1
|
Mercnik MH, Wadsack C, Schliefsteiner C. Unlocking the secrets of Hofbauer cells in placental (patho-) physiology: Isolation and quality assessment in human term placenta. Placenta 2024:S0143-4004(24)00299-6. [PMID: 39004544 DOI: 10.1016/j.placenta.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Hofbauer cells (HBCs) are macrophages of fetal origin that reside in the villous tissue. They are the only immune cells within healthy villi. While HBCs perform innate immune functions such as phagocytosis and antigen presentation, they are increasingly recognized for their diverse roles in placental physiology e.g. vascular functionality, tissue homeostasis, tolerance. Consequently, HBCs are of utmost interest in a variety of non-physiological placental conditions. ISOLATION Villous tissue is collected freshly after delivery and finely minced. The resulting tissue is digested in a two-step process, using Trypsin/DNase to separate cytotrophoblasts and collagenase/DNase to penetrate deeper into the villous stroma, containing HBCs, and obtain a single cell suspension. After a density gradient centrifugation, the corresponding cell layer is collected and subjected to negative immune selection of HBCs, yielding unaffected cells that have not been activated during the isolation process. QUALITY CONTROL In addition to a classical immunocytochemistry (ICC) approach including macrophage markers, and markers for potentially contaminating cell types (e.g. fibroblasts, muscle, mesenchymal cells), we have developed a multi-color flow cytometry (FC) panel. This panel assesses Hofbauer cell purity and polarization states more accurately and comprehensively than qualitative ICC, using percentage analysis of parent cells to estimate the expression levels of specific markers. DISCUSSION The presented protocol allows us to isolate HBCs in significant numbers and high purity, even from placentae compromised by preeclampsia (PE) with limited placental volume. We have successfully developed and implemented this protocol to study healthy, diabetic and PE macrophages, aiding a better understanding of the underlying placental pathophysiology at the cellular level.
Collapse
Affiliation(s)
- Monika Horvat Mercnik
- Medical University of Graz, Austria. Department of Obstetrics and Gynecology, Research Unit, Austria
| | - Christian Wadsack
- Medical University of Graz, Austria. Department of Obstetrics and Gynecology, Research Unit, Austria; BioTechMed-Graz, Graz, Austria.
| | - Carolin Schliefsteiner
- Medical University of Graz, Austria. Department of Obstetrics and Gynecology, Research Unit, Austria
| |
Collapse
|
2
|
Ozarslan N, Robinson JF, Buarpung S, Kim MY, Ansbro MR, Akram J, Montoya DJ, Kamya MR, Kakuru A, Dorsey G, Rosenthal PJ, Cheng G, Feeney ME, Fisher SJ, Gaw SL. Gravidity influences distinct transcriptional profiles of maternal and fetal placental macrophages at term. Front Immunol 2024; 15:1384361. [PMID: 38994356 PMCID: PMC11237841 DOI: 10.3389/fimmu.2024.1384361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Maternal intervillous monocytes (MIMs) and fetal Hofbauer cells (HBCs) are myeloid-derived immune cells at the maternal-fetal interface. Maternal reproductive history is associated with differential risk of pregnancy complications. The molecular phenotypes and roles of these distinct monocyte/macrophage populations and the influence of gravidity on these phenotypes has not been systematically investigated. Methods Here, we used RNA sequencing to study the transcriptional profiles of MIMs and HBCs in normal term pregnancies. Results Our analyses revealed distinct transcriptomes of MIMs and HBCs. Genes involved in differentiation and cell organization pathways were more highly expressed in MIMs vs. HBCs. In contrast, HBCs had higher expression of genes involved in inflammatory responses and cell surface receptor signaling. Maternal gravidity influenced monocyte programming, as expression of pro-inflammatory molecules was significantly higher in MIMs from multigravidae compared to primigravidae. In HBCs, multigravidae displayed enrichment of gene pathways involved in cell-cell signaling and differentiation. Discussion Our results demonstrated that MIMs and HBCs have highly divergent transcriptional signatures, reflecting their distinct origins, locations, functions, and roles in inflammatory responses. Furthermore, maternal gravidity influences the gene signatures of MIMs and HBCs, potentially modulating the interplay between tolerance and trained immunity. The phenomenon of reproductive immune memory may play a novel role in the differential susceptibility of primigravidae to pregnancy complications.
Collapse
Affiliation(s)
- Nida Ozarslan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Joshua F. Robinson
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Sirirak Buarpung
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - M. Yvonne Kim
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Megan R. Ansbro
- Obstetrics & Gynecology Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Jason Akram
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Dennis J. Montoya
- Department of Molecular, Cellular & Developmental Biology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Division of HIV, Global Medicine, and Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Philip J. Rosenthal
- Division of HIV, Global Medicine, and Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Genhong Cheng
- Department of Molecular Immunology and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Margaret E. Feeney
- Division of Experimental Medicine, Department of Medicine and Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Susan J. Fisher
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Ozarslan N, Robinson JF, Buarpung S, Kim MY, Ansbro MR, Akram J, Montoya DJ, Kamya MR, Kakuru A, Dorsey G, Rosenthal PJ, Cheng G, Feeney ME, Fisher SJ, Gaw SL. Distinct transcriptional profiles of maternal and fetal placental macrophages at term are associated with gravidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559419. [PMID: 37808856 PMCID: PMC10557660 DOI: 10.1101/2023.09.25.559419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Maternal intervillous monocytes (MIMs) and fetal Hofbauer cells (HBCs) are myeloid-derived immune cells at the maternal-fetal interface. Little is known regarding the molecular phenotypes and roles of these distinct monocyte/macrophage populations. Here, we used RNA sequencing to investigate the transcriptional profiles of MIMs and HBCs in six normal term pregnancies. Our analyses revealed distinct transcriptomes of MIMs and HBCs. Genes involved in differentiation and cell organization pathways were more highly expressed in MIMs vs. HBCs. In contrast, HBCs had higher expression of genes involved in inflammatory responses and cell surface receptor signaling. Maternal gravidity influenced monocyte programming, as expression of pro-inflammatory molecules was significantly higher in MIMs from multigravidas compared to primigravidas. In HBCs, multigravidas displayed enrichment of gene pathways involved in cell-cell signaling and differentiation. In summary, our results demonstrated that MIMs and HBCs have highly divergent transcriptional signatures, reflecting their distinct origins, locations, functions, and roles in inflammatory responses. Our data further suggested that maternal gravidity influences the gene signatures of MIMs and HBCs, potentially modulating the interplay between tolerance and trained immunity. The phenomenon of reproductive immune memory may play a novel role in the differential susceptibility of primigravidas to pregnancy complications.
Collapse
|
4
|
Hendrix P, Tang Z, Silasi M, Racicot KE, Mor G, Abrahams VM, Guller S. Herpesvirus-infected Hofbauer cells activate endothelial cells through an IL-1β-dependent mechanism. Placenta 2020; 91:59-65. [PMID: 32174308 DOI: 10.1016/j.placenta.2020.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental viral infections are associated with fetal inflammation and adverse pregnancy outcomes. However, there have been limited studies on how placental macrophages in the villous and adjacent fetal umbilical endothelial cells respond to a viral insult. This study aimed to evaluate the communication between Hofbauer cells (HBCs) and human umbilical vein endothelial cells (HUVECs) during a viral infection. METHODS HBCs were either uninfected or infected with the γ-herpesvirus, MHV-68, and the conditioned medium (CM) collected. HUVECs were exposed to HBC CM and the levels of the pro-neutrophilic response markers: IL-8; E-selectin; intercellular adhesion molecule 1 (ICAM-1); and vascular adhesion molecule 1 (VCAM-1) measured by ELISA and qPCR. The role of HBC-derived IL-1β was investigated using an IL-1β blocking antibody (Ab) or IL-1 receptor antagonist (IL-1Ra). RESULTS MHV-68 infection of HBCs induced a significant increase in IL-1β secretion. CM from infected HBCs induced HUVEC expression of IL-8, E-selectin, VCAM-1, ICAM-1 mRNA, and secretion of IL-8. The HUVEC response to the CM of MHV-infected HBCs was inhibited by a neutralizing IL-1β Ab and by IL-1Ra. DISCUSSION Virally-induced HBC IL-1β activates HUVECs to generate a pro-neutrophilic response. This novel cell-cell communication pathway may play an important role in the genesis of fetal inflammation associated with placental viral infection.
Collapse
Affiliation(s)
- Paul Hendrix
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Michelle Silasi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Karen E Racicot
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Schliefsteiner C, Ibesich S, Wadsack C. Placental Hofbauer Cell Polarization Resists Inflammatory Cues In Vitro. Int J Mol Sci 2020; 21:ijms21030736. [PMID: 31979196 PMCID: PMC7038058 DOI: 10.3390/ijms21030736] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
Feto-placental Hofbauer cells (HBCs) are macrophages residing in placental stroma. They are generally described as anti-inflammatory M2 polarized cells, promoting tolerance and tissue remodeling. In certain pathologies, however, a possible phenotypical switch towards pro-inflammatory M1 macrophages has been proposed. The study aimed to determine if HBCs can acquire an M1 phenotype under pro-inflammatory conditions in vitro. HBCs were isolated from healthy human term placentas. Cells were cultivated upon addition of LPS and INF-γ or IL-4 and IL-13 to induce the M1 and M2 phenotype, respectively. Specific cell polarization markers and cytokines, associated with respective phenotypes, were investigated by flow cytometry and ELISA. THP-1 macrophages served as positive control. Pro-inflammatory stimuli reduced M2 markers CD163 and DC-SIGN, but did not induce M1 markers. TNF-α release was increased, but at the same time TGF-β and IL-10 release was upregulated, resembling in part the M2b sub-phenotype. Anti-inflammatory stimuli had no effect on HBC polarization. HBCs maintain their M2 phenotype in vitro despite inflammatory stimuli, which might represent a state of adaption and tolerance to avoid rejection of the semiallogeneic feto-placental unit.
Collapse
|
6
|
Schliefsteiner C, Peinhaupt M, Kopp S, Lögl J, Lang-Olip I, Hiden U, Heinemann A, Desoye G, Wadsack C. Human Placental Hofbauer Cells Maintain an Anti-inflammatory M2 Phenotype despite the Presence of Gestational Diabetes Mellitus. Front Immunol 2017; 8:888. [PMID: 28824621 PMCID: PMC5534476 DOI: 10.3389/fimmu.2017.00888] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
Background Hofbauer cells (HBCs) are macrophages of the feto-placental unit. Despite the general view that these cells have an anti-inflammatory M2 phenotype, recent studies have claimed that pregnancy pathologies—e.g., gestational diabetes mellitus (GDM)—cause a switch from an M2 to an M1 pro-inflammatory phenotype in HBCs. The pilot-study presented here challenges this claim, showing that HBCs maintain anti-inflammatory properties in spite of the hyperglycemic, low-grade inflammatory environment of GDM. Methods HBCs were isolated from placentae of healthy women (N = 5) and women with GDM (N = 6) diagnosed in the second trimester. FACS was used to measure surface markers associated with either M1 or M2 phenotype on the cells. In addition, placental tissue sections were subjected to immune histochemical imaging to assess the phenotype within the tissue context. Supernatant from control and GDM HBCs was collected at defined time points and used in a multiplex ELISA-on-beads approach to assess secretion of cytokines, chemokines, and growth factors. The effect of HBC cell culture supernatant on placental endothelial activation was investigated. Results FACS and immune staining showed that, indeed, M2 markers, such as CD206 and CD209, are increased in HBCs isolated from GDM placentae. Also, the M1 marker CD86 was increased, but only by trend. Secretion of numerous cytokines, chemokines and growth factors was not changed; pro-inflammatory interleukin (IL)-1β and IL-6 release form GDM HBC was increased but not significant. Exposure to GDM HBC supernatant did not induce cell adhesion molecules (VCAM-1, selectins, vascular endothelial-cadherin) in placental endothelial cells compared to supernatant from control HBCs, an induction of intracellular adhesion molecule 1 was observed however. Conclusion Our study—although performed in a small set of patients—shows that placental macrophages maintain their anti-inflammatory, tissue remodeling M2 phenotype even in pregnancies affected by gestational diabetes. This consistent phenotype might be important for propagation of maternal tolerance toward the fetus and for protection of the fetus from a low-grade inflammatory environment.
Collapse
Affiliation(s)
- Carolin Schliefsteiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Miriam Peinhaupt
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Susanne Kopp
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Jelena Lögl
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.,Department of Cell Biology, Medical University of Graz, Graz, Austria.,Department of Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ingrid Lang-Olip
- Department of Cell Biology, Medical University of Graz, Graz, Austria.,Department of Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Abstract
Pregnancy complications such as preterm birth, miscarriage, maternal and/or neonatal morbidities, and mortality can be manifestations of underlying placental pathology. Hofbauer cells refer to a heterogeneous population of fetal macrophages that reside within the functional unit of the placenta known as the chorionic villus. Hofbauer cells can be detected within the connective tissue matrix of the placenta as early as 4 weeks post-conception and are present throughout pregnancy. These cells are implicated in a wide array of functions important for a successful pregnancy including placental morphogenesis, immune regulation, control of stromal water content, and the transfer of ions and serum proteins across the maternal-fetal barrier. Derangements in Hofbauer cell homeostasis are associated with placental pathologies involving infection, inflammation, and inadequate placental development. Despite a growing body of evidence that these cells are important, our knowledge about Hofbauer cell function in both normal and dysfunctional pregnancy is rudimentary. The goal of this chapter is to provide an overview of what is known about Hofbauer cell origins and their potential roles in normal and complicated pregnancy. We also review established and emerging methodologies available for the study of Hofbauer cells during in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| | - Bryce Wolfe
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Tang Z, Abrahams VM, Mor G, Guller S. Placental Hofbauer cells and complications of pregnancy. Ann N Y Acad Sci 2011; 1221:103-8. [PMID: 21401637 DOI: 10.1111/j.1749-6632.2010.05932.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hofbauer cells (HBCs) are placental macrophages that are present in the villus across gestation. Despite their identification more than 100 years ago, their specific role in placental function remains largely unelucidated. We initially review aspects of their history and biology as well as evidence for putative sites of origin. To gain insight into their potential function, we then describe complications of pregnancy including villitis of unknown etiology (VUE) and histological chorioamnionitis (HCA), in which alterations in numbers, gene expression, or other characteristics of HBCs have been documented to occur. We further review methods for isolation of HBCs and in vitro studies that explore their role in relation to other major cell types in the placenta and examine their actions in cytokine-mediated inflammation. We conclude that HBCs play a key role in placental pathophysiology, and future advances in their isolation and culture would enable mechanistic insight into their villus function.
Collapse
Affiliation(s)
- Zhonghua Tang
- Department of Obstetrics/Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
9
|
Joerink M, Rindsjö E, van Riel B, Alm J, Papadogiannakis N. Placental macrophage (Hofbauer cell) polarization is independent of maternal allergen-sensitization and presence of chorioamnionitis. Placenta 2011; 32:380-5. [PMID: 21419483 DOI: 10.1016/j.placenta.2011.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Macrophages can polarize in which M1/classically activated and M2/alternatively activated macrophages are considered to be the extremes. M1 macrophages are involved in inflammatory reactions, while M2 macrophages are suggested to be involved in homeostasis, parasite killing, tumor promotion, tissue remodeling and in allergic reactions. We hypothesized that polarization of placental macrophages (Hofbauer cells) is influenced by the allergen-sensitization status of the mother and/or the presence of chorioamnionitis, a placental inflammation. This Hofbauer cell polarization might be associated to the intrauterine environment and influence the risk of allergy development for the child. Therefore we aimed to determine the polarization status of Hofbauer cells in health and disease. METHODS We determined the expression of CD68, CX3CR1, IL-7R, DC-SIGN/CD209 and CD163 in placentas of sensitized versus non-sensitized mothers (n = 17), and placentas with or without histological chorioamnionitis (n = 10) by means of immunohistochemical analysis and quantitative real-time PCR (qPCR). RESULTS Protein expression of the M1 markers (CX3CR1, IL-7R and CCR7) could not be detected in any of the analyzed samples while the M2 markers (DC-SIGN, CD163 and mannose receptor/CD206) were readily detected. Significant differences between non-sensitized versus sensitized mothers and uncomplicated versus chorioamnionitis complicated pregnancies were not detected at protein or at mRNA expression level. CONCLUSIONS These results suggest that Hofbauer cells have an M2 phenotype, and that their polarization is not affected by maternal allergen-sensitization or by presence of chorioamnionitis.
Collapse
Affiliation(s)
- M Joerink
- Department of Medicine Solna, Clinical Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
10
|
Than NG, Erez O, Wildman DE, Tarca AL, Edwin SS, Abbas A, Hotra J, Kusanovic JP, Gotsch F, Hassan SS, Espinoza J, Papp Z, Romero R. Severe preeclampsia is characterized by increased placental expression of galectin-1. J Matern Fetal Neonatal Med 2008; 21:429-42. [PMID: 18570123 DOI: 10.1080/14767050802041961] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Galectin-1 is a major anti-inflammatory protein expressed by the placenta and immune cells that can bias the character of inflammatory responses toward the Th2 type. Galectin-1 is expressed in immune privileged sites, it can facilitate immune tolerance and tumor immune escape, and it has been successfully used for the suppression of experimental autoimmune diseases as well as graft-versus-host disease in murine models. We propose that an abnormal immune response in some pregnancy complications may be associated with changes in placental expression of galectin-1. To test this hypothesis, we studied placental galectin-1 mRNA and protein expression and localization in women with preeclampsia (PE) and in those who delivered a small-for-gestational age (SGA) neonate. STUDY DESIGN This cross-sectional study included pregnant women matched for gestational age at delivery in the following groups: (1) severe PE (n = 10), (2) severe PE complicated with SGA (n = 10), (3) SGA without PE (n = 10), and (4) controls (n = 10). Galectin-1 mRNA and protein were localized in placentas by in situ hybridization and immunofluorescence microscopy. Galectin-1 mRNA expression was determined by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), and galectin-1 protein content by Western blot. Non-parametric statistics were used for analysis. RESULT (1) In normal term placentas, galectin-1 mRNA or immunofluorescence signals were detected in the trophoblasts, villous stromal cells, Hofbauer cells, endothelial cells of the villous blood vessels, and the villous stroma. (2) Placental galectin-1 mRNA expression was significantly higher in severe PE (with or without SGA) than in controls (1.47-fold, p = 0.004; 1.44-fold, p = 0.003, respectively) and in SGA (1.68-fold, p = 0.001; 1.64-fold, p = 0.001, respectively). (3) Trophoblasts in placentas of patients with severe PE had the most intense galectin-1 immunostaining. CONCLUSIONS (1) We report for the first time the placental expression and localization of galectin-1 mRNA and demonstrate that the protein is abundantly present in third trimester human placentas. (2) Placental galectin-1 expression is higher in severe PE than in normal pregnancy regardless of the presence of SGA. (3) However, it is not altered in SGA without PE. We propose that the increased placental expression of galectin-1 in patients with severe PE may represent a fetal response to an exaggerated systemic maternal inflammation; thus, galectin-1 may be implicated in maternal-fetal immune tolerance in humans.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Current awareness in prenatal diagnosis. Prenat Diagn 2003; 23:694-700. [PMID: 12938665 DOI: 10.1002/pd.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|