1
|
Hopper SE, Weiss D, Mikush N, Jiang B, Spronck B, Cavinato C, Humphrey JD, Figueroa CA. Central Artery Hemodynamics in Angiotensin II-Induced Hypertension and Effects of Anesthesia. Ann Biomed Eng 2024; 52:1051-1066. [PMID: 38383871 PMCID: PMC11418744 DOI: 10.1007/s10439-024-03440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/30/2023] [Indexed: 02/23/2024]
Abstract
Systemic hypertension is a strong risk factor for cardiovascular, neurovascular, and renovascular diseases. Central artery stiffness is both an initiator and indicator of hypertension, thus revealing a critical relationship between the wall mechanics and hemodynamics. Mice have emerged as a critical animal model for studying effects of hypertension and much has been learned. Regardless of the specific mouse model, data on changes in cardiac function and hemodynamics are necessarily measured under anesthesia. Here, we present a new experimental-computational workflow to estimate awake cardiovascular conditions from anesthetized data, which was then used to quantify effects of chronic angiotensin II-induced hypertension relative to normotension in wild-type mice. We found that isoflurane anesthesia had a greater impact on depressing hemodynamics in angiotensin II-infused mice than in controls, which led to unexpected results when comparing anesthetized results between the two groups of mice. Through comparison of the awake simulations, however, in vivo relevant effects of angiotensin II-infusion on global and regional vascular structure, properties, and hemodynamics were found to be qualitatively consistent with expectations. Specifically, we found an increased in vivo vascular stiffness in the descending thoracic aorta and suprarenal abdominal aorta, leading to increases in pulse pressure in the distal aorta. These insights allow characterization of the impact of regionally varying vascular remodeling on hemodynamics and mouse-to-mouse variations due to induced hypertension.
Collapse
Affiliation(s)
- S E Hopper
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - N Mikush
- Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - B Jiang
- Department of Thyroid and Vascular Surgery, 1st Hospital of China Medical University, Shen Yang, China
| | - B Spronck
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - C Cavinato
- LMGC, Universite' Montpellier, CNRS, Montpellier, France
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - C A Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Osei-Owusu P, Collyer E, Dahlen SA, Echols Adams RE, Tom VJ. Maladaptation of Renal Hemodynamics Contributes to Kidney Dysfunction Resulting from Thoracic Spinal Cord Injury in Mice. Am J Physiol Renal Physiol 2022; 323:F120-F140. [PMID: 35658716 PMCID: PMC9306783 DOI: 10.1152/ajprenal.00072.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal dysfunction is a hallmark of spinal cord injury (SCI). Several SCI sequalae are implicated, however, the exact pathogenic mechanism of renal dysfunction is unclear. Herein, we found that T3 (T3Tx) or T10 (T10Tx) complete thoracic spinal cord transection induced hypotension, bradycardia, and hypothermia immediately after injury. T3Tx-induced hypotension but not bradycardia or hypothermia slowly recovered to levels in T10Tx SCI and uninjured mice ~16 h after injury as determined by continuous radiotelemetry monitoring. Both types of thoracic SCI led to a marked decrease in albuminuria and proteinuria in all phases of SCI, while the kidney injury marker, NGAL, rapidly increased in the acute phase, remaining elevated in the chronic phase of T3Tx SCI. Renal interstitial and vascular elastin fragmentation after SCI were worsened during chronic T3Tx SCI. In the chronic phase, renal vascular resistance response to a step increase in renal perfusion pressure or a bolus injection of Ang II or NE was almost completely abolished after T3Tx SCI. Bulk RNAseq analysis showed enrichment of genes involved in extracellular matrix (ECM) remodeling and chemokine signaling in the kidney from T3Tx SCI mice. Serum levels of interleukin 6 was elevated in the acute but not chronic phase of T3Tx and T10Tx SCI, while serum amyloid A1 level was elevated in both acute and chronic phases. We conclude that tissue fibrosis and hemodynamic impairment are involved in renal dysfunction resulting from thoracic SCI; these pathological alterations, exacerbated by high thoracic-level injury, is mediated at least partly by renal microvascular ECM remodeling.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Eileen Collyer
- Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| | - Shelby A Dahlen
- Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Raisa E Echols Adams
- Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Veronica J Tom
- Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Li P, Halabi CM, Stewart R, Butler A, Brown B, Xia X, Santi C, England S, Ferreira J, Mecham RP, Salkoff L. Sodium-activated potassium channels moderate excitability in vascular smooth muscle. J Physiol 2019; 597:5093-5108. [PMID: 31444905 PMCID: PMC6800802 DOI: 10.1113/jp278279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS We report that a sodium-activated potassium current, IKNa , has been inadvertently overlooked in both conduit and resistance arterial smooth muscle cells. IKNa is a major K+ resting conductance and is absent in cells of IKNa knockout (KO) mice. The phenotype of the IKNa KO is mild hypertension, although KO mice react more strongly than wild-type with raised blood pressure when challenged with vasoconstrictive agents. IKNa is negatively regulated by angiotensin II acting through Gαq protein-coupled receptors. In current clamp, KO arterial smooth muscle cells have easily evoked Ca2+ -dependent action potentials. ABSTRACT Although several potassium currents have been reported to play a role in arterial smooth muscle (ASM), we find that one of the largest contributors to membrane conductance in both conduit and resistance ASMs has been inadvertently overlooked. In the present study, we show that IKNa , a sodium-activated potassium current, contributes a major portion of macroscopic outward current in a critical physiological voltage range that determines intrinsic cell excitability; IKNa is the largest contributor to ASM cell resting conductance. A genetic knockout (KO) mouse strain lacking KNa channels (KCNT1 and KCNT2) shows only a modest hypertensive phenotype. However, acute administration of vasoconstrictive agents such as angiotensin II (Ang II) and phenylephrine results in an abnormally large increase in blood pressure in the KO animals. In wild-type animals Ang II acting through Gαq protein-coupled receptors down-regulates IKNa , which increases the excitability of the ASMs. The complete genetic removal of IKNa in KO mice makes the mutant animal more vulnerable to vasoconstrictive agents, thus producing a paroxysmal-hypertensive phenotype. This may result from the lowering of cell resting K+ conductance allowing the cells to depolarize more readily to a variety of excitable stimuli. Thus, the sodium-activated potassium current may serve to moderate blood pressure in instances of heightened stress. IKNa may represent a new therapeutic target for hypertension and stroke.
Collapse
Affiliation(s)
- Ping Li
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Equal contributors
| | - Carmen M. Halabi
- Dept. of Pediatrics, Washington University School of Medicine, Saint Louis. MO 63110
- Equal contributors
| | - Richard Stewart
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Alice Butler
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Bobbie Brown
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Xiaoming Xia
- Dept. of Anesthesiology, Washington University School of Medicine, Saint Louis. MO 63110
| | - Celia Santi
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Sarah England
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Juan Ferreira
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Robert P. Mecham
- Dept. of Cell Biology, Washington University School of Medicine, Saint Louis. MO 63110
| | - Lawrence Salkoff
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of Genetics, Washington University School of Medicine, Saint Louis. MO 63110
| |
Collapse
|
4
|
Zhang J, Wang Y, Chen L, Wier WG, Blaustein MP. Na +/Ca 2+ exchanger overexpression in smooth muscle augments cytosolic Ca 2+ in femoral arteries of living mice. Am J Physiol Heart Circ Physiol 2019; 316:H298-H310. [PMID: 30461304 PMCID: PMC6397384 DOI: 10.1152/ajpheart.00185.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Plasma membrane Na+/Ca2+ exchanger-1 (NCX1) helps regulate the cytosolic Ca2+ concentration ([Ca2+]CYT) in arterial myocytes. NCX1 mediates both Ca2+ entry and exit and tends to promote net Ca2+ entry in partially constricted arteries. Mean blood pressure (telemetry) is elevated by ≈10 mmHg in transgenic (TG) mice that overexpress NCX1 specifically in smooth muscle. We tested the hypothesis that NCX1 overexpression mediates Ca2+ gain and elevated [Ca2+]CYT in exposed femoral arteries that also express the Ca2+ biosensor exogenous myosin light chain kinase. [Ca2+]CYT and the NCX1-dependent (SEA0400-sensitive) component, ≈15% of total basal constriction in controls, were increased in TG arteries, but constrictions to phenylephrine and ANG II were comparable in TG and control arteries. Normalized phenylephrine dose-response curves and constriction to 30 and 300 ng/kg iv ANG II were virtually identical in control and TG arteries. ANG II-evoked constrictions, superimposed on elevated basal tone, accounted for the larger blood pressure responses to ANG II in TG arteries. TG and control mouse arteries fit the same pCa-constriction relationship over a wide range of pCa (≈125-500 nM). Vasodilation to acetylcholine, normalized to passive diameter, was also comparable in TG and control arteries, implying normal endothelial function. TG artery Na+ nitroprusside (nitric oxide donor)-induced dilations were, however, shifted to lower Na+ nitroprusside concentrations, indicating that TG myocyte vasodilator mechanisms were augmented. Maximum arterial dilation was comparable in TG and control mice, although passive diameter was ≈6-7% smaller in TG mice. The changes in TG arteries were apparently largely functional rather than structural, despite the congenital hypertension. NEW & NOTEWORTHY Smooth muscle Na+/Ca2+ exchanger-1 transgene overexpression (TG mice) increases femoral artery basal cytosolic Ca2+ concentration ([Ca2+]CYT) and tone in vivo and raises blood pressure. Arterial constriction to phenylephrine and angiotensin II are normal but superimposed on the augmented basal [Ca2+]CYT and tone (constriction) in TG mouse arteries. Similar effects in resistance arteries would explain the elevated blood pressure. Acetylcholine-induced vasodilation is unimpaired, implying a normal endothelium, but TG arteries are hypersensitive to sodium nitroprusside.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Youhua Wang
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Physical Education, Shaanxi Normal University , Xi'an, Shaanxi , China
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
5
|
Owens EA, Jie L, Reyes BA, Van Bockstaele EJ, Osei-Owusu P. Elastin insufficiency causes hypertension, structural defects and abnormal remodeling of renal vascular signaling. Kidney Int 2017; 92:1100-1118. [DOI: 10.1016/j.kint.2017.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 01/24/2023]
|
6
|
Fairfax ST, Mauban JRH, Hao S, Rizzo MA, Zhang J, Wier WG. Ca(2+) signaling in arterioles and small arteries of conscious, restrained, optical biosensor mice. Front Physiol 2014; 5:387. [PMID: 25339912 PMCID: PMC4188025 DOI: 10.3389/fphys.2014.00387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023] Open
Abstract
Two-photon fluorescence microscopy and conscious, restrained optical biosensor mice were used to study smooth muscle Ca2+ signaling in ear arterioles. Conscious mice were used in order to preserve normal mean arterial blood pressure (MAP) and sympathetic nerve activity (SNA). ExMLCK mice, which express a genetically-encoded smooth muscle-specific FRET-based Ca2+ indicator, were equipped with blood pressure telemetry and immobilized for imaging. MAP was 101 ± 4 mmHg in conscious restrained mice, similar to the freely mobile state (107 ± 3 mmHg). Oscillatory vasomotion or irregular contractions were observed in most arterioles (71%), with the greatest oscillatory frequency observed at 0.25 s−1. In a typical arteriole with an average diameter of ~35 μm, oscillatory vasomotion of a 5–6 μm magnitude was accompanied by nearly uniform [Ca2+] oscillations from ~0.1 to 0.5 μM, with maximum [Ca2+] occurring immediately before the rapid decrease in diameter. Very rapid, spatially uniform “Ca2+ flashes” were also observed but not asynchronous propagating Ca2+ waves. In contrast, vasomotion and dynamic Ca2+ signals were rarely observed in ear arterioles of anesthetized exMLCK biosensor mice. Hexamethonium (30 μg/g BW, i.p.) caused a fall in MAP to 74 ± 4 mmHg, arteriolar vasodilation, and abolition of vasomotion and synchronous Ca2+ transients. Summary: MAP and heart rate (HR) were normal during high-resolution Ca2+ imaging of conscious, restrained mice. SNA induced continuous vasomotion and irregular vasoconstrictions via spatially uniform Ca2+ signaling within the arterial wall. FRET-based biosensor mice and two-photon imaging provided the first measurements of [Ca2+] in vascular smooth muscle cells in arterioles of conscious animals.
Collapse
Affiliation(s)
- Seth T Fairfax
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Joseph R H Mauban
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Scarlett Hao
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Mark A Rizzo
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
7
|
Mauban JRH, Fairfax ST, Rizzo MA, Zhang J, Wier WG. A method for noninvasive longitudinal measurements of [Ca2+] in arterioles of hypertensive optical biosensor mice. Am J Physiol Heart Circ Physiol 2014; 307:H173-81. [PMID: 24858846 DOI: 10.1152/ajpheart.00182.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We used two-photon (2-p) Förster resonance energy transfer (FRET) microscopy to provide serial, noninvasive measurements of [Ca(2+)] in arterioles of living "biosensor" mice. These express a genetically encoded Ca(2+) indicator (GECI), either FRET-based exMLCK or intensity-based GCaMP2. The FRET ratios, Rmin and Rmax, required for in vivo Ca(2+) calibration of exMLCK were obtained in isolated arteries. For in vivo experiments, mice were anesthetized (1.5% isoflurane), and arterioles within a depilated ear were visualized through the intact skin (i.e., noninvasively), by 2-p excitation of exMLCK (at 820 nm) or GCaMP2 (at 920 nm). Spontaneous or agonist-evoked [Ca(2+)] transients in arteriolar smooth muscle cells were imaged (at 2 Hz) with both exMLCK and GCaMP2. To examine changes in arteriolar [Ca(2+)] that might accompany hypertension, five exMLCK mice were implanted with telemetric blood pressure transducers and osmotic minipumps containing ANG II (350 ng·kg(-1)·min(-1)) and fed a high (6%)-salt diet for 9 days. [Ca(2+)] was measured every other day in five smooth muscle cells of two to three arterioles in each animal. Prior to ANG II/salt, [Ca(2+)] was 246 ± 42 nM. [Ca(2+)] increased transiently to 599 nM on day 2 after beginning ANG II/salt, then remained elevated at 331 ± 42 nM for 4 more days, before returning to 265 ± 47 nM 6 days after removal of ANG II/salt. In summary, two-photon excitation of exMLCK and GCaMP2 provides a method for noninvasive, longitudinal quantification of [Ca(2+)] dynamics and vascular structure in individual arterioles of a particular animal over an extended period of time, a capability that should enhance future studies of hypertension and vascular function.
Collapse
Affiliation(s)
- Joseph R H Mauban
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seth T Fairfax
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark A Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Withrow Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Schmiedt CW, Mercurio A, Vandenplas M, McAnulty JF, Hurley DJ. Effects of renal autograft ischemic storage and reperfusion on intraoperative hemodynamic patterns and plasma renin concentrations in clinically normal cats undergoing renal autotransplantation and contralateral nephrectomy. Am J Vet Res 2010; 71:1220-7. [DOI: 10.2460/ajvr.71.10.1220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhang J, Chen L, Raina H, Blaustein MP, Wier WG. In vivo assessment of artery smooth muscle [Ca2+]i and MLCK activation in FRET-based biosensor mice. Am J Physiol Heart Circ Physiol 2010; 299:H946-56. [PMID: 20622107 DOI: 10.1152/ajpheart.00359.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular mechanisms that control arterial diameter in vivo, particularly in hypertension, are uncertain. Here, we report a method that permits arterial intracellular Ca(2+) concentration ([Ca(2+)](i)), myosin light-chain kinase (MLCK) activation, and artery external diameter to be recorded simultaneously with arterial blood pressure (BP) in living mice under 1.5% isofluorane anesthesia. The method also enables an assessment of local receptor activity on [Ca(2+)](i), MLCK activity, and diameter in arteries, uncomplicated by systemic effects. Transgenic mice that express, in smooth muscle, a Ca(2+)/calmodulin-activated, Förster resonance energy transfer (FRET)-based "ratiometric", exogenous MLCK biosensor were used. Vasoactive substances were administered either intravenously or locally to segments of exposed femoral or cremaster arteries. In the basal state, mean BP was approximately 90 mmHg, femoral arteries were constricted to 65% of their passive diameter, MLCK fractional activation was 0.14, and [Ca(2+)](i) was 131 nM. Phenylephrine (300 ng/g wt iv) elevated mean BP transiently to approximately 110 mmHg, decreased heart rate, increased femoral artery [Ca(2+)](i) to 244 nM and fractional MLCK activation to 0.24, and decreased artery diameter by 23%. In comparison, local application of 1.0 muM phenylephrine raised [Ca(2+)](i) to 279 nM and fractional MLCK activation to 0.26, and reduced diameter by 25%, but did not affect BP or heart rate. Intravital FRET imaging of exogenous MLCK biosensor mice permits quantification of changes in [Ca(2+)](i) and MLCK activation that accompany small changes in BP. Based on the observed variance of the FRET data, this method should enable the detection of a difference in basal [Ca(2+)](i) of 29 nM between two groups of 12 mice with a significance of P < 0.05.
Collapse
Affiliation(s)
- Jin Zhang
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
10
|
Silva AE, Castiglia YMM, Módolo NSP, Roberto WM, Braz LG, Vane LA, Vianna PTG, Braz JRC. Does the Choice of the Halogenated Anesthetic Influence Renal Function during Hemorrhagic Shock and Resuscitation? Ren Fail 2009; 31:62-9. [DOI: 10.1080/08860220802546412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|