1
|
Manassero E, Renna A, Milano L, Sacchetti B. Lateral and Basal Amygdala Account for Opposite Behavioral Responses during the Long-Term Expression of Fearful Memories. Sci Rep 2018; 8:518. [PMID: 29323226 PMCID: PMC5765149 DOI: 10.1038/s41598-017-19074-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
Memories of fearful events can be maintained throughout the lifetime of animals. Here we showed that lesions of the lateral nucleus (LA) performed shortly after training impaired the retention of long-term memories, assessed by the concomitant measurement of two dissociable defensive responses, freezing and avoidance in rats. Strikingly, when LA lesions were performed four weeks after training, rats did not show freezing to a learned threat stimulus, but they were able to direct their responses away from it. Similar results were found when the central nucleus (CeA) was lesioned four weeks after training, whereas lesions of the basal nucleus (BA) suppressed avoidance without affecting freezing. LA and BA receive parallel inputs from the auditory cortex, and optogenetic inhibition of these terminals hampered both freezing and avoidance. We therefore propose that, at variance with the traditional serial flow of information model, long-term fearful memories recruit two parallel circuits in the amygdala, one relying on the LA-to-CeA pathway and the other relying solely on BA, which operate independently and mediate distinct defensive responses.
Collapse
Affiliation(s)
- Eugenio Manassero
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy. .,National Institute of Neuroscience, Turin, Italy.
| |
Collapse
|
2
|
Moaddab M, Mangone E, Ray MH, McDannald MA. Adolescent Alcohol Drinking Renders Adult Drinking BLA-Dependent: BLA Hyper-Activity as Contributor to Comorbid Alcohol Use Disorder and Anxiety Disorders. Brain Sci 2017; 7:brainsci7110151. [PMID: 29135933 PMCID: PMC5704158 DOI: 10.3390/brainsci7110151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023] Open
Abstract
Adolescent alcohol drinking increases the risk for alcohol-use disorder in adulthood. Yet, the changes in adult neural function resulting from adolescent alcohol drinking remain poorly understood. We hypothesized that adolescent alcohol drinking alters basolateral amygdala (BLA) function, making alcohol drinking BLA-dependent in adulthood. Male, Long Evans rats were given voluntary, intermittent access to alcohol (20% ethanol) or a bitter, isocaloric control solution, across adolescence. Half of the rats in each group received neurotoxic BLA lesions. In adulthood, all rats were given voluntary, intermittent access to alcohol. BLA lesions reduced adult alcohol drinking in rats receiving adolescent access to alcohol, but not in rats receiving adolescent access to the control solution. The effect of the BLA lesion was most apparent in high alcohol drinking adolescent rats. The BLA is essential for fear learning and is hyper-active in anxiety disorders. The results are consistent with adolescent heavy alcohol drinking inducing BLA hyper-activity, providing a neural mechanism for comorbid alcohol use disorder and anxiety disorders.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Elizabeth Mangone
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Madelyn H Ray
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
3
|
Davis M, Walker DL. Role of bed nucleus of the stria terminalis and amygdala AMPA receptors in the development and expression of context conditioning and sensitization of startle by prior shock. Brain Struct Funct 2013; 219:1969-82. [PMID: 23934654 DOI: 10.1007/s00429-013-0616-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022]
Abstract
A core symptom of post-traumatic stress disorder is hyper-arousal-manifest in part by increases in the amplitude of the acoustic startle reflex. Gewirtz et al. (Prog Neuropsychopharmacol Biol Psychiatry 22:625-648, 1998) found that, in rats, persistent shock-induced startle increases were prevented by pre-test electrolytic lesions of the bed nucleus of the stria terminalis (BNST). We used reversible inactivation to determine if similar effects reflect actions on (a) BNST neurons themselves versus fibers-of-passage, (b) the development versus expression of such increases, and (c) associative fear versus non-associative sensitization. Twenty-four hours after the last of three shock sessions, startle was markedly enhanced when rats were tested in a non-shock context. These increases decayed over the course of several days. Decay was unaffected by context exposure, and elevated startle was restored when rats were tested for the first time in the original shock context. Thus, both associative and non-associative components could be measured under different conditions. Pre-test intra-BNST infusions of the AMPA receptor antagonist NBQX (3 μg/side) blocked the non-associative (as did infusions into the basolateral amygdala) but not the associative component, whereas pre-shock infusions disrupted both. NBQX did not affect baseline startle or shock reactivity. These results indicate that AMPA receptors in or very near to the BNST are critical for the expression and development of non-associative shock-induced startle sensitization, and also for context fear conditioning, but not context fear expression. More generally, they suggest that treatments targeting the BNST may be clinically useful for treating trauma-related hyper-arousal and perhaps for retarding its development.
Collapse
Affiliation(s)
- Michael Davis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE (Yerkes Neuroscience Bldg), Rm. 5214, Atlanta, USA
| | | |
Collapse
|
4
|
Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 2012; 36:1773-802. [PMID: 22230704 PMCID: PMC3345303 DOI: 10.1016/j.neubiorev.2011.12.014] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 02/08/2023]
Abstract
Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last 30 years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
| | - Stephen Maren
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
- Department of Neuroscience Program, University of Michigan, Ann Arbor, MI, 48109-1043, USA
| |
Collapse
|
5
|
Kwapis JL, Jarome TJ, Schiff JC, Helmstetter FJ. Memory consolidation in both trace and delay fear conditioning is disrupted by intra-amygdala infusion of the protein synthesis inhibitor anisomycin. Learn Mem 2011; 18:728-32. [PMID: 22028394 DOI: 10.1101/lm.023945.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Memory for delay fear conditioning requires the synthesis of new mRNA and protein in the basolateral amygdala. It is currently unknown whether similar molecular processes in the amygdala are required for the formation of trace fear memory, in which a stimulus-free interval is inserted between the conditional stimulus (CS) and unconditional stimulus (UCS). Here, we show that infusion of the protein synthesis inhibitor anisomycin into the basolateral amygdala disrupts consolidation of both trace and delay fear conditioning. This is the first evidence that protein synthesis in the amygdala is necessary for the formation of both trace and delay fear memory.
Collapse
Affiliation(s)
- Janine L Kwapis
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Learning to contend with threats in the environment is essential to survival, but dysregulation of memories for traumatic events can lead to disabling psychopathology. Recent years have witnessed an impressive growth in our understanding of the neural systems and synaptic mechanisms underlying emotional memory formation. As a consequence, interest has emerged in developing strategies for suppressing, if not eliminating, fear memories. Here, I review recent work employing sophisticated behavioral, pharmacological, and molecular tools to target fear memories, placing these memories firmly behind the crosshairs of neurobiologically informed interventions.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1043, USA.
| |
Collapse
|
7
|
Parkes SL, Westbrook RF. Role of the basolateral amygdala and NMDA receptors in higher-order conditioned fear. Rev Neurosci 2011; 22:317-33. [DOI: 10.1515/rns.2011.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Sacco T, Sacchetti B. Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science 2010; 329:649-56. [PMID: 20689011 DOI: 10.1126/science.1183165] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mzeta activity and was associated with an increased activity of layers II-IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.
Collapse
Affiliation(s)
- Tiziana Sacco
- Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | | |
Collapse
|
9
|
Jimenez SA, Maren S. Nuclear disconnection within the amygdala reveals a direct pathway to fear. Learn Mem 2009; 16:766-8. [PMID: 19933881 DOI: 10.1101/lm.1607109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is widely believed that a descending serial circuit consisting of neural projections from the basolateral complex (BLA) to the central nucleus (CEA) of the amygdala mediates fear expression. Here we directly test this hypothesis and show that disconnecting the BLA and CEA with asymmetric neurotoxic lesions after Pavlovian fear conditioning in rats completely abolishes the expression of conditional freezing. These results demonstrate that neural projections from the BLA to CEA are essential for the expression of learned fear responses.
Collapse
Affiliation(s)
- Stephanie A Jimenez
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, USA
| | | |
Collapse
|
10
|
Poulos AM, Li V, Sterlace SS, Tokushige F, Ponnusamy R, Fanselow MS. Persistence of fear memory across time requires the basolateral amygdala complex. Proc Natl Acad Sci U S A 2009; 106:11737-41. [PMID: 19567836 PMCID: PMC2710655 DOI: 10.1073/pnas.0905257106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Indexed: 11/18/2022] Open
Abstract
Mammals evolved a potent fear-motivated defensive system capable of single-trial fear learning that shows no forgetting over the lifespan of the animal. The basolateral amygdala complex (BLA) is considered an essential component of this conditional fear learning system. However, recent studies challenge this view and suggest that plasticity within other brain regions (i.e., central nucleus of the amygdala) may be crucial for fear conditioning. In the present study, we examine the mnemonic limits of contextual fear conditioning in the absence of the BLA using overtraining and by measuring remote fear memories. After excitotoxic lesions of the BLA were created, animals underwent overtraining and were tested at recent and remote memory intervals. Here we show that animals with BLA lesions can learn normal levels of fear. However, this fear memory loses its adaptive features: it is acquired slowly and shows substantial forgetting when remote memory is tested. Collectively, these findings suggest that fear-related plasticity acquired by brain regions outside of the BLA, unlike those acquired in the intact animals, do so for a relatively time-limited period.
Collapse
Affiliation(s)
- Andrew M Poulos
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Sevelinges Y, Desgranges B, Ferreira G. The basolateral amygdala is necessary for the encoding and the expression of odor memory. Learn Mem 2009; 16:235-42. [PMID: 19304894 DOI: 10.1101/lm.1247609] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Conditioned odor avoidance (COA) results from the association between a novel odor and a delayed visceral illness. The present experiments investigated the role of the basolateral amygdala (BLA) in acquisition and retrieval of COA memory. To address this, we used the GABA(A) agonist muscimol to temporarily inactivate the BLA during COA acquisition or expression. BLA inactivation before odor-malaise pairing greatly impaired COA tested 3 d later. In contrast, muscimol microinfusion between odor and malaise spared retention. Moreover, inactivation of the BLA before pre-exposure to the odor prevented latent inhibition of COA. This suggests that neural activity in the BLA is essential for the formation of odor representation. BLA inactivation before the retrieval test also blocked COA memory expression when performed either 3 d (recent memory) or 28 d (remote memory) after acquisition. This effect was transitory as muscimol-treated animals were not different from controls during the subsequent extinction tests. Moreover, muscimol infusion in the BLA neither affected olfactory perception nor avoidance behavior, and it did not induce a state-dependent learning. Altogether, these findings suggest that neural activity in the BLA is required for the encoding and the retrieval of odor memory. Moreover, the BLA seems to play a permanent role in the expression of COA.
Collapse
Affiliation(s)
- Yannick Sevelinges
- Laboratoire de Comportement, Neurobiologie et Adaptation, CNRS UMR 6175, INRA UMR 85, Université Tours, Nouzilly, France
| | | | | |
Collapse
|
12
|
Antoniadis EA, Winslow JT, Davis M, Amaral DG. The nonhuman primate amygdala is necessary for the acquisition but not the retention of fear-potentiated startle. Biol Psychiatry 2009; 65:241-8. [PMID: 18823878 PMCID: PMC2745275 DOI: 10.1016/j.biopsych.2008.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND In a previous study, we found that rhesus monkeys prepared with bilateral lesions of the amygdala failed to acquire fear-potentiated startle to a visual cue. However, a second group of monkeys, which received the lesion after training, successfully demonstrated fear-potentiated startle learned prior to the lesion. METHODS In the current experiment, the eight monkeys used in the second part of the original study, four of which had bilateral amygdala lesions and the four control animals, were trained using an auditory cue and tested in the fear-potentiated startle paradigm. This test was performed to determine whether they could acquire fear-potentiated startle to a new cue. RESULTS Monkeys with essentially complete damage to the amygdala (based on histological analysis) that had retained and expressed fear-potentiated startle to a visual cue learned before the lesion failed to acquire fear-potentiated startle to an auditory cue when training occurred after the lesion. CONCLUSIONS The results suggest that while the nonhuman primate amygdala is essential for the initial acquisition of fear conditioning, it does not appear to be necessary for the memory and expression of conditioned fear. These findings are discussed in relation to a network of connections between the amygdala and the orbitofrontal cortex that may subserve different component processes of fear conditioning.
Collapse
Affiliation(s)
- Elena A. Antoniadis
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California 95618
- California National Primate Research Center, University of California, Davis, Davis, California 95618
| | | | - Michael Davis
- Yerkes National Primate Research Center, Emory University Atlanta, Georgia 30320
- Department of Psychiatry and Behavioral Sciences and Center for Behavioral Neuroscience, Emory University Atlanta, Georgia 30320
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California 95618
- California National Primate Research Center, University of California, Davis, Davis, California 95618
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California, Davis, Davis, California 95618
| |
Collapse
|
13
|
Pistell PJ, Falls WA. Extended fear conditioning reveals a role for both N-methyl-D-aspartic acid and non-N-methyl-D-aspartic acid receptors in the amygdala in the acquisition of conditioned fear. Neuroscience 2008; 155:1011-20. [PMID: 18675886 DOI: 10.1016/j.neuroscience.2008.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Pavlovian conditioning is a useful tool for elucidating the neural mechanisms involved with learning and memory, especially in regard to the stimuli associated with aversive events. The amygdala has been repeatedly implicated as playing a significant role in the acquisition and expression of fear. If the amygdala is critical for the acquisition of fear, then it should contribute to this processes regardless of the parameters used to induce or evaluate conditioned fear. A series of experiments using reversible inactivation techniques evaluated the role of the amygdala in the acquisition of conditioned fear when training was conducted over several days in rats. Fear-potentiated startle was used to evaluate the acquisition of conditioned fear. Pretraining infusions of N-methyl-d-aspartic acid (NMDA) or non-NMDA receptor antagonists alone into the amygdala interfered with the acquisition of fear early in training, but not later. Pretraining infusions of a cocktail consisting of both an NMDA and non-NMDA antagonist interfered with the acquisition of conditioned fear across all days of training. Taken together these results suggest the amygdala may potentially be critical for the acquisition of conditioned fear regardless of the parameters utilized.
Collapse
Affiliation(s)
- P J Pistell
- Department of Psychology, The University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
14
|
Abstract
AIM To establish a link between rCBF assessed with Tc-ECD SPET and the clinical manifestation of the disease. METHODS We performed the study on 11 patients (five girls and six boys; mean age 11.2 years) displaying autistic behaviour and we compared their data with that of an age-matched reference group of eight normal children. A quantitative analysis of rCBF was performed calculating a perfusion index (PI) and an asymmetry index (AI) in each lobe. Images were analysed with statistical parametric mapping software, following the spatial normalization of SPET images for a standard brain. RESULTS A statistically significant (P=0.003) global reduction of CBF was found in the group of autistic children (PI=1.07+/-0.07) when compared with the reference group (PI=1.25+/-0.12). Moreover, a significant difference was also observed for the right-to-left asymmetry of hemispheric perfusion between the control group and autistic patients (P=0.0085) with a right prevalence greater in autistic (2.90+/-1.68) with respect to normal children (1.12+/-0.49). Our data show a significant decrease of global cerebral perfusion in autistic children in comparison with their normal counterparts and the existence of left-hemispheric dysfunction, especially in the temporo-parietal areas devoted to language and the comprehension of music and sounds. CONCLUSION We suggest that these abnormal areas are related to the cognitive impairment observed in autistic children, such as language deficits, impairment of cognitive development and object representation, and abnormal perception and responses to sensory stimuli. Tc-ECD SPET seems to be sensitive in revealing brain blood flow alterations and left-to-right asymmetries, when neuroradiological patterns are normal.
Collapse
|
15
|
Santucci AC, Madeira E. Anxiogenesis in adult rats treated chronically with cocaine during adolescence: effects of extended abstinence and 8-OH-DPAT treatment. Brain Res Bull 2008; 76:402-11. [PMID: 18502317 DOI: 10.1016/j.brainresbull.2008.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 11/30/2022]
Abstract
Our laboratory has recently observed the development of an anxiogenic response after a short abstinence period ( approximately 10 days) in young adult rats treated repeatedly with cocaine during adolescence. The present study was conducted to determine if this effect persists into adulthood following extended durations of abstinence and whether it could be modulated with the 5-HT(1A) agonist (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT). Accordingly, 30-day-old rats were injected with either 10mg/kg cocaine or saline for 8 consecutive days. Approximately 8 weeks after the final injection, anxiety levels in subjects were assessed with an elevated zero maze with a second assessment performed 4 weeks thereafter. Shortly prior to each test session, half the subjects in each of the two adolescent drug conditions received injections of 300 microg/kg 8-OH-DPAT while the other half received injections of the vehicle. Based on total time spent in the open areas of the maze, the results obtained at the first abstinent duration indicated that adolescent cocaine treatment did not induce an anxiogenic response. Assessment of maze behavior at the second abstinent duration was aided with a digital tracking and computerized scoring system (LimeLight, Actimetrics). Similar to the results obtained at the first abstinent duration, the amount of time spent in the open areas of the maze was unrelated to prior cocaine treatment. However, cocaine-treated rats did show evidence of an anxiogenic response at this abstinent duration based on more frequent entries into and out of the open and enclosed areas of the maze, more frequent and longer durations of exploratory bouts beyond the perimeter of the maze, excessive number of cautious protrusions into the open areas, and faster running velocities through the open areas. These results were not artifacts of generalized motor activation in that comparable total distance traveled scores were noted for all subjects. Treatment with 8-OH-DPAT shortly prior to elevated zero maze testing normalized these behaviors induced by adolescent cocaine. It is concluded that the anxiogenic response produced by cocaine exposure during adolescence persists 12 weeks beyond cessation of drug treatment and that this effect is reversible with 8-OH-DPAT. In addition, the results underscore the importance of taking multiple measures when assessing anxiety in experimental animals. Implications for the neurobiology of drug abuse and the role of serotonin are discussed.
Collapse
Affiliation(s)
- Anthony C Santucci
- Department of Psychology, Manhattanville College, 2900 Purchase Street, Purchase, NY 10577, United States.
| | | |
Collapse
|
16
|
Rana SA, Parker LA. Differential effects of neurotoxin-induced lesions of the basolateral amygdala and central nucleus of the amygdala on lithium-induced conditioned disgust reactions and conditioned taste avoidance. Behav Brain Res 2008; 189:284-97. [PMID: 18299156 DOI: 10.1016/j.bbr.2008.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 11/29/2022]
Abstract
When rats are intraorally exposed to saccharin solution that has previously been paired with lithium chloride (LiCl), they display Pavlovian conditioned disgust reactions. When exposed to LiCl-paired saccharin solution by bottle, they display suppressed instrumental approach to the bottle resulting in suppressed consumption. The present experiments demonstrated that while neither neurotoxin-induced lesions of the basolateral amygdala (BLA) nor the central nucleus of the amygdala (CeA) attenuated the display of Pavlovian conditioned disgust reactions, lesions of the BLA (but not the CeA) attenuated instrumental conditioned avoidance of the taste. The results are discussed in light of current models of the role of the amygdala in aversive learning.
Collapse
Affiliation(s)
- Shadna A Rana
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
| | | |
Collapse
|
17
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
18
|
Schroeder BW, Shinnick-Gallagher P. Fear learning induces persistent facilitation of amygdala synaptic transmission. Eur J Neurosci 2006; 22:1775-83. [PMID: 16197518 DOI: 10.1111/j.1460-9568.2005.04343.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the maintenance phase of fear memory, synaptic transmission is potentiated and the stimulus requirements and signalling mechanisms are altered for long-term potentiation (LTP) in the cortico-lateral amygdala (LA) pathway. These findings link amygdala synaptic plasticity to the coding of fear memories. Behavioural experiments suggest that the amygdala serves to store long-term fear memories. Here we provide electrophysiological evidence showing that synaptic alterations in rats induced by fear conditioning are evident in vitro 10 days after fear conditioning. We show that synaptic transmission was facilitated and that high-frequency stimulation dependent LTP (HFS-LTP) of the cortico-lateral amygdala pathway remained attenuated 10 days following fear conditioning. Additionally, we found that the low-frequency stimulation dependent LTP (LFS-LTP) measured 24 h after fear conditioning was absent 10 days post-training. The persistent facilitation of synaptic transmission and occlusion of HFS-LTP suggests that, unlike hippocampal coding of contextual fear memory, the cortico-lateral amygdala synapse is involved in the storage of long-term fear memories. However, the absence of LFS-LTP 10 days following fear conditioning suggests that amygdala physiology 1 day following fear learning may reflect a dynamic state during memory stabilization that is inactive during the long-term storage of fear memory. Results from these experiments have significant implications regarding the locus of storage for maladaptive fear memories and the synaptic alterations induced by these memories.
Collapse
Affiliation(s)
- Bradley W Schroeder
- Department of Pharmacology and Toxicology, Neuroscience Graduate Program, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1031, USA
| | | |
Collapse
|
19
|
Merino SM, Maren S. Hitting Ras where it counts: Ras antagonism in the basolateral amygdala inhibits long-term fear memory. Eur J Neurosci 2006; 23:196-204. [PMID: 16420429 DOI: 10.1111/j.1460-9568.2005.04546.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have implicated the Ras/mitogen-activated protein kinase (MAPK) pathway in Pavlovian fear conditioning. RasGRF1 knockout mice show significant deficits in acquisition of long-term fear memories and long-term potentaition (LTP) in the basolateral amygdala (BLA). MAPK kinase inhibition also impairs fear conditioning and amygdaloid LTP. However, there is no direct evidence to date for the involvement of Ras itself in fear conditioning. To address this issue, we examined the effects of intra-amygdala infusions of the selective Ras antagonist farnesylthiosalicylic acid (FTS) on the acquisition and expression of conditional freezing in rats. Micro-infusions of FTS into the BLA prior to contextual fear conditioning significantly impaired acquisition of long-term contextual fear memory in a dose-dependent manner. Post-training FTS infusions had no effect on acquisition of long-term fear memory. The effects of FTS on fear conditioning were specific for the BLA. Finally, intra-amygdala infusions of FTS inhibited MAPK activation in BLA. Collectively, these results provide further evidence for the involvement of amygdaloid Ras in the acquisition of long-term conditional fear memory.
Collapse
Affiliation(s)
- Stephen M Merino
- Neuroscience Graduate Program, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109-1109, USA
| | | |
Collapse
|
20
|
Abstract
The world is a dangerous place. Whether this danger takes the form of an automobile careening toward you or a verbal threat from a stranger, your brain is highly adapted to perceive such threats, organize appropriate defensive behaviors, and record the circumstances surrounding the experience. Indeed, memories of fearful events serve a critical biological function by allowing humans and other animals to anticipate future dangers. But these memories can also feed pathological fear, yielding crippling clinical conditions such as panic disorder. In this review, the author will examine how the brain builds fear memories and how these memories come to be suppressed when they no longer predict danger. The review will focus on the fundamental role for synapses in the amygdala in acquiring fear memories and the function of neural circuits interconnecting the amygdala, hippocampus, and prefrontal cortex in modulating the expression of such memories once learned. The discovery of the neural architecture for fear memory highlights the powerful interplay between animal and human research and the promise for understanding the neurobiological mechanisms of other complex cognitive phenomena.
Collapse
Affiliation(s)
- Stephen Maren
- University of Michigan, Ann Arbor, MI 48109-1109, USA.
| |
Collapse
|
21
|
Waddell J, Dunnett C, Falls WA. C57BL/6J and DBA/2J mice differ in extinction and renewal of extinguished conditioned fear. Behav Brain Res 2004; 154:567-76. [PMID: 15313046 DOI: 10.1016/j.bbr.2004.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/12/2004] [Accepted: 03/27/2004] [Indexed: 10/26/2022]
Abstract
While a number of studies have examined the acquisition and expression of conditioned fear in inbred mice, very few have examined extinction of conditioned fear in inbred mice and few attempts have been made to compare extinction learning between inbred strains. Because inbred strains differ in a number of physiological and biochemical variables, differences in extinction learning may provide insight into the genetic influence of extinction learning. The purpose of this study was to examine extinction and renewal of conditioned fear in two common inbred strains of mice. C57BL/6J and DBA/2J mice were conditioned with pairings of either a tone or light and foot shock in a single session. On the following 4 days, mice were given extinction training, consisting of tone or light alone trials (Experiment 1A). C57 mice exhibited robust spontaneous recovery between sessions, but did extinguish both within and between sessions. DBA mice extinguished more quickly relative to C57 mice, and this extinction was stable between sessions (i.e., DBA mice did not exhibit spontaneous recovery). The rapid loss of fear in DBA relative to C57 mice was extinction-dependent and not merely due to poor long-term memory (Experiment 1B). Renewal testing (Experiment 2) replicated the strain difference in extinction and also showed that DBA mice have a deficit in the context specificity of extinction. C57 mice, but not DBA mice showed renewal of extinguished fear when tested in a context different from the one in which extinction training took place. These data suggest that the nature of extinction learning is influenced by characteristics of the inbred mouse strain.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Psychology, University of Vermont, John Dewey Hall, 2 Colchester Avenue, Burlington, VT 05405, USA
| | | | | |
Collapse
|
22
|
Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 2004; 24:3810-5. [PMID: 15084662 PMCID: PMC6729345 DOI: 10.1523/jneurosci.4100-03.2004] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basolateral amygdala (BLA) is intimately involved in the development of conditional fear. Converging lines of evidence support a role for this region in the storage of fear memory but do not rule out a time-limited role in the memory consolidation. To examine this issue, we assessed the stability of BLA contribution to fear memories acquired across the adult lifetime of rats. Fear conditioning consisted of 10 tone-shock pairings in one context (remote memory), followed 16 months later by 10 additional tone-shock pairings with a novel tone in a novel context (recent memory). Twenty-four hours after recent training, rats were given NMDA or sham lesions of the BLA. Contextual and tone freezing were independently assessed in individual test sessions. Sham-lesioned rats showed high and comparable levels of freezing across all context and tone tests. In contrast, BLA-lesioned rats displayed robust freezing deficits across both recent and remote tests. Subsequent open-field testing revealed no effects of BLA lesions on activity patterns in a dark open field or during bright light exposure. Lesioned rats were able to reacquire normal levels of context-specific freezing after an overtraining procedure (76 unsignaled shocks). Together, these findings indicate that BLA lesions do not disrupt freezing behavior by producing hyperactivity, an inability to suppress behavior, or an inability to freeze. Rather, the consistent pattern of freezing deficits at both training-to-lesion intervals supports a role for the BLA in the permanent storage of fear memory.
Collapse
Affiliation(s)
- Greg D Gale
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095-1563, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Holahan MR, White NM. Intra-amygdala muscimol injections impair freezing and place avoidance in aversive contextual conditioning. Learn Mem 2004; 11:436-46. [PMID: 15254220 PMCID: PMC498326 DOI: 10.1101/lm.64704] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rats were trained by shocking them in a closed compartment. When subsequently tested in the same closed compartment with no shock, normal rats showed an increased tendency to freeze. They also showed an increased tendency to actively avoid the compartment when given access to an adjacent neutral compartment for the first time. Amygdala inactivation with bilateral muscimol injections before training attenuated freezing and eliminated avoidance during the test. Rats trained in a normal state and given intra-amygdala muscimol injections before the test did not freeze or avoid the shock-paired compartment. This pattern of effects suggests that amygdala inactivation during training impaired acquisition of a conditioned response (CR) due either to inactivation of a neural substrate essential for its storage or to elimination of a memory modulation effect that facilitates its storage in some other brain region(s). The elimination of both freezing and active avoidance by amygdala inactivation during testing suggests that neither of these behaviors is the CR. The possibility that the CR is a set of internal responses that produces both freezing and avoidance as well as other behavioral effects is discussed.
Collapse
Affiliation(s)
- Matthew R Holahan
- Department of Psychology, McGill University, Montréal, Québec H3A 1B1, Canada.
| | | |
Collapse
|
24
|
Holahan MR, White NM. Amygdala inactivation blocks expression of conditioned memory modulation and the promotion of avoidance and freezing. Behav Neurosci 2004; 118:24-35. [PMID: 14979780 DOI: 10.1037/0735-7044.118.1.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rats were exposed to shock-paired cues immediately after training on an appetitive preference task. Elevated levels of freezing in and active avoidance of the shock-paired compartment were observed, and memory for the appetitive task was improved when tested 24 hr later. Intra-amygdala muscimol injected before the posttraining exposure eliminated freezing, avoidance, and memory modulation. The blockade of both freezing and active avoidance, which involve competing behavioral tendencies, makes it unlikely that the amygdala itself generates either behavior. The elimination of conditioned memory modulation suggests that conditioned neurohormonal responses were blocked. These conditioned internal responses may comprise the intervening variable of "conditioned fear" and may promote observable behaviors, the form of which is determined by the environment in which they occur.
Collapse
|
25
|
Jasnow AM, Cooper MA, Huhman KL. N-methyl-D-aspartate receptors in the amygdala are necessary for the acquisition and expression of conditioned defeat. Neuroscience 2004; 123:625-34. [PMID: 14706775 DOI: 10.1016/j.neuroscience.2003.10.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we describe a biologically relevant model called conditioned defeat that is used to examine behavioral responses to social defeat in Syrian hamsters. In this model experimental animals that are normally aggressive experience social defeat and consequently display high levels of submissive/defensive behavior even in response to non-threatening conspecifics. N-methyl-D-aspartate (NMDA) receptors within the amygdala play an important role in conditioned fear; therefore, the purpose of this study was to examine whether NMDA receptors within the amygdala are necessary for the acquisition and expression of conditioned defeat. Specifically, the present study examined whether bilateral infusions of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5; 0.625, 1.25, 2.5, 5.0, 10.0 microg) into the amygdala would block the acquisition of conditioned defeat. Subsequently, we examined whether bilateral infusions of AP5 (0.625, 1.25, 2.5, 5.0 microg) into the amygdala prior to testing would block the expression of conditioned defeat. Infusions of AP5 into the amygdala immediately before the initial social defeat significantly reduced submissive/defensive behavior when hamsters were tested the following day with a non-aggressive intruder. Similarly, infusions of AP5 into the amygdala immediately before exposure to a non-aggressive intruder significantly attenuated the display of submissive/defensive behavior. These data demonstrate that NMDA receptors are necessary for both the acquisition and expression of conditioned defeat. We believe that conditioned defeat is a unique and valuable animal model with which to investigate the neurobiology of fear-related changes in social behavior.
Collapse
Affiliation(s)
- A M Jasnow
- Center for Behavioral Neuroscience, Department of Psychology, 33 Gilmer Street, Georgia State University, 30303-3082, Atlanta GA, USA
| | | | | |
Collapse
|
26
|
Goosens KA, Maren S. Pretraining NMDA receptor blockade in the basolateral complex, but not the central nucleus, of the amygdala prevents savings of conditional fear. Behav Neurosci 2003; 117:738-50. [PMID: 12931959 DOI: 10.1037/0735-7044.117.4.738] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The acquisition of conditional freezing is abolished by N-methyl-D-aspartate (NMDA) receptor antagonism in the basolateral complex of the amygdala (BLA) during fear conditioning, suggesting that memory formation is prevented. The present study examined whether there is residual memory, or "savings," for fear conditioning in rats trained under amygdaloid NMDA receptor blockade. Rats infused with D,L-2-amino-5-phosphonovalerate (APV) into the BLA or central nucleus of the amygdala (CEA) during fear conditioning did not acquire either auditory or contextual fear conditioning. However, savings of conditional fear was exhibited by rats infused with APV into the CEA but not the BLA. These results suggest that both the BLA and CEA play a critical role in the acquisition of conditional fear but that the BLA is able to process and retain some aspects of aversive memories in the absence of the CEA.
Collapse
Affiliation(s)
- Ki A Goosens
- Department of Psychology, University of Michigan, Ann Arbor 48109-1109, USA
| | | |
Collapse
|
27
|
Lehmann H, Treit D, Parent MB. Spared anterograde memory for shock-probe fear conditioning after inactivation of the amygdala. Learn Mem 2003; 10:261-9. [PMID: 12888544 PMCID: PMC202316 DOI: 10.1101/lm.54103] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that amygdala lesions impair avoidance of an electrified probe. This finding has been interpreted as indicating that amygdala lesions reduce fear. It is unclear, however, whether amygdala-lesioned rats learn that the probe is associated with shock. If the lesions prevent the formation of this association, then pretraining reversible inactivation of the amygdala should impair both acquisition and retention performance. To test this hypothesis, the amygdala was inactivated (tetrodotoxin; TTX; 1 ng/side) before a shock-probe acquisition session, and retention was tested 4 d later. The data indicated that, compared with rats infused with vehicle, rats infused with TTX received more shocks during the acquisition session, but more importantly, were not impaired on the retention test. In Experiment 2, we assessed whether the spared memory on the retention test was caused by overtraining during acquisition. We used the same procedure as in Experiment 1, with the exception that the number of shocks the rats received during the acquisition session was limited to four. Again the data indicated that amygdala inactivation did not impair performance on the retention test. These results indicate that amygdala inactivation does not prevent the formation of an association between the shock and the probe and that shock-probe deficits during acquisition likely reflect the amygdala's involvement in other processes.
Collapse
Affiliation(s)
- Hugo Lehmann
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada H4B 1R6.
| | | | | |
Collapse
|
28
|
Abstract
The nature and mechanisms of synaptic plasticity in the amygdala and the relation of amygdaloid plasticity to behavior are exciting new areas of study in neuroscience. These issues were at the heart of presentations by Paul Chapman, Michael Fanselow, Patricia Shinnick-Gallagher, and Michael Rogawski in a session entitled "Long-Term Plasticity in Amygdala Synaptic Transmission" that was held at the conference featured in this volume. In this chapter, I briefly summarize these talks and give my perspective on the presentations as the session chair. I argue that we must first understand the role of the amygdala in learning and memory in order to understand the contribution of amygdaloid synaptic plasticity to behavior. Although it is generally agreed that the amygdala is involved in several forms of emotional learning and memory such as pavlovian fear conditioning, a recent debate has emerged concerning the precise role of the amygdala in learning versus performing fear responses. I discuss data from my laboratory that unravel this issue. I argue that the basolateral complex of the amygdala (BLA) normally plays an essential role in associative processes in fear conditioning. Nonetheless, rats with BLA lesions acquire and express conditional fear under some conditions. A neuroanatomical model that accounts for these data is presented.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1109, USA.
| |
Collapse
|
29
|
Abstract
Lesions of the frontotemporal region of the amygdala, which includes lateral and basal nuclei, cause a loss of conditional fear responses, such as freezing, even when the lesions are made over a year and a half from the original training. These amygdala-damaged animals are not hyperactive and show normal reactivity to strong stimuli such as bright lights. After receiving tone-mild shock pairings rats normally display an appropriately weak response when exposed to the tone. Rats' fear of the tone can be inflated by giving them exposure to strong shocks in the absence of the tone between training and testing. This inflation of fear memory is abolished if the frontotemporal amygdala is inactivated by muscimol only during the inflation treatment with strong shocks. Based on such findings we suggest that the frontotemporal amygdala permanently encodes a memory for the hedonic value of the aversive stimulus used to condition fear.
Collapse
Affiliation(s)
- Michael S Fanselow
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095-1563, USA.
| | | |
Collapse
|
30
|
Anagnostaras SG, Gale GD, Fanselow MS. The hippocampus and Pavlovian fear conditioning: reply to Bast et al. Hippocampus 2003; 12:561-5. [PMID: 12201641 DOI: 10.1002/hipo.10071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Goosens KA, Maren S. Long-term potentiation as a substrate for memory: evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Hippocampus 2003; 12:592-9. [PMID: 12440575 DOI: 10.1002/hipo.10099] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent reports have raised concerns about the ability of long-term potentiation (LTP) to account for associative learning and memory. In this paper, we review the many mechanistic similarities between one form of associative learning, Pavlovian fear conditioning, and amygdaloid LTP. We then address many of the criticisms levied against LTP within the framework of fear conditioning. We believe that many of the apparent discrepancies between LTP and behavior can be generally accounted for by a failure to appreciate that learned behavior is supported by multiple synapses in an extensive network of brain structures. We conclude that LTP remains a viable substrate for memory.
Collapse
Affiliation(s)
- Ki A Goosens
- Department of Psychology, University of Michigan, Ann Arbor 48109-1109, USA
| | | |
Collapse
|
32
|
Walker DL, Rattiner LM, Davis M. Group II metabotropic glutamate receptors within the amygdala regulate fear as assessed with potentiated startle in rats. Behav Neurosci 2002; 116:1075-83. [PMID: 12492306 DOI: 10.1037/0735-7044.116.6.1075] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contribution to fear and fear learning of amygdala Group II metabotropic glutamate receptors was examined in rats. Pretest intra-amygdala infusions of the Group II receptor agonist LY354740 (0.3 or 1.0 microg/side) significantly disrupted fear-potentiated startle. The same rats were unimpaired when later tested without drug. The Group II receptor agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (3.0 microg/side) mimicked the effect of LY354740, and coadministration of the Group II receptor antagonist LY341495 (0.3 microg/side) prevented it. Pretraining LY354740 (0.3 microg/side) infusions also blocked learning. The effects on learning and performance were significantly less pronounced in rats with misplaced cannulas. Thus, Group II metabotropic receptors within or very near the amygdala regulate fear and fear learning and are a potential target for anxiolytic compounds.
Collapse
Affiliation(s)
- David L Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Almira Vazdarjanova
- Arizona Research Laboratories, Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
34
|
Tazumi T, Okaichi H. Effect of lesions in the lateral nucleus of the amygdala on fear conditioning using auditory and visual conditioned stimuli in rats. Neurosci Res 2002; 43:163-70. [PMID: 12067752 DOI: 10.1016/s0168-0102(02)00032-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lateral nucleus of the amygdala (LA) is believed to be the site of auditory conditioned stimulus (CS) relay in classical fear conditioning. The present study attempts to determine whether the LA is specifically involved in fear conditioning using an auditory CS. Seven rats with lesions in the LA (Tone-Lateral group) and eight sham-operated rats in the control group were trained using an auditory CS (overtone based on an 800 Hz fundamental tone, 70 dB, 3.7 s) paired with foot shock (1.0 mA, 0.5 s). Five rats with lesions in the LA (Light-Lateral group) and eight unoperated rats in the control group were trained using a visual CS (25 W light, 3.7 s). The behavioral index of fear conditioning was a potentiation of the startle reflex in the presence of CS. All rats in the control group and Light-Lateral group showed this potentiation, whereas those in the Tone-Lateral group did not. These results suggest that the LA is an input site of auditory CS information into the amygdala, and that it is not a site of visual CS information input in fear conditioning. Thus, each modality of CS may have a specific subnucleus of the amygdala that mediates fear conditioning.
Collapse
Affiliation(s)
- Tooru Tazumi
- Department of Physiology, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| | | |
Collapse
|
35
|
Holahan MR, White NM. Conditioned memory modulation, freezing, and avoidance as measures of amygdala-mediated conditioned fear. Neurobiol Learn Mem 2002; 77:250-75. [PMID: 11848722 DOI: 10.1006/nlme.2001.4012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three conditioned aversive responses were used to infer the existence of an unobservable central state of "conditioned fear," and the roles of certain amygdala subregions in producing these responses were investigated. Rats received tone-shock pairings in one compartment of a shuttle box and no tones or shocks in the other, distinctive, compartment. They were then trained to find food in one arm of a Y-maze. After the final training trial they were exposed to different sets of stimuli in the shuttle box with no shock. Twenty-four hours later rats that had received immediate posttraining exposure to the conditioned stimuli (in the shock-paired compartment) made significantly more correct responses on the Y-maze than rats that had been exposed to the neutral stimuli (in the no-shock compartment) or rats that had received delayed posttraining exposure to the conditioned stimuli. This constitutes a demonstration of posttraining memory modulation by conditioned aversive stimuli. Freezing increased during posttraining exposure to the conditioned stimuli compared to the neutral stimuli. When subsequently allowed to move freely between the two compartments, the rats in all groups also showed significant conditioned avoidance of the compartment containing the conditioned stimuli. In a second experiment the effects of lesions confined to specific parts of the amygdala on the three conditioned responses (memory modulation, freezing, avoidance) were tested. Lesions of the central nucleus impaired all three conditioned responses; lesions of the medial nucleus impaired conditioned modulation and avoidance. These lesions had no effect on freezing during the training trials. Lesions of the lateral and basolateral nuclei attenuated freezing during both training and testing. The findings suggest that the central and medial nuclei of the amygdala may be important parts of neural circuits mediating conditioned responses that constitute conditioned aversive states, but that conditioned freezing may be mediated independently.
Collapse
Affiliation(s)
- Matthew R Holahan
- Department of Psychology, McGill University, Montreal, Québec, Canada H3A 1B1.
| | | |
Collapse
|
36
|
Walker DL, Davis M. The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 2002; 71:379-92. [PMID: 11830172 DOI: 10.1016/s0091-3057(01)00698-0] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using a paradigm known as fear-potentiated startle, we have examined the neurobiological substrates of Pavlovian fear conditioning. In these experiments, rats are trained to fear an initially neutral stimulus by pairing that stimulus with shock. The amount of fear elicited by the stimulus [i.e., now a conditioned stimulus (CS)] is later assessed by presenting startle-eliciting noise bursts both in the presence and also the absence of the CS. After training, startle responses are typically greater in the presence of the CS. Findings reviewed here suggest that amygdala N-methyl-D-aspartate (NMDA) receptors play a key role in triggering the neural changes that support fear learning and also the loss of fear that accompanies extinction training. Amygdala (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors also participate in fear learning. However, unlike NMDA receptor antagonists, AMPA receptor antagonists also block fear-potentiated startle when infused prior to testing. Very recent data indicate that glutamate metabotropic Group II receptor agonists also block fear learning when infused into the amygdala prior to training, and block fear-potentiated startle when infused prior to testing. A fuller understanding of the role of amygdala glutamate systems in fear and fear learning may suggest novel pharmacological approaches to the treatment of clinical anxiety disorders.
Collapse
Affiliation(s)
- David L Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Woodruff Memorial Building, 1639 Pierce Drive, Suite 4000, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Abstract
Recently, R. Richardson, A. Vishney, and J. Lee (1999) reported that ambient odor cues that were previously paired with footshock potentiate the acoustic startle response in rats. The authors of the present study extend those findings by using a discrete 4-s amyl acetate odor paired with footshock to address several parametric issues that might be important for using odorants as conditioned stimuli (CSs) in this paradigm. Amyl acetate (5%) had no significant effect on startle in untrained rats but did potentiate startle in rats that received 1, 2, 5, or 10 odor-shock pairings. Fear-potentiated startle decreased but was still significant up to 40 days after conditioning and could be measured in test trials separated by as little as 30 s. The magnitude of potentiated startle decreased with decreasing concentrations of amyl acetate (5%-5 x 10-9%). The anxiolytic compound buspirone (10 mg/kg) significantly attenuated olfactory-mediated fear-potentiated startle.
Collapse
Affiliation(s)
- Gayla Y Paschall
- Department of Psychiatry and Behavioral Science and Center for Behavioral Neuroscience, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
38
|
Maren S. Is there savings for pavlovian fear conditioning after neurotoxic basolateral amygdala lesions in rats? Neurobiol Learn Mem 2001; 76:268-83. [PMID: 11726237 DOI: 10.1006/nlme.2001.4042] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considerable evidence indicates an important role for amygdaloid nuclei in both the acquisition and expression of Pavlovian fear conditioning. Recent reports from my laboratory have focused on the impact of neurotoxic lesions of the basolateral complex of the amygdala (BLA) on conditional freezing behavior in rats. In these studies, I have observed severe effects of posttraining BLA lesions on the expression of conditional freezing even after extensive presurgical overtraining (25-75 trials). Moreover, I have found no evidence for sparing of fear memory (i.e., savings) in these rats when I assess their rate of reacquisition relative to BLA rats receiving minimal training (1 trial). In these experiments, freezing behavior was assessed using a conventional time-sampling procedure and expressed as a response probability. Although this measure is well established in the literature, it is conceivable that it is not sensitive to spared memory in rats with BLA lesions. To address this issue, I present a more detailed analysis of freezing behavior that quantifies latency to freeze, the number of freezing bouts, the duration of freezing bouts, and the probability distribution of bout lengths. I also include control data from untrained (no-shock) rats. Consistent with my earlier reports, I find no evidence of savings of fear memory in rats with neurotoxic BLA lesions using several measures of freezing behavior. These results reiterate the conclusion that fear memory, as it is expressed in freezing behavior, requires neurons in the BLA.
Collapse
Affiliation(s)
- S Maren
- Department of Psychology and Neuroscience Program, University of Michigan, 525 E. University Avenue, Ann Arbor, Michigan 48109-1109, USA.
| |
Collapse
|
39
|
Abstract
Learning the relationships between aversive events and the environmental stimuli that predict such events is essential to the survival of organisms throughout the animal kingdom. Pavlovian fear conditioning is an exemplar of this form of learning that is exhibited by both rats and humans. Recent years have seen an incredible surge in interest in the neurobiology of fear conditioning. Neural circuits underlying fear conditioning have been mapped, synaptic plasticity in these circuits has been identified, and biochemical and genetic manipulations are beginning to unravel the molecular machinery responsible for the storage of fear memories. These advances represent an important step in understanding the neural substrates of a rapidly acquired and adaptive form of associative learning and memory in mammals.
Collapse
Affiliation(s)
- S Maren
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1109, USA.
| |
Collapse
|
40
|
Abstract
The four papers in this issue of Hippocampus dealing with retrograde amnesia, together with relevant animal studies in the literature, are reviewed from the perspective of the anatomical location of the lesion and extent of damage to the brain. In order to evaluate the underlying damage in these and related prospective experimental studies, it is necessary to consider both the lesion techniques that were used as well as the care with which the resulting damage was determined. Both temporally graded and flat, ungraded retrograde amnesia have been reported, as well a lack of effects, following damage to structures in the medial temporal area. Most research has centered around damage to the hippocampus, but differences in selectivity of the lesions and behavioral testing procedures preclude any definite conclusions regarding the precise nature of the involvement of this structure. With a greater appreciation for the importance of the locus and extent of the damage, together with the kind of information being processed, it should be possible to obtain a better understanding of the neural substrates underlying retrograde amnesia.
Collapse
Affiliation(s)
- L E Jarrard
- Department of Psychology, Washington and Lee University, Lexington, Virginia 24450, USA.
| |
Collapse
|
41
|
Abstract
Dorsal hippocampal (DH) lesions produce a severe deficit in recently, but not remotely, acquired contextual fear without impairing memory of discrete training stimuli, i.e., DH lesions produce an anterograde and time-limited retrograde amnesia specific to contextual memory. These data are consistent with the standard model which posits temporary involvement of the hippocampus in recent memory maintenance. However, three recent controversies apparently weaken the case for a selective mnemonic role for the hippocampus in contextual fear. First, although retrograde amnesia (from posttraining lesions) is severe, anterograde amnesia (from pretraining lesions) may be mild or nonexistent. Second, a performance, rather than mnemonic, account of contextual freezing deficits in hippocampal-lesioned animals has been offered. Third, damage to the entire hippocampus, including the ventral hippocampus, can produce a dramatic and temporally stable disruption of context and tone fear. These data are reviewed and explanations are offered as to why they do not necessarily challenge the standard model of hippocampal memory function in contextual fear. Finally, a more complete description of the hippocampus' proposed role in contextual fear is offered, along with new data supporting this view. In summary, the data support a specific mnemonic role for the DH in the acquisition and consolidation of contextual representations.
Collapse
Affiliation(s)
- S G Anagnostaras
- Department of Psychology and Brain Research Institute, University of California, Los Angeles 90095-1563, USA
| | | | | |
Collapse
|
42
|
Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J Neurosci 2001. [PMID: 11245703 DOI: 10.1523/jneurosci.21-06-02186.2001] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuroanatomical and molecular basis of fear memory retrieval was studied by analyzing the expression of the plasticity-associated immediate early gene zif268. Cellular quantitative in situ hybridization revealed that zif268 is expressed within specific regions of the hippocampus and amygdala during fear memory retrieval. Within the hippocampus, increased expression of zif268 was observed within CA1 neurons, but not dentate gyrus neurons, during the retrieval of contextual, but not cued, fear associations. In contrast, zif268 expression was increased within neurons of the amygdala (lateral, basal, and central nuclei) during the retrieval of both contextual and cued fear memories. These results demonstrate activation of hippocampal CA1 neurons in contextual fear memory retrieval that was not merely a correlate of the behavioral expression of fear itself, because it was limited to the retrieval of contextual, and not cued, fear memories. Further studies revealed that the selective increase in hippocampal CA1 zif268 expression seen after contextual fear memory retrieval was limited to the retrieval of recent (24 hr) but not older (28 d) memories. These experiments represent the first demonstration that zif268 expression in specific neuronal populations is associated with memory retrieval and suggest that this gene may contribute to plasticity and reconsolidation accompanying the retrieval process.
Collapse
|
43
|
Goosens KA, Maren S. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn Mem 2001; 8:148-55. [PMID: 11390634 PMCID: PMC311374 DOI: 10.1101/lm.37601] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A large body of literature implicates the amygdala in Pavlovian fear conditioning. In this study, we examined the contribution of individual amygdaloid nuclei to contextual and auditory fear conditioning in rats. Prior to fear conditioning, rats received a large electrolytic lesion of the amygdala in one hemisphere, and a nucleus-specific neurotoxic lesion in the contralateral hemisphere. Neurotoxic lesions targeted either the lateral nucleus (LA), basolateral and basomedial nuclei (basal nuclei), or central nucleus (CE) of the amygdala. LA and CE lesions attenuated freezing to both contextual and auditory conditional stimuli (CSs). Lesions of the basal nuclei produced deficits in contextual and auditory fear conditioning only when the damage extended into the anterior divisions of the basal nuclei; damage limited to the posterior divisions of the basal nuclei did not significantly impair conditioning to either auditory or contextual CS. These effects were typically not lateralized, although neurotoxic lesions of the posterior divisions of the basal nuclei had greater effects on contextual fear conditioning when the contralateral electrolytic lesion was placed in the right hemisphere. These results indicate that there is significant overlap within the amygdala in the neural pathways mediating fear conditioning to contextual and acoustic CS, and that these forms of learning are not anatomically dissociable at the level of amygdaloid nuclei.
Collapse
Affiliation(s)
- K A Goosens
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1109, USA
| | | |
Collapse
|
44
|
Greba Q, Gifkins A, Kokkinidis L. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res 2001; 899:218-26. [PMID: 11311883 DOI: 10.1016/s0006-8993(01)02243-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.
Collapse
Affiliation(s)
- Q Greba
- Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | | | | |
Collapse
|
45
|
Maren S. Auditory fear conditioning increases CS-elicited spike firing in lateral amygdala neurons even after extensive overtraining. Eur J Neurosci 2000; 12:4047-54. [PMID: 11069601 DOI: 10.1046/j.1460-9568.2000.00281.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the influence of extensive overtraining (75 trials) of auditory fear conditioning on the expression of conditional stimulus (CS)-elicited spike firing in lateral amygdala (LA) neurons. Single units were recorded from chronic multichannel electrodes implanted in the LA of conscious and freely moving rats. In sequential training sessions, the rats received either five or 70 fear conditioning trials, which consisted of a white-noise CS and a coterminating footshock unconditional stimulus (US). Unpaired (sensitization) controls received the same number of trials, but the CS and US were explicitly unpaired. Paired CS-US presentations yielded robust increases in CS-elicited spike firing in LA neurons after both five and 70 conditioning trials, and the magnitude of the spike firing increases was correlated with the expression of conditional freezing to the CS. After 75 training trials, maximal conditioning-related increases in LA firing were exhibited within 20 ms of CS onset, indicating that this increase is mediated by direct thalamo-amygdala projections. There was no significant increase in CS-elicited spike firing or freezing behaviour in the unpaired group. These results complement amygdala lesion studies [e.g. Maren, S. (1999a) J. Neurosci., 19, 8696-8703] and support the view that the basolateral complex of the amygdala is involved in the encoding and storage of fear memories even after extensive overtraining.
Collapse
Affiliation(s)
- S Maren
- Department of Psychology and Neuroscience Program, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109-1109, USA.
| |
Collapse
|
46
|
Schauz C, Koch M. Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning. Learn Mem 2000; 7:393-9. [PMID: 11112798 PMCID: PMC311350 DOI: 10.1101/lm.33800] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The association between a conditioned stimulus (CS) and an unconditioned stimulus (US) in fear-conditioning depends on N-methyl-D-aspartate (NMDA) receptors in the basolateral amygdala complex (BLA). Latent inhibition (LI) is the retardation in learning due to nonreinforced presentation of the prospective CS before conditioning. Disruption of LI in rats is an animal model of schizophrenia, reflecting the deficits of schizophrenic patients in neglecting irrelevant information. We investigated whether the BLA is involved in LI of fear-potentiated startle. Infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP-5; 12.5 nmoles) into the BLA before preexposure of rats to the neutral stimulus prevent LI of fear-conditioning. We also demonstrated by the same method that a complex of thalamic nuclei, comprising the medial part of the medial geniculate nucleus, the posterior intralaminar nucleus, and the suprageniculate nucleus, is involved in fear-conditioning, but not in LI. This suggests that the presentation of an innocuous stimulus during preexposure leads to an NMDA receptor-dependent change of neurotransmission in the BLA, but not in the thalamus. Our data show that the BLA but not the thalamus regulates in LI of fear-potentiated startle. Furthermore, it supports the hypothesis that the inability of schizophrenic patients to ignore irrelevant stimuli may be caused by hypofunction of the glutamatergic transmission in the brain and suggests an involvement of the amygdala in the neuropathology of schizophrenia.
Collapse
Affiliation(s)
- C Schauz
- Animal Physiology, University of Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
47
|
Falls WA, Kogan JH, Silva AJ, Willott JF, Carlson S, Turner JG. Fear-potentiated startle, but not prepulse inhibition of startle, is impaired in CREBalphadelta-/- mutant mice. Behav Neurosci 2000; 114:998-1004. [PMID: 11085615 DOI: 10.1037/0735-7044.114.5.998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fear-potentiated startle was assessed in mice with a targeted disruption of the alpha and delta isoforms of the transcription factor cAMP response element binding protein (CREB) 24 hr after 5 tone + shock training trials. Whereas wild-type mice showed fear-potentiated startle that persisted up to 45 days after training, CREBalphadelta-/- mice failed to show fear-potentiated startle. However, CREBalphadelta-/- and wild-type mice had similar startle amplitudes and similar magnitudes of prepulse inhibition of startle, suggesting that CREBalphadelta-/- mice have no obvious sensory or motor deficits. These results add to the literature indicating that CREB-activated transcription plays a critical role in the formation of long-term memory and illustrate the utility of the fear-potentiated startle paradigm for assessing cognition in genetically altered mice.
Collapse
Affiliation(s)
- W A Falls
- Department of Psychology, University of Vermont, Burlington 05405, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Goosens KA, Holt W, Maren S. A role for amygdaloid PKA and PKC in the acquisition of long-term conditional fear memories in rats. Behav Brain Res 2000; 114:145-52. [PMID: 10996055 DOI: 10.1016/s0166-4328(00)00224-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although there is great interest in the cellular mechanisms underlying Pavlovian conditioning, few studies have directly examined the contribution of intracellular signaling pathways in the amygdala to the acquisition and expression of conditional fear memories. In the present study, we examined this issue by infusing 1-(5'-isoquinolinesulfonyl)-2-methylpiperazine (H7), a potent inhibitor of both protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), directly into the amygdala prior to fear conditioning or retention testing. We found that infusion of H7 prior to training attenuated long-term conditional fear in a dose-dependent manner (Experiment 1), but short-term fear memories were spared. The contribution of protein kinases to conditional fear was region-specific within the amygdala: infusion of H7 into the basolateral amygdala (BLA) but not the central nucleus of the amygdala (CEA) resulted in attenuated freezing (Experiment 2). Moreover, the deficits in fear conditioning produced by PKA/PKC inhibition were not modality-specific, insofar as intra-BLA H7 reduced both contextual and auditory fear. The effects of H7 on conditional freezing were not attributable to either state-dependency or performance deficits (Experiment 3). Together, these experiments suggest that amygdaloid PKA and PKC play an important role in the acquisition of fear memories.
Collapse
Affiliation(s)
- K A Goosens
- Department of Psychology, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109-1109, USA
| | | | | |
Collapse
|
49
|
Affiliation(s)
- S Maren
- Dept of Psychology, University of Michigan, Ann Arbor, MI 48109-1109, USA
| |
Collapse
|
50
|
Greba Q, Kokkinidis L. Peripheral and intraamygdalar administration of the dopamine D1 receptor antagonist SCH 23390 blocks fear-potentiated startle but not shock reactivity or the shock sensitization of acoustic startle. Behav Neurosci 2000; 114:262-72. [PMID: 10832788 DOI: 10.1037/0735-7044.114.2.262] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Central dopamine (DA) activity is thought to play a role in fear motivation. The aim of the present study was to assess the involvement of DA D1 receptors in emotional learning. The authors report that peripheral and intraamygdalar administration of the specific D1 receptor antagonist SCH 23390 blocked the acquisition of fear-potentiated startle. Analysis of shock reactivity during footshock administration revealed that the learning impairment could not be explained by a diminution in the aversive properties of the unconditioned stimulus. Additionally, systemic and intraamygdalar injection of SCH 23390 did not alter fear expression as measured with the shock sensitization of acoustic startle. The potential contribution of mesoamygdaloid DA to the acquisition and retrieval of conditioned fear responses is discussed.
Collapse
Affiliation(s)
- Q Greba
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|