaa14) showed also excessive protochlorophyllide accumulation. The transcript levels of CHLH and HEMA1 encoding Mg chelatase and glutamyl-tRNA reductase were increased in rfd1 and the AUX/IAA loss-of-function mutants. It is proposed that reduced riboflavin synthesis impairs the activity of the flavin-containing cytokinin oxidase, increases cytokinin contents and de-represses synthesis of 5-aminolevulinic acid of tetrapyrrole metabolism in darkness. As result of the mutant analyses, the antagonistic cytokinin and auxin signalling is required for a balanced tetrapyrrole biosynthesis in the dark.
Collapse
Affiliation(s)
- Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Muramatsu M, Hihara Y. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. JOURNAL OF PLANT RESEARCH 2012; 125:11-39. [PMID: 22006212 DOI: 10.1007/s10265-011-0454-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
35
|
Yamamoto H, Kurumiya S, Ohashi R, Fujita Y. Functional evaluation of a nitrogenase-like protochlorophyllide reductase encoded by the chloroplast DNA of Physcomitrella patens in the cyanobacterium Leptolyngbya boryana. PLANT & CELL PHYSIOLOGY 2011; 52:1983-1993. [PMID: 21949030 DOI: 10.1093/pcp/pcr132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of the two components, L-protein (a ChlL dimer) and NB-protein (a ChlN-ChlB heterotetramer), to catalyze Pchlide reduction in Chl biosynthesis. While nitrogenase is distributed only among certain prokaryotes, the probable structural genes for DPOR are encoded by chloroplast DNA in lower plants. Here we show functional evaluation of DPOR encoded by chloroplast DNA in a moss Physcomitrella patens by the complementation analysis of the cyanobacterium Leptolyngbya boryana and the heterologous reconstitution of the moss L-protein and the cyanobacterial NB-protein. Two shuttle vectors to overexpress chlL and chlN-chlB from P. patens were introduced into the cyanobacterial chlL- and chlB-lacking mutants, respectively. Both transformants restored the ability to perform Chl biosynthesis in the dark, indicating that the chloroplast-encoded DPOR components form an active complex with the cyanobacterial components. The L-protein of P. patens was purified from the cyanobacterial transformant, and DPOR activity was reconstituted in a heterologous combination with the cyanobacterial NB-protein. The specific activity of the L-protein from P. patens was determined to be 118 nmol min(-1) mg (-1), which is even higher than that of the cyanobacterial L-protein (76 nmol min(-1) mg (-1)). Upon exposure to air, the activity of the L-protein from P. patens decayed with a half-life of 30 s, which was eight times faster than that of the cyanobacterial L-protein (240 s). These results suggested that the chloroplast-encoded L-protein functions as efficiently as the cyanobacterial L-protein but is more oxygen labile than the cyanobacterial L-protein.
Collapse
Affiliation(s)
- Haruki Yamamoto
- School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
36
|
Huang S, Zeng H, Zhang J, Wei S, Huang L. Characterization of enzymes involved in the interconversions of different forms of vitamin B(6) in tobacco leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1299-305. [PMID: 22000053 DOI: 10.1016/j.plaphy.2011.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
There are six different vitamin B(6) (VB(6)) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5'-phosphate (PLP), pyridoxamine 5'-phosphate (PMP) and pyridoxine 5'-phosphate (PNP). PLP is a coenzyme required by more than 100 cellular enzymes. In spite of the importance of this vitamin, the understanding of VB(6) metabolic conversion in plants is limited. In this study, we developed a sensitive and reliable method to assay VB(6)-metabolizing enzyme activities by monitoring their products visually using high-performance liquid chromatography. With this method, the reactions catalyzed by PL/PM/PN kinase, PMP/PNP oxidase, PM-pyruvate aminotransferase, PL reductase and PLP phosphatase were all nicely detected using crude protein extracts of tobacco leaves. Under optimal in vitro conditions, specific activities of those enzymes were 0.15 ± 0.03, 0.10 ± 0.03, 0.08 ± 0.02, 0.64 ± 0.13 and 23.08 ± 1.98 nmol product/min/mg protein, respectively. This is the first report on the conversion between PM and PL catalyzed by PM-pyruvate aminotransferase in plants. Furthermore, the PL reductase activity was found to be heat inducible. Our study sheds light on the VB(6) metabolism taking place in plants.
Collapse
Affiliation(s)
- ShuoHao Huang
- Key Laboratory of Tea Biochemistry & Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Balsemão-Pires E, Jaillais Y, Olson BJSC, Andrade LR, Umen JG, Chory J, Sachetto-Martins G. The Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism. BMC PLANT BIOLOGY 2011; 11:108. [PMID: 21689410 PMCID: PMC3141639 DOI: 10.1186/1471-2229-11-108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/20/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND The translocator protein 18 kDa (TSPO), previously known as the peripheral-type benzodiazepine receptor (PBR), is important for many cellular functions in mammals and bacteria, such as steroid biosynthesis, cellular respiration, cell proliferation, apoptosis, immunomodulation, transport of porphyrins and anions. Arabidopsis thaliana contains a single TSPO/PBR-related gene with a 40 amino acid N-terminal extension compared to its homologs in bacteria or mammals suggesting it might be chloroplast or mitochondrial localized. RESULTS To test if the TSPO N-terminal extension targets it to organelles, we fused three potential translational start sites in the TSPO cDNA to the N-terminus of GFP (AtTSPO:eGFP). The location of the AtTSPO:eGFP fusion protein was found to depend on the translational start position and the conditions under which plants were grown. Full-length AtTSPO:eGFP fusion protein was found in the endoplasmic reticulum and in vesicles of unknown identity when plants were grown in standard conditions. However, full length AtTSPO:eGFP localized to chloroplasts when grown in the presence of 150 mM NaCl, conditions of salt stress. In contrast, when AtTSPO:eGFP was truncated to the second or third start codon at amino acid position 21 or 42, the fusion protein co-localized with a mitochondrial marker in standard conditions. Using promoter GUS fusions, qRT-PCR, fluorescent protein tagging, and chloroplast fractionation approaches, we demonstrate that AtTSPO levels are regulated at the transcriptional, post-transcriptional and post-translational levels in response to abiotic stress conditions. Salt-responsive genes are increased in a tspo-1 knock-down mutant compared to wild type under conditions of salt stress, while they are decreased when AtTSPO is overexpressed. Mutations in tetrapyrrole biosynthesis genes and the application of chlorophyll or carotenoid biosynthesis inhibitors also affect AtTSPO expression. CONCLUSION Our data suggest that AtTSPO plays a role in the response of Arabidopsis to high salt stress. Salt stress leads to re-localization of the AtTSPO from the ER to chloroplasts through its N-terminal extension. In addition, our results show that AtTSPO is regulated at the transcriptional level in tetrapyrrole biosynthetic mutants. Thus, we propose that AtTSPO may play a role in transporting tetrapyrrole intermediates during salt stress and other conditions in which tetrapyrrole metabolism is compromised.
Collapse
Affiliation(s)
- Emilia Balsemão-Pires
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yvon Jaillais
- Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute 4000 Jones Bridge RoadChevy Chase, MD 20815-6789, USA
| | - Bradley JSC Olson
- Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Leonardo R Andrade
- Laboratório de Biomineralização, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brasil
| | - James G Umen
- Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute 4000 Jones Bridge RoadChevy Chase, MD 20815-6789, USA
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:919-26. [PMID: 21376011 DOI: 10.1016/j.bbabio.2011.02.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022]
Abstract
Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
40
|
Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 2010; 107:16649-54. [PMID: 20823222 DOI: 10.1073/pnas.1000771107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protoporphyrinogen oxidase (Protox) catalyses the oxidation of protoporphyrinogen IX to protoporphyrin IX during the synthesis of tetrapyrrole molecules. Protox is encoded by the hemY gene in eukaryotes and by the hemG gene in many γ-proteobacteria, including Escherichia coli. It has been suggested that other bacteria possess a yet unidentified type of Protox. To identify a unique bacterial gene encoding Protox, we first introduced the Arabidopsis hemY gene into the genome of the cyanobacterium, Synechocystis sp. PCC6803. We subsequently mutagenized the cells by transposon tagging and screened the tagged lines for mutants that were sensitive to acifluorfen, which is a specific inhibitor of the hemY-type Protox. Several cell lines containing the tagged slr1790 locus exhibited acifluorfen sensitivity. The slr1790 gene encodes a putative membrane-spanning protein that is distantly related to the M subunit of NADH dehydrogenase complex I. We attempted to disrupt this gene in the wild-type background of Synechocystis, but we were only able to obtain heteroplasmic disruptants. These cells accumulated a substantial amount of protoporphyrin IX, suggesting that the slr1790 gene is essential for growth and Protox activity of cells. We found that most cyanobacteria and many other bacteria possess slr1790 homologs. We overexpressed an slr1790 homolog of Rhodobacter sphaeroides in Escherichia coli and found that this recombinant protein possesses Protox activity in vitro. These results collectively demonstrate that slr1790 encodes a unique Protox enzyme and we propose naming the slr1790 gene "hemJ."
Collapse
|
41
|
Vladkova R, Koynova R, Teuchner K, Tenchov B. Bilayer structural destabilization by low amounts of chlorophyll a. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1586-92. [DOI: 10.1016/j.bbamem.2010.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 11/16/2022]
|
42
|
Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B, Czarnecki O. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. PLANT & CELL PHYSIOLOGY 2010; 51:670-81. [PMID: 20375109 DOI: 10.1093/pcp/pcq047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In photosynthetic organisms chlorophyll and heme biosynthesis is tightly regulated at various levels in response to environmental adaptation and plant development. The formation of 5-aminolevulinic acid (ALA) is the key regulatory step and provides adequate amounts of the common precursor molecule for the Mg and Fe branches of tetrapyrrole biosynthesis. Pathway control prevents accumulation of metabolic intermediates and avoids photo-oxidative damage. In angiosperms reduction of protochlorophyllide (Pchlide) to chlorophyllide is catalyzed by the light-dependent NADPH:Pchlide oxidoreductase (POR). Although a correlation between down-regulated ALA synthesis and accumulation of Pchlide in the dark was proposed a long time ago, the time-resolved mutual dependency has never been analyzed. Taking advantage of the high metabolic activity of young barley (Hordeum vulgare L.) seedlings, in planta ALA synthesis could be determined with high time-resolution. ALA formation declined immediately after transition from light to dark and correlated with an immediate accumulation of POR-bound Pchlide within the first 60 min in darkness. The flu homologous barley mutant tigrina d(12) uncouples ALA synthesis from dark-suppression and continued to form ALA in darkness without a significant change in synthesis rate in this time interval. Similarly, inhibition of protoporphyrinogen IX oxidase by acifluorfen resulted in a delayed accumulation of Pchlide during the entire dark period and a weak repression of ALA synthesis in darkness. Moreover, it is demonstrated that dark repression of ALA formation relies rather on rapid post-translational regulation in response to accumulating Pchlide than on changes in nuclear gene expression.
Collapse
Affiliation(s)
- Andreas Richter
- Humboldt University Berlin, Institute of Biology, Department of Plant Physiology, Unter den Linden 6, D-10099 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Qin X, Sun L, Wen X, Yang X, Tan Y, Jin H, Cao Q, Zhou W, Xi Z, Shen Y. Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis. J Struct Biol 2010; 170:76-82. [DOI: 10.1016/j.jsb.2009.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
44
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
45
|
Yamamoto H, Kurumiya S, Ohashi R, Fujita Y. Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. PLANT & CELL PHYSIOLOGY 2009; 50:1663-1673. [PMID: 19643808 DOI: 10.1093/pcp/pcp111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dark-operative protochlorophyllide (Pchlide) oxido-reductase (DPOR) is a nitrogenase-like enzyme that catalyzes Pchlide reduction, the penultimate step of chlorophyll a biosynthesis. DPOR is distributed widely among oxygenic phototrophs such as cyanobacteria, green algae and gymnosperms. To determine how DPOR operates in oxygenic photosynthetic cells, we constructed two shuttle vectors for overexpression of Strep-tagged L-protein (ChlL) and Strep-tagged NB-protein (ChlN-ChlB) in Leptolyngbya boryana (formerly Plectonema boryanum) and introduced them into mutants lacking chlL and chlB. Both transformants restored the ability to produce chlorophyll in the dark. The DPOR activity was reconstituted by L-protein and NB-protein purified from the transformants under anaerobic conditions. L-protein activity disappeared within 5 min of exposure to air while NB-protein activity persisted for >30 min in an aerobic condition, indicating that the L-protein of DPOR components is the primary target of oxygen in cyanobacterial cells. These results suggested that the DPOR from an oxygenic photosynthetic organism did not acquire oxygen tolerance during evolution; but that the cyanobacterial cell developed a mechanism to protect DPOR from oxygen.
Collapse
Affiliation(s)
- Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
46
|
Shui J, Saunders E, Needleman R, Nappi M, Cooper J, Hall L, Kehoe D, Stowe-Evans E. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. PLANT & CELL PHYSIOLOGY 2009; 50:1507-21. [PMID: 19561333 DOI: 10.1093/pcp/pcp095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cyanobacterium Fremyella diplosiphon can alternate its light-harvesting pigments, a process called comple-mentary chromatic adaptation (CCA), allowing it to photosynthesize in green light (GL) and in fluctuating light conditions. Nevertheless, F. diplosiphon requires chlorophylls for photosynthesis under all light conditions. Two alternative enzymes catalyze the penultimate step of chlorophyll synthesis, light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlo-rophyllide oxidoreductase (DPOR). DPOR enzymatic activity is light independent, while LPOR requires light. Therefore, we hypothesize that F. diplosiphon up-regulates DPOR gene expression in GL, so that DPOR is more abundant when LPOR is less functional. We cloned the genes encoding the three subunits of DPOR, chlL, chlN and chlB, and the LPOR gene, por, to determine the abundance of the transcripts under red light (RL), GL and dark conditions. We found that F. diplosiphon chlL and chlN genes are transcribed as parts of a single operon, a gene structure that is conserved within cyanobacteria. Tran-scripts levels of all DPOR genes are up-regulated approximately 2-fold in GL relative to levels in RL, whereas LPOR transcript levels are reduced in GL. Moreover, mutations in CCA regulators, RcaE and CpeR, modify DPOR and LPOR transcript levels under specific light conditions. Finally, both DPOR and LPOR transcripts are down-regulated 2- to 5-fold in the dark. These results provide the first evidence that light quality and CCA affect the genetic regulation of chlorophyll biosynthesis in freshwater cyanobacteria, ecologically important photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Shui
- Biology Department, 701 Moore Avenue, Bucknell University, Lewisburg, PA 17837, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Muramatsu M, Sonoike K, Hihara Y. Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (Reading) 2009; 155:989-996. [DOI: 10.1099/mic.0.024018-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Downregulation of photosystem I (PSI) content is an essential process for cyanobacteria to grow under high-light (HL) conditions. In a pmgA (sll1968) mutant of Synechocystis sp. PCC 6803, the levels of PSI content, chlorophyll and transcripts of the psaAB genes encoding reaction-centre subunits of PSI could not be maintained low during HL incubation, although the causal relationship among these phenotypes remains unknown. In this study, we modulated the activity of psaAB transcription or that of chlorophyll synthesis to estimate their contribution to the regulation of PSI content under HL conditions. Analysis of the psaAB-OX strain, in which the psaAB genes were overexpressed under HL conditions, revealed that the amount of psaAB transcript could not affect PSI content by itself. Suppression of chlorophyll synthesis by an inhibitor, laevulinic acid, in the pmgA mutant revealed that chlorophyll availability could be a determinant of PSI content under HL. It was also suggested that chlorophyll content under HL conditions is mainly regulated at the level of 5-aminolaevulinic acid synthesis. We conclude that, upon the shift to HL conditions, activities of psaAB transcription and of 5-aminolaevulinic acid synthesis are strictly downregulated by regulatory mechanism(s) independent of PmgA during the first 6 h, and then a PmgA-mediated regulatory mechanism becomes active after 6 h onward of HL incubation to maintain these activities at a low level.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Box 101, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kintake Sonoike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Box 101, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
48
|
Kim J, Park Y, Choi K. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:87-94. [PMID: 19054584 DOI: 10.1016/j.aquatox.2008.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 05/27/2023]
Abstract
Sulfonamide antibiotics frequently occur in aquatic environments. In this study, phototoxicity of sulfathiazole (STZ) and its mechanism of action were investigated using Daphnia magna. We evaluated the changes of molecular level stress responses by assessing gene expression, enzyme induction and lipid peroxidation, and the related organism-level effects in D. magna. In the presence of ultraviolet B (UV-B) light (continuous irradiation with 13.8+/-1.0microWcm(-2)d(-1)), STZ (at the nominal concentration of 94.9mg/L) caused a significant increase in reactive oxygen species (ROS) generation and lipid peroxidation. Catalase (CAT) and glutathione S-transferase (GST) showed concentration-dependent increases caused by the exposure. Exposure to STZ and UV-B light caused apparent up-regulation of alpha-esterase, hemoglobin, and vitellogenin mRNA. The survival of daphnids was significantly affected by the co-exposure to STZ and UV-B. The biochemical and molecular level observations in combination with organism-level effects suggest that the phototoxicity of STZ was mediated in part by ROS generated by oxidative stress in D. magna.
Collapse
Affiliation(s)
- Jungkon Kim
- School of Public Health, Seoul National University, Seoul, 110-799, Republic of Korea.
| | | | | |
Collapse
|
49
|
Li N, Chu X, Liu X, Li D. Probing the active site of rat porphobilinogen synthase using newly developed inhibitors. Bioorg Chem 2008; 37:33-40. [PMID: 19095280 DOI: 10.1016/j.bioorg.2008.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 11/24/2022]
Abstract
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Porphobilinogen synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. In the present study, a variety of new substrate analogs and reaction intermediate analogs were synthesized, which were used as probes for studying the active site of rat porphobilinogen synthase. The compounds 1, 3, 6, 9, 14, 16, and 28 were found to be competitive inhibitors of rat porphobilinogen synthase with inhibition constants ranging from 0.96 to 73.04mM. Compounds 7, 10, 12, 13, 15, 17, 18, and 26 were found to be irreversible enzyme inhibitors. For irreversible inhibitors, loose-binding inhibitors were found to give stronger inactivation. The amino group and carboxyl group of the analogs were found to be important for their binding to the enzyme. This study increased our understanding of the active site of porphobilinogen synthase.
Collapse
Affiliation(s)
- Nan Li
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, SAR, PR China
| | | | | | | |
Collapse
|
50
|
Li N, Chu X, Wu L, Liu X, Li D. Functional studies of rat hydroxymethylbilane synthase. Bioorg Chem 2008; 36:241-51. [PMID: 18760440 DOI: 10.1016/j.bioorg.2008.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/10/2008] [Accepted: 07/21/2008] [Indexed: 01/21/2023]
Abstract
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Hydroxymethylbilane synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. We carried out extensive studies of rat hydroxymethylbilane synthase in the present investigation. The enzymatic reaction rate of the holoenzyme was found to be lower than those of the enzyme-intermediate complexes, which corrected the previous theoretical analysis result. Several mutants were constructed, purified and characterized. D44 was found to play an important role in the disassembly of the enzyme-intermediate complexes. E63 and H78 were important for maintaining the activity of the enzyme at high temperature. Four substrate analogs with variation of porphobilinogen side-chain were synthesized and incubated with the enzyme. Three analogs were found to be weak substrates of the enzyme. All four analogs can be used for the preparation of uroporphyrin I analogs.
Collapse
Affiliation(s)
- Nan Li
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | | | | | | | | |
Collapse
|