1
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Hamilton JJ, Dalrymple‐Alford JC. Anterior thalamic nuclei: A critical substrate for non-spatial paired-associate memory in rats. Eur J Neurosci 2022; 56:5014-5032. [PMID: 35985792 PMCID: PMC9804733 DOI: 10.1111/ejn.15802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
Injury or dysfunction in the anterior thalamic nuclei (ATN) may be the key contributory factor in many instances of diencephalic amnesia. Experimental ATN lesions impair spatial memory and temporal discriminations, but there is only limited support for a more general role in non-spatial memory. To extend evidence on the effects of ATN lesions, we examined the acquisition of biconditional associations between odour and object pairings presented in a runway, either with or without a temporal gap between these items. Intact adult male rats acquired both the no-trace and 10-s trace versions of this non-spatial task. Intact rats trained in the trace version showed elevated Zif268 activation in the dorsal CA1 of the hippocampus, suggesting that the temporal component recruited additional neural processing. ATN lesions completely blocked acquisition on both versions of this association-memory task. This deficit was not due to poor inhibition to non-rewarded cues or impaired sensory processing, because rats with ATN lesions were unimpaired in the acquisition of simple odour discriminations and simple object discriminations using similar task demands in the same apparatus. This evidence challenges the view that impairments in arbitrary paired-associate learning after ATN lesions require the use of multimodal spatial stimuli. It suggests that diencephalic amnesia associated with the ATN stems from degraded attention to stimulus-stimulus associations and their representation across a distributed memory system.
Collapse
Affiliation(s)
- Jennifer J. Hamilton
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand,New Zealand Brain Research InstituteChristchurchNew Zealand,Brain Research New Zealand – Rangahau Roro AotearoaAucklandNew Zealand
| | - John C. Dalrymple‐Alford
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand,New Zealand Brain Research InstituteChristchurchNew Zealand,Brain Research New Zealand – Rangahau Roro AotearoaAucklandNew Zealand
| |
Collapse
|
3
|
Aggleton JP, Nelson AJD, O'Mara SM. Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 2022; 140:104813. [PMID: 35940310 PMCID: PMC10804970 DOI: 10.1016/j.neubiorev.2022.104813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
4
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
5
|
Frost BE, Martin SK, Cafalchio M, Islam MN, Aggleton JP, O'Mara SM. Anterior Thalamic Inputs Are Required for Subiculum Spatial Coding, with Associated Consequences for Hippocampal Spatial Memory. J Neurosci 2021; 41:6511-6525. [PMID: 34131030 PMCID: PMC8318085 DOI: 10.1523/jneurosci.2868-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
Just as hippocampal lesions are principally responsible for "temporal lobe" amnesia, lesions affecting the anterior thalamic nuclei seem principally responsible for a similar loss of memory, "diencephalic" amnesia. Compared with the former, the causes of diencephalic amnesia have remained elusive. A potential clue comes from how the two sites are interconnected, as within the hippocampal formation, only the subiculum has direct, reciprocal connections with the anterior thalamic nuclei. We found that both permanent and reversible anterior thalamic nuclei lesions in male rats cause a cessation of subicular spatial signaling, reduce spatial memory performance to chance, but leave hippocampal CA1 place cells largely unaffected. We suggest that a core element of diencephalic amnesia stems from the information loss in hippocampal output regions following anterior thalamic pathology.SIGNIFICANCE STATEMENT At present, we know little about interactions between temporal lobe and diencephalic memory systems. Here, we focused on the subiculum, as the sole hippocampal formation region directly interconnected with the anterior thalamic nuclei. We combined reversible and permanent lesions of the anterior thalamic nuclei, electrophysiological recordings of the subiculum, and behavioral analyses. Our results were striking and clear: following permanent thalamic lesions, the diverse spatial signals normally found in the subiculum (including place cells, grid cells, and head-direction cells) all disappeared. Anterior thalamic lesions had no discernible impact on hippocampal CA1 place fields. Thus, spatial firing activity within the subiculum requires anterior thalamic function, as does successful spatial memory performance. Our findings provide a key missing part of the much bigger puzzle concerning why anterior thalamic damage is so catastrophic for spatial memory in rodents and episodic memory in humans.
Collapse
Affiliation(s)
- Bethany E Frost
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sean K Martin
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Matheus Cafalchio
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Md Nurul Islam
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AS, United Kingdom
| | - Shane M O'Mara
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| |
Collapse
|
6
|
Nelson AJD. The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev 2021; 126:1-11. [PMID: 33737105 PMCID: PMC8363507 DOI: 10.1016/j.neubiorev.2021.02.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Anterior thalamic nuclei important for specific classes of temporal discriminations. Anterior thalamic nuclei required for hippocampal-dependent contextual processes. Critical role for anterior thalamic nuclei in selective attention. Significance of anterior thalamic – anterior cingulate interactions.
The anterior thalamic nuclei are a vital node within hippocampal-diencephalic-cingulate circuits that support spatial learning and memory. Reflecting this interconnectivity, the overwhelming focus of research into the cognitive functions of the anterior thalamic nuclei has been spatial processing. However, there is increasing evidence that the functions of the anterior thalamic nuclei extend beyond the spatial realm. This work has highlighted how these nuclei are required for certain classes of temporal discrimination as well as their importance for processing other contextual information; revealing parallels with the non-spatial functions of the hippocampal formation. Yet further work has shown how the anterior thalamic nuclei may be important for other forms of non-spatial learning, including a critical role for these nuclei in attentional mechanisms. This evidence signals the need to reconsider the functions of the anterior thalamic within the framework of their wider connections with sites including the anterior cingulate cortex that subserve non-spatial functions.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
7
|
Dillingham CM, Milczarek MM, Perry JC, Vann SD. Time to put the mammillothalamic pathway into context. Neurosci Biobehav Rev 2021; 121:60-74. [PMID: 33309908 PMCID: PMC8137464 DOI: 10.1016/j.neubiorev.2020.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The medial diencephalon, in particular the mammillary bodies and anterior thalamic nuclei, has long been linked to memory and amnesia. The mammillary bodies provide a dense input into the anterior thalamic nuclei, via the mammillothalamic tract. In both animal models, and in patients, lesions of the mammillary bodies, mammillothalamic tract and anterior thalamic nuclei all produce severe impairments in temporal and contextual memory, yet it is uncertain why these regions are critical. Mounting evidence from electrophysiological and neural imaging studies suggests that mammillothalamic projections exercise considerable distal influence over thalamo-cortical and hippocampo-cortical interactions. Here, we outline how damage to the mammillary body-anterior thalamic axis, in both patients and animal models, disrupts behavioural performance on tasks that relate to contextual ("where") and temporal ("when") processing. Focusing on the medial mammillary nuclei as a possible 'theta-generator' (through their interconnections with the ventral tegmental nucleus of Gudden) we discuss how the mammillary body-anterior thalamic pathway may contribute to the mechanisms via which the hippocampus and neocortex encode representations of experience.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Michal M Milczarek
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - James C Perry
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Seralynne D Vann
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
8
|
Lee SM, Jin SW, Park SB, Park EH, Lee CH, Lee HW, Lim HY, Yoo SW, Ahn JR, Shin J, Lee SA, Lee I. Goal-directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus 2021; 31:717-736. [PMID: 33394547 PMCID: PMC8359334 DOI: 10.1002/hipo.23295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 11/10/2022]
Abstract
The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The “dual‐stream model” was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual‐stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal‐directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal‐directed Interaction of Stimulus and Task‐demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices—the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects—with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non‐navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non‐navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Jin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seong-Beom Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Hye Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Choong-Hee Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Jae Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Mathiasen ML, O'Mara SM, Aggleton JP. The anterior thalamic nuclei and nucleus reuniens: So similar but so different. Neurosci Biobehav Rev 2020; 119:268-280. [PMID: 33069688 PMCID: PMC7738755 DOI: 10.1016/j.neubiorev.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/26/2020] [Accepted: 10/05/2020] [Indexed: 12/04/2022]
Abstract
Two thalamic sites are of especial significance for understanding hippocampal - diencephalic interactions: the anterior thalamic nuclei and nucleus reuniens. Both nuclei have dense, direct interconnections with the hippocampal formation, and both are directly connected with many of the same cortical and subcortical areas. These two thalamic sites also contain neurons responsive to spatial stimuli while lesions within these two same areas can disrupt spatial learning tasks that are hippocampal dependent. Despite these many similarities, closer analysis reveals important differences in the details of their connectivity and the behavioural impact of lesions in these two thalamic sites. These nuclei play qualitatively different roles that largely reflect the contrasting relative importance of their medial frontal cortex interactions (nucleus reuniens) compared with their retrosplenial, cingulate, and mammillary body interactions (anterior thalamic nuclei). While the anterior thalamic nuclei are critical for multiple aspects of hippocampal spatial encoding and performance, nucleus reuniens contributes, as required, to aid cognitive control and help select correct from competing memories.
Collapse
Affiliation(s)
- Mathias L Mathiasen
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK
| | - Shane M O'Mara
- School of Psychology and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
10
|
Aggleton JP, Nelson AJD. Distributed interactive brain circuits for object-in-place memory: A place for time? Brain Neurosci Adv 2020; 4:2398212820933471. [PMID: 32954003 PMCID: PMC7479857 DOI: 10.1177/2398212820933471] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Rodents will spontaneously learn the location of an individual object, an
ability captured by the object-in-place test. This review considers
the network of structures supporting this behavioural test, as well as
some potential confounds that may affect interpretation. A
hierarchical approach is adopted, as we first consider those brain
regions necessary for two simpler, ‘precursor’ tests (object
recognition and object location). It is evident that performing the
object-in-place test requires an array of areas additional to those
required for object recognition or object location. These additional
areas include the rodent medial prefrontal cortex and two thalamic
nuclei (nucleus reuniens and the medial dorsal nucleus), both densely
interconnected with prefrontal areas. Consequently, despite the need
for object and location information to be integrated for the
object-in-place test, for example, via the hippocampus, other
contributions are necessary. These contributions stem from how
object-in-place is a test of associative recognition, as none of the
individual elements in the test phase are novel. Parallels between the
structures required for object-in-place and for recency
discriminations, along with a re-examination of the demands of the
object-in-place test, signal the integration of temporal information
within what is usually regarded as a spatial-object test.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
11
|
Towner RA, Saunders D, Smith N, Towler W, Cruz M, Do S, Maher JE, Whitaker K, Lerner M, Morton KA. Assessing long-term neuroinflammatory responses to encephalopathy using MRI approaches in a rat endotoxemia model. GeroScience 2018; 40:49-60. [PMID: 29417380 PMCID: PMC5832664 DOI: 10.1007/s11357-018-0009-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) induces neuroinflammation, which is associated with cognitive impairment (CI). CI is also correlated with aging. We used contrast-enhanced magnetic resonance imaging (MRI), perfusion MRI, and MR spectroscopy to assess long-term alterations in BBB permeability, microvascularity, and metabolism, respectively, in a rat lipopolysaccharide-induced SAE model. Free radical-targeted molecular MRI was used to detect brain radical levels at 24 h and 1 week post-LPS injection. CE-MRI showed increased Gd-DTPA uptake in LPS rat brains at 24 h in cerebral cortex, hippocampus, thalamus, and perirhinal cortex regions. Increased MRI signal intensities were observed in LPS rat brains in cerebral cortex, perirhinal cortex, and hippocampus regions 1 week post-LPS. Long-term BBB dysfunction was detected in the cerebral cortex at 6 weeks post-LPS. Increased relative cerebral blood flow (rCBF) in cortex and thalamus regions at 24 h, decreased cortical and hippocampal rCBF at 6 weeks, decreased cortical rCBF at 3 and 12 weeks, and increased thalamus rCBF at 6 weeks post-LPS, were detected. MRS indicated that LPS-exposed rat brains had decreased: NAA/Cho metabolite ratios at 1, 3, 6, and 12 weeks; Cr/Cho at 1, 3, and 12 weeks; and Myo-Ins/Cho at 1, 3, and 6 weeks post-LPS. Free radical imaging detected increased radical levels in LPS rat brains at 24 h and 1 week post-LPS. LPS-exposed rats were compared to saline-treated controls. We clearly demonstrated BBB dysfunction, impaired vascularity, and decreased brain metabolites, as measures of long-term neuroinflammatory indicators, as well as increased free radicals in a LPS-induced rat SAE model.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA.
- Oklahoma Nathan Shock Aging Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - D Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - N Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - W Towler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - M Cruz
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - S Do
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - J E Maher
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - K Whitaker
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - M Lerner
- Department of Surgery Research Laboratory, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - K A Morton
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Perry BAL, Mercer SA, Barnett SC, Lee J, Dalrymple-Alford JC. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system. Hippocampus 2017; 28:121-135. [DOI: 10.1002/hipo.22815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Brook A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Stephanie A. Mercer
- Department of Biochemistry; University of Otago; Dunedin
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Sophie C. Barnett
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Jungah Lee
- Department of Psychology; University of Canterbury; Christchurch New Zealand
| | - John C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| |
Collapse
|
13
|
Bos JJ, Vinck M, van Mourik-Donga LA, Jackson JC, Witter MP, Pennartz CMA. Perirhinal firing patterns are sustained across large spatial segments of the task environment. Nat Commun 2017; 8:15602. [PMID: 28548084 PMCID: PMC5458559 DOI: 10.1038/ncomms15602] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
Spatial navigation and memory depend on the neural coding of an organism's location. Fine-grained coding of location is thought to depend on the hippocampus. Likewise, animals benefit from knowledge parsing their environment into larger spatial segments, which are relevant for task performance. Here we investigate how such knowledge may be coded, and whether this occurs in structures in the temporal lobe, supplying cortical inputs to the hippocampus. We found that neurons in the perirhinal cortex of rats generate sustained firing patterns that discriminate large segments of the task environment. This contrasted to transient firing in hippocampus and sensory neocortex. These spatially extended patterns were not explained by task variables or temporally discrete sensory stimuli. Previously it has been suggested that the perirhinal cortex is part of a pathway processing object, but not spatial information. Our results indicate a greater complexity of neural coding than captured by this dichotomy.
Collapse
Affiliation(s)
- Jeroen J. Bos
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Martin Vinck
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Laura A. van Mourik-Donga
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jadin C. Jackson
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Medtronic, 7000 Central Avenue NE, Minneapolis, Minnesota 55432, USA
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Norwegian University of Science and Technology, DMF, NTNU PO Box 8905, NO-7491 Trondheim, Norway
| | - Cyriel M. A. Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Tomás Pereira I, Agster KL, Burwell RD. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents. Hippocampus 2016; 26:1189-212. [PMID: 27119220 DOI: 10.1002/hipo.22603] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 04/06/2016] [Accepted: 04/22/2016] [Indexed: 01/08/2023]
Abstract
In this study the subcortical afferents for the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA) were characterized. We analyzed 33 retrograde tract-tracing experiments distributed across the five regions. For each experiment, we estimated the total numbers, percentages, and densities of labeled cells in 36 subcortical structures and nuclei distributed across septum, basal ganglia, claustrum, amygdala, olfactory structures, thalamus, and hypothalamus. We found that the complement of subcortical inputs differs across the five regions, especially the PER and POR. The PER receives input from the reuniens, suprageniculate, and medial geniculate thalamic nuclei as well as the amygdala. Overall, the subcortical inputs to the PER were consistent with a role in perception, multimodal processing, and the formation of associations that include the motivational significance of individual items and objects. Subcortical inputs to the POR were dominated by the dorsal thalamus, particularly the lateral posterior nucleus, a region implicated in visuospatial attention. The complement of subcortical inputs to the POR is consistent with a role in representing and monitoring the local spatial context. We also report that, in addition to the PER, the LEA and the medial band of the MEA also receive strong amygdala input. In contrast, subcortical input to the POR and the MEA lateral band includes much less amygdala input and is dominated by dorsal thalamic nuclei, particularly nuclei involved in spatial information processing. Thus, some subcortical inputs are consistent with the view that there is functional differentiation along the septotemporal axis of the hippocampus, but others provide considerable integration. Overall, we conclude that the patterns of subcortical inputs to the PER, POR, and the entorhinal LEA and MEA provide further evidence for functional differentiation in the medial temporal lobe. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inês Tomás Pereira
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island, 02912
| | - Kara L Agster
- Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| | - Rebecca D Burwell
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island, 02912.,Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| |
Collapse
|
15
|
Albasser MM, Olarte-Sánchez CM, Amin E, Brown MW, Kinnavane L, Aggleton JP. Perirhinal cortex lesions in rats: Novelty detection and sensitivity to interference. Behav Neurosci 2016; 129:227-43. [PMID: 26030425 PMCID: PMC4450885 DOI: 10.1037/bne0000049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal.
Collapse
Affiliation(s)
| | | | - Eman Amin
- School of Psychology, Cardiff University
| | - Malcolm W Brown
- MRC Centre for Synaptic Plasticity, Department of Physiology and Pharmacology, University of Bristol Medical School
| | | | | |
Collapse
|
16
|
Glikmann-Johnston Y, Saling MM, Reutens DC, Stout JC. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory. Front Pharmacol 2015; 6:289. [PMID: 26696889 PMCID: PMC4674558 DOI: 10.3389/fphar.2015.00289] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/19/2015] [Indexed: 01/02/2023] Open
Abstract
Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory.
Collapse
Affiliation(s)
- Yifat Glikmann-Johnston
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash UniversityMelbourne, VIC, Australia
- Department of Neuropsychology, Austin HealthMelbourne, VIC, Australia
| | - Michael M. Saling
- Department of Neuropsychology, Austin HealthMelbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Melbourne School of Psychological Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - David C. Reutens
- Centre for Advanced Imaging, The University of QueenslandBrisbane, QLD, Australia
| | - Julie C. Stout
- Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
17
|
Olarte-Sánchez CM, Amin E, Warburton EC, Aggleton JP. Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection. Eur J Neurosci 2015; 42:3117-27. [PMID: 26474445 PMCID: PMC4737320 DOI: 10.1111/ejn.13106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
The present study examined why perirhinal cortex lesions in rats impair the spontaneous ability to select novel objects in preference to familiar objects, when both classes of object are presented simultaneously. The study began by repeating this standard finding, using a test of delayed object recognition memory. As expected, the perirhinal cortex lesions reduced the difference in exploration times for novel vs. familiar stimuli. In contrast, the same rats with perirhinal cortex lesions appeared to perform normally when the preferential exploration of novel vs. familiar objects was tested sequentially, i.e. when each trial consisted of only novel or only familiar objects. In addition, there was no indication that the perirhinal cortex lesions reduced total levels of object exploration for novel objects, as would be predicted if the lesions caused novel stimuli to appear familiar. Together, the results show that, in the absence of perirhinal cortex tissue, rats still receive signals of object novelty, although they may fail to link that information to the appropriate object. Consequently, these rats are impaired in discriminating the source of object novelty signals, leading to deficits on simultaneous choice tests of recognition.
Collapse
Affiliation(s)
- Cristian M Olarte-Sánchez
- Rowett Institute of Nutrition and Health, Institute of Medical Sciences, University of Aberdeen, Foresterhill, UK
| | - Eman Amin
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - E Clea Warburton
- Department of Physiology and Pharmacology, MRC Centre for Synaptic Plasticity, Bristol University, Bristol, UK
| | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
18
|
Functional heterogeneity of the limbic thalamus: From hippocampal to cortical functions. Neurosci Biobehav Rev 2014; 54:120-30. [PMID: 25446945 DOI: 10.1016/j.neubiorev.2014.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022]
Abstract
Today, the idea that the integrity of the limbic thalamus is necessary for normal memory functions is well established. However, if the study of thalamic patients emphasized the anterior and the mediodorsal thalamus as the critical thalamic loci supporting cognitive functions, clinical studies have so far failed to attribute a specific role to each of these regions. In view of these difficulties, we review here the experimental data conducted in rodents harboring specific lesions of each thalamic region. These data clearly indicate a major functional dissociation within the limbic thalamus. The anterior thalamus provides critical support for hippocampal functions due to its cardinal location in the Papez circuit, while the mediodorsal thalamus may signal relevant information in a circuit encompassing the basolateral amygdala and the prefrontal cortex. Interestingly, while clinical studies have suggested that diencephalic pathologies may disconnect the medial temporal lobe from the cortex, experimental studies conducted in rodent show how this may differently affect distinct temporo-thalamo-cortical circuits, sharing the same general organization but supporting dissociable functions.
Collapse
|
19
|
Dillingham CM, Frizzati A, Nelson AJD, Vann SD. How do mammillary body inputs contribute to anterior thalamic function? Neurosci Biobehav Rev 2014; 54:108-19. [PMID: 25107491 PMCID: PMC4462591 DOI: 10.1016/j.neubiorev.2014.07.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 07/28/2014] [Indexed: 11/25/2022]
Abstract
It has long been assumed that the main function of the mammillary bodies is to provide a relay for indirect hippocampal inputs to the anterior thalamic nuclei. Such models afford the mammillary bodies no independent role in memory and overlook the importance of their other, non-hippocampal, inputs. This review focuses on recent advances that herald a new understanding of the importance of the mammillary bodies, and their inputs from the limbic midbrain, for anterior thalamic function. It has become apparent that the mammillary bodies' contribution to memory is not dependent on afferents from the subicular complex. Rather, the ventral tegmental nucleus of Gudden is a vital source of inputs that support memory processes within the medial mammillary bodies. In parallel, the lateral mammillary bodies, via their connections with the dorsal tegmental nucleus of Gudden, are critical for generating head-direction signals. These two parallel, but distinct, information streams converge on the anterior thalamic nuclei and support different aspects of spatial memory.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Aura Frizzati
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|
20
|
Abstract
The mammillary bodies and their projections via the mammilliothalamic tract to the anterior thalamic nuclei are known to be important for spatial memory in rodents, but their precise role remains unclear. To determine whether transection of the mammilliothalamic tract can produce deficits on tests of spatial memory even when the navigational demands placed on the animal are limited, rats with discrete mammilliothalamic tract lesions were tested on the ability to use distal visual cues to discriminate between 2 locations within a room, irrespective of the direction traveled (Experiment 1). Animals with mammilliothalamic tract lesions acquired this task more slowly and less accurately than control animals. Consistent with this impairment in discriminating different spatial locations, the same lesions also severely disrupted object-in-place memory but spared performance on standard tests of object recognition memory (Experiment 2). Finally, to compare performance on a task that is known to be sensitive to mammilliothalamic transection and requires animals to actively navigate within their environment, the effect of the lesions on spatial working memory in the radial-arm maze was examined. Taken together, the results suggest that even when there are little or no navigational demands, mammilliothalamic tract damage still results in impoverished encoding of spatial location.
Collapse
|
21
|
Harland BC, Collings DA, McNaughton N, Abraham WC, Dalrymple-Alford JC. Anterior thalamic lesions reduce spine density in both hippocampal CA1 and retrosplenial cortex, but enrichment rescues CA1 spines only. Hippocampus 2014; 24:1232-47. [PMID: 24862603 DOI: 10.1002/hipo.22309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 12/14/2022]
Abstract
Injury to the anterior thalamic nuclei (ATN) may affect both hippocampus and retrosplenial cortex thus explaining some parallels between diencephalic and medial temporal lobe amnesias. We found that standard-housed rats with ATN lesions, compared with standard-housed controls, showed reduced spine density in hippocampal CA1 neurons (basal dendrites, -11.2%; apical dendrites, -9.6%) and in retrospenial granular b cortex (Rgb) neurons (apical dendrites, -20.1%) together with spatial memory deficits on cross maze and radial-arm maze tasks. Additional rats with ATN lesions were also shown to display a severe deficit on spatial working memory in the cross-maze, but subsequent enriched housing ameliorated their performance on both this task and the radial-arm maze. These enriched rats with ATN lesions also showed recovery of both basal and apical CA1 spine density to levels comparable to that of the standard-housed controls, but no recovery of Rgb spine density. Inspection of spine types in the CA1 neurons showed that ATN lesions reduced the density of thin spines and mushroom spines, but not stubby spines; while enrichment promoted recovery of thin spines. Comparison with enriched rats that received pseudo-training, which provided comparable task-related experience, but no explicit spatial memory training, suggested that basal CA1 spine density in particular was associated with spatial learning and memory performance. Distal pathology in terms of reduced integrity of hippocampal and retrosplenial microstructure provides clear support for the influence of the ATN lesions on the extended hippocampal system. The reversal by postoperative enrichment of this deficit in the hippocampus but not the retrosplenial cortex may indicate region-specific mechanisms of recovery after ATN injury.
Collapse
Affiliation(s)
- Bruce C Harland
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
22
|
Dumont JR, Aggleton JP. Dissociation of recognition and recency memory judgments after anterior thalamic nuclei lesions in rats. Behav Neurosci 2013; 127:415-31. [PMID: 23731076 PMCID: PMC3670620 DOI: 10.1037/a0032750] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anterior thalamic nuclei form part of a network for episodic memory in humans. The importance of these nuclei for recognition and recency judgments remains, however, unclear. Rats with anterior thalamic nuclei lesions and their controls were tested on object recognition, along with two types of recency judgment. The spontaneous discrimination of a novel object or a novel odor from a familiar counterpart (recognition memory) was not affected by anterior thalamic lesions when tested after retention delays of 1 and 60 min. To measure recency memory, rats were shown two familiar objects, one of which had been explored more recently. In one condition, rats were presented with two lists (List A, List B) of objects separated by a delay, thereby creating two distinct blocks of stimuli. After an additional delay, rats were presented with pairs of objects, one from List A and one from List B (between-block recency). No lesion-induced deficit was apparent for recency discriminations between objects from different lists, despite using three different levels of task difficulty. In contrast, rats with anterior thalamic lesions were significantly impaired when presented with a continuous list of objects and then tested on their ability to distinguish between those items early and late in the same list (within-block recency). The contrasting effects on recognition and recency support the notion that interlinked hippocampal-anterior thalamic interconnections support aspects of both spatial and nonspatial learning, although the role of the anterior thalamic nuclei may be restricted to a subclass of recency judgments (within-block).
Collapse
Affiliation(s)
- Julie R Dumont
- School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | | |
Collapse
|
23
|
Plescia F, Sardo P, Rizzo V, Cacace S, Marino RAM, Brancato A, Ferraro G, Carletti F, Cannizzaro C. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study. Behav Brain Res 2013; 258:193-201. [PMID: 24149069 DOI: 10.1016/j.bbr.2013.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 11/16/2022]
Abstract
Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory.
Collapse
Affiliation(s)
- Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, V. Vespro 129, 90127 Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Moreau PH, Tsenkina Y, Lecourtier L, Lopez J, Cosquer B, Wolff M, Dalrymple-Alford J, Cassel JC. Lesions of the anterior thalamic nuclei and intralaminar thalamic nuclei: place and visual discrimination learning in the water maze. Brain Struct Funct 2012; 218:657-67. [PMID: 22543509 DOI: 10.1007/s00429-012-0419-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/14/2012] [Indexed: 01/01/2023]
Abstract
Medial thalamic damage produces memory deficits in humans (e.g., Korsakoff's syndrome) and experimental animals. Both the anterior thalamic nuclei (ATN) and rostral intralaminar plus adjacent lateral thalamic nuclei (ILN/LT) have been implicated. Based on the differences in their main connections with other neural structures, we tested the prediction that ATN lesions would selectively impair acquisition of spatial location discrimination, reflecting a hippocampal system deficit, whereas ILN/LT lesions would impair acquisition of visual pattern discrimination, reflecting a striatal system deficit. Half the rats were first trained in a spatial task in a water maze before switching to a visual task in the same maze, while the remainder were tested with the reverse order of tasks. Compared with sham-operated controls, (1) rats with ATN lesions showed impaired place learning, but normal visual discrimination learning, (2) rats with ILN/LT lesions showed no deficit on either task. Rats with ATN lesions were also hyperactive when their home cage was placed in a novel room and remained more active than ILN/LT or SHAM rats for the subsequent 21 h, especially during the nocturnal phase. These findings confirmed the influence of ATN lesions on spatial learning, but failed to support the view that ILN/LT lesions disrupt striatal-dependent memory.
Collapse
Affiliation(s)
- Pierre-Henri Moreau
- Laboratoire d'Imagerie et Neurosciences Cognitives, UMR 7237, Université de Strasbourg, CNRS, IFR 37 Neurosciences, GDR CNRS 2905, 12 Rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Albasser MM, Amin E, Iordanova MD, Brown MW, Pearce JM, Aggleton JP. Perirhinal cortex lesions uncover subsidiary systems in the rat for the detection of novel and familiar objects. Eur J Neurosci 2011; 34:331-42. [PMID: 21707792 PMCID: PMC3170480 DOI: 10.1111/j.1460-9568.2011.07755.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study compared the impact of perirhinal cortex lesions on tests of object recognition. Object recognition was tested directly by looking at the preferential exploration of novel objects over simultaneously presented familiar objects. Object recognition was also tested indirectly by presenting just novel objects or just familiar objects, and recording exploration levels. Rats with perirhinal cortex lesions were severely impaired at discriminating a novel object from a simultaneously presented familiar object (direct test), yet displayed normal levels of exploration to novel objects presented on their own and showed normal declines in exploration times for familiar objects that were repeatedly presented (indirect tests). This effective reduction in the exploration of familiar objects after perirhinal cortex lesions points to the sparing of some recognition mechanisms. This possibility led us to determine whether rats with perirhinal cortex lesions can overcome their preferential exploration deficits when given multiple object familiarisation trials prior to that same (familiar) object being paired with a novel object. It was found that after multiple familiarisation trials, objects could now successfully be recognised as familiar by rats with perirhinal cortex lesions, both following a 90-min delay (the longest delay tested) and when object recognition was tested in the dark after familiarisation trials in the light. These latter findings reveal: (i) the presumed recruitment of other regions to solve recognition memory problems in the absence of perirhinal cortex tissue; and (ii) that these additional recognition mechanisms require more familiarisation trials than perirhinal-based recognition mechanisms.
Collapse
Affiliation(s)
- Mathieu M Albasser
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Aggleton JP, Dumont JR, Warburton EC. Unraveling the contributions of the diencephalon to recognition memory: a review. Learn Mem 2011; 18:384-400. [PMID: 21597044 PMCID: PMC3101772 DOI: 10.1101/lm.1884611] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/13/2011] [Indexed: 11/24/2022]
Abstract
Both clinical investigations and studies with animals reveal nuclei within the diencephalon that are vital for recognition memory (the judgment of prior occurrence). This review seeks to identify these nuclei and to consider why they might be important for recognition memory. Despite the lack of clinical cases with circumscribed pathology within the diencephalon and apparent species differences, convergent evidence from a variety of sources implicates a subgroup of medial diencephalic nuclei. It is supposed that the key functional interactions of this subgroup of diencephalic nuclei are with the medial temporal lobe, the prefrontal cortex, and with cingulate regions. In addition, some of the clinical evidence most readily supports dual-process models of recognition, which assume two independent cognitive processes (recollective-based and familiarity-based) that combine to direct recognition judgments. From this array of information a "multi-effect multi-nuclei" model is proposed, in which the mammillary bodies and the anterior thalamic nuclei are of preeminent importance for recollective-based recognition. The medial dorsal thalamic nucleus is thought to contribute to familiarity-based recognition, but this nucleus, along with various midline and intralaminar thalamic nuclei, is also assumed to have broader, indirect effects upon both recollective-based and familiarity-based recognition.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom.
| | | | | |
Collapse
|
27
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
28
|
Wolff M, Loukavenko EA, Will BE, Dalrymple-Alford JC. The extended hippocampal-diencephalic memory system: Enriched housing promotes recovery of the flexible use of spatial representations after anterior thalamic lesions. Hippocampus 2008; 18:996-1007. [DOI: 10.1002/hipo.20457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Wolff M, Gibb SJ, Cassel JC, Dalrymple-Alford JC. Anterior but not intralaminar thalamic nuclei support allocentric spatial memory. Neurobiol Learn Mem 2008; 90:71-80. [PMID: 18296080 DOI: 10.1016/j.nlm.2008.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 12/28/2007] [Accepted: 01/08/2008] [Indexed: 11/18/2022]
Abstract
Medial thalamic damage is a common cause of severe memory disruption in humans. Both the anterior thalamic nuclei (ATN) and the intralaminar thalamic nuclei (ILN) have been suggested as primary sites of diencephalic injury underlying learning and memory deficits, but their respective roles have yet to be resolved. The present study explicitly compared two spatial memory tasks in male PVGc hooded rats with selective neurotoxic lesions to either (1) the ATN or (2) the rostral ILN (and adjacent lateral mediodorsal thalamic nuclei; ILN/LT lesions). As predicted, the ATN group, but not the ILN/LT group, exhibited clear deficits in the Morris water maze task for the initial acquisition of a fixed hidden platform and its reversal to a new position. The second task examined acquisition of egocentric spatial reference memory for a left or right body turn, using any three arms in an 8-arm water maze on any given trial; contrary to predictions, both lesion groups performed as well as the Sham group. The lack of deficits in ILN/LT rats on this second task contrasted with previous findings reporting a detrimental effect of ILN/LT lesions on egocentric working memory. The clear dissociation between the influence of ATN and ILN/LT lesions with respect to allocentric spatial reference memory in the Morris maze emphasizes that caution is required when interpreting the effects of non-ATN thalamic lesions on spatial memory when the lesions encroach substantial areas of the adjacent ATN region.
Collapse
Affiliation(s)
- Mathieu Wolff
- Van der Veer Institute for Parkinson's and Brain Research, Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | | | | | | |
Collapse
|
30
|
Loukavenko EA, Ottley MC, Moran JP, Wolff M, Dalrymple-Alford JC. Towards therapy to relieve memory impairment after anterior thalamic lesions: improved spatial working memory after immediate and delayed postoperative enrichment. Eur J Neurosci 2007; 26:3267-76. [DOI: 10.1111/j.1460-9568.2007.05879.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Murray EA, Bussey TJ, Saksida LM. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 2007; 30:99-122. [PMID: 17417938 DOI: 10.1146/annurev.neuro.29.051605.113046] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevailing view of medial temporal lobe (MTL) function has two principal elements: first, that the MTL subserves memory but not perception, and second, that the many anatomically distinctive parts of the MTL function together in the service of declarative memory. Recent neuropsychological studies have, however, challenged both opinions. First, studies in rodents, nonhuman primates, and humans suggest that the perirhinal cortex represents information about objects for both mnemonic and perceptual purposes. Second, the idea that MTL components contribute to declarative memory in similar ways has also been contradicted. Whereas the perirhinal cortex plays an essential role in familiarity-based object recognition, the hippocampus contributes little, if at all, to this function. In both primates and rodents, the hippocampus contributes to the memory and perception of places and paths, whereas the perirhinal cortex does so for objects and the contents of scenes.
Collapse
Affiliation(s)
- Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
32
|
Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 2007; 31:673-704. [PMID: 17368764 DOI: 10.1016/j.neubiorev.2007.01.005] [Citation(s) in RCA: 530] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/08/2007] [Accepted: 01/18/2007] [Indexed: 01/31/2023]
Abstract
Rats and mice are attracted by novel objects. They readily approach novel objects and explore them with their vibrissae, nose and forepaws. It is assumed that such a single explorative episode leaves a lasting and complex memory trace, which includes information about the features of the object explored, as well as where and even when the object was encountered. Indeed, it has been shown that rodents are able to discriminate a novel from a familiar object (one-trial object recognition), can detect a mismatch between the past and present location of a familiar object (one-trial object-place recognition), and can discriminate different objects in terms of their relative recency (temporal order memory), i.e., which one of two objects has been encountered earlier. Since the novelty-preference paradigm is very versatile and has some advantages compared to several other memory tasks, such as the water maze, it has become a powerful tool in current neurophamacological, neuroanatomical and neurogenetical memory research using both rats and mice. This review is intended to provide a comprehensive summary on key findings delineating the brain structures, neurotransmitters, molecular mechanisms and genes involved in encoding, consolidation, storage and retrieval of different forms of one-trial object memory in rats and mice.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, and Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|
33
|
Sziklas V, Petrides M. Contribution of the anterior thalamic nuclei to conditional learning in rats. Hippocampus 2007; 17:456-61. [PMID: 17503453 DOI: 10.1002/hipo.20286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The anterior thalamic region is intimately linked anatomically and functionally with the hippocampus, which is critical for various forms of spatial learning. Rats with lesions to the anterior thalamic nuclei and a control group were trained on a visual-spatial conditional associative learning task in which they had to learn to go to one of two locations depending on the particular visual cue presented on each trial; the rats approached the cues from different directions. The animals were subsequently tested on a spatial working memory task, the eight-arm radial maze. Performance on both these tasks had previously been shown to be impaired by hippocampal lesions. Rats with anterior thalamic damage were able to acquire the conditional associative task at a rate comparable to that of the control animals, but were impaired on the radial maze task. The finding of a dissociation between the effects of lesions of the anterior thalamic nuclei on two different classes of behavior known to be associated with hippocampal function suggest that while different neural stations within the extended hippocampal circuit may all play a role in spatial learning, the role of each of these regions in such learning may be more selective than previously considered.
Collapse
Affiliation(s)
- V Sziklas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4.
| | | |
Collapse
|
34
|
Abstract
The hippocampus has a critical role in certain kinds of spatial memory processes. Hippocampal "place" cells, fire selectively when an animal is in a particular location within the environment. It is thought that this activity underlies a representation of the environment that can be used for memory-based spatial navigation. But how is this representation constructed and how is it "read"? A simple mechanism, based on place field density across an environment, is described that could allow hippocampal representations to be "read" by other brain regions for the purpose of navigation. The possible influence of activity in neighboring brain regions such as the perirhinal cortex, and pre- and para-subiculum on the construction of the hippocampal spatial representation is then discussed.
Collapse
Affiliation(s)
- David K Bilkey
- Department of Psychology, University of Otago, 95 Union Street, Dunedin, New Zealand.
| |
Collapse
|
35
|
Rogers JL, Kesner RP. Lesions of the dorsal hippocampus or parietal cortex differentially affect spatial information processing. Behav Neurosci 2006; 120:852-60. [PMID: 16893291 DOI: 10.1037/0735-7044.120.4.852] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present experiments used 2 versions of a modified Hebb-Williams maze to test the role of the dorsal hippocampus (dHip) and parietal cortex (PC) in processing allocentric and egocentric space during acquisition and retention. Bilateral lesions were made to either the dHip or PC before maze testing (acquisition) or after maze testing (retention). The results indicate that lesions of the dHip impair allocentric maze acquisition, whereas lesions of the PC impair egocentric maze acquisition. During retention, lesions of the PC produced a significant impairment on both maze versions, whereas lesions of the dHip produced short-lived, transient impairments on both maze versions. These results suggest that during acquisition, the hippocampus and PC process spatial information in parallel; however, long-term retention of spatial information requires the PC with the dHIP as necessary for retrieval and/or access but not necessarily storage.
Collapse
Affiliation(s)
- Jason L Rogers
- Department of Psychology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
36
|
Gibb SJ, Wolff M, Dalrymple-Alford JC. Odour–place paired-associate learning and limbic thalamus: Comparison of anterior, lateral and medial thalamic lesions. Behav Brain Res 2006; 172:155-68. [PMID: 16769133 DOI: 10.1016/j.bbr.2006.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 05/08/2006] [Accepted: 05/12/2006] [Indexed: 11/15/2022]
Abstract
Several subregions in the limbic thalamus have been suggested as the key locus for diencephalic amnesia, including the anterior thalamic nuclei, intralaminar nuclei and mediodorsal nuclei. There is, however, no consensus as to a single critical site and recent research has suggested instead that different thalamic areas may contribute to diencephalic amnesia in subtly different ways. This study compared the effects of lesions to anterior (AT), lateral (LT) and posteromedial (MT) aggregates of thalamic nuclei on Gilbert and Kesner's [Gilbert, PE, Kesner, RP. Role of the rodent hippocampus in paired-associate learning involving associations between a stimulus and a spatial location. Behav Neurosci 2002;116(1):63-71; Gilbert, PE, Kesner, RP. Localization of function within the dorsal hippocampus: the role of the CA3 subregion in paired-associate learning. Behav Neurosci 2003;117(6):1385-94] paired-associate task, in which rats were postoperatively trained to form an arbitrary association between odours and spatial locations in a circular open field. Both AT and LT lesions, but not MT lesions, severely impaired odour-place paired-associate learning. Probe trials revealed that the rats were not using specific location information after acquisition training. All groups were able to learn non-associative odour and place discrimination tasks quickly, with only the AT group showing delayed acquisition. This study provides the first direct comparison of different thalamic lesions on paired-associate learning and new evidence on the importance of the LT region in learning and memory. The results support the notion that injury to both the AT and LT subregions of the thalamus may each be major contributors to diencephalic amnesia. There is need for traditional models of memory function to take greater account of the contributions of thalamic nuclei.
Collapse
Affiliation(s)
- Sheree J Gibb
- Van der Veer Institute for Parkinson's and Brain Research, Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| | | | | |
Collapse
|
37
|
Mitchell AS, Dalrymple-Alford JC. Lateral and anterior thalamic lesions impair independent memory systems. Learn Mem 2006; 13:388-96. [PMID: 16741289 PMCID: PMC1475822 DOI: 10.1101/lm.122206] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Damage to the medial region of the thalamus, both in clinical cases (e.g., patients with infarcts or the Korsakoff's syndrome) and animal lesion models, is associated with variable amnesic deficits. Some studies suggest that many of these memory deficits rely on the presence of lateral thalamic lesions (LT) that include the intralaminar nuclei, presumably by altering normal function between the striatum and frontal cortex. Other studies suggest that the anterior thalamic nuclei (AT) may be more critical, as a result of disruption to an extended hippocampal system. Here, highly selective LT and AT lesions were made to test the prediction that these two regions contribute to two different memory systems. Only LT lesions produced deficits on a preoperatively acquired response-related (egocentric) working memory task, tested in a cross-maze. Conversely, only AT lesions impaired postoperative acquisition of spatial working memory, tested in a radial maze. These findings provide the first direct evidence of a double dissociation between the LT and AT neural aggregates. As the lateral and the anterior medial thalamus influence parallel independent memory processing systems, they may each contribute to memory deficits, depending on lesion extent in clinical and experimental cases of thalamic amnesia.
Collapse
Affiliation(s)
- Anna S Mitchell
- Van der Veer Institute for Parkinson's and Brain Research, and Department of Psychology, University of Canterbury, Christchurch 8020, New Zealand.
| | | |
Collapse
|
38
|
Wolff M, Gibb SJ, Dalrymple-Alford JC. Beyond spatial memory: the anterior thalamus and memory for the temporal order of a sequence of odor cues. J Neurosci 2006; 26:2907-13. [PMID: 16540567 PMCID: PMC6673972 DOI: 10.1523/jneurosci.5481-05.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Influential recent proposals state that the anterior thalamic (AT) nuclei constitute key components of an "extended hippocampal system." This idea is, however, based on lesion studies that used spatial memory tasks and there has been no evidence that AT lesions cause deficits in any hippocampal-dependent nonspatial tasks. The present study investigated the role of the AT nuclei in nonspatial memory for a sequence of events based on the temporal order of a list of odors, because this task has recently been shown to depend on the integrity of the hippocampal formation. After preoperative training, rats with excitotoxic lesions of the AT nuclei showed a severe and selective postoperative impairment when required to remember the order of pseudorandom sequences of six odors. The rats with AT lesions were able instead to learn two new tasks that required recognition memory and the identification of the prior occurrence of events independent of their order. These results strongly matched those described after hippocampal lesions and provide the first unequivocal evidence of a detrimental effect of an AT lesion on a nonspatial hippocampal-dependent memory task.
Collapse
|
39
|
Alvarado MC, Bachevalier J. Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J Neurosci 2005; 25:1599-609. [PMID: 15703414 PMCID: PMC6725995 DOI: 10.1523/jneurosci.4457-04.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monkeys with damage to the parahippocampal (TH/TF) or perirhinal (PRh) cortex were tested on two sets of the transverse patterning (TP) problem (A+/B-, B+/C-, C+/A- and D+/E-, E+/F-, F+/D-) and delayed nonmatching-to-location paradigm (DNML), with delays ranging from 10 to 600 s. Damage to either area impaired acquisition and performance of TP but not of linear discriminations (e.g., A>B>C>X). Damage to areas TH/TF impaired performance of the DNML at all delays but only affected memory for objects at the longest delay, as measured by a delayed nonmatching-to-sample task (DNMS) (Nemanic et al., 2004). Damage to the PRh impaired performance of the DNMS but not of the DNML. The results present a dissociation in object and place memory for these two cortical regions and suggest a role for each in the cortical circuitry supporting configural/relational memory.
Collapse
Affiliation(s)
- Maria C Alvarado
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | |
Collapse
|
40
|
Abstract
Variable neuropathology in cases of diencephalic amnesia has led to uncertainty in identifying key thalamic nuclei and their potential role in learning and memory. Based on the principal neural connections of the medial thalamus, the current study tested the hypothesis that different aggregates of thalamic nuclei contribute to separate memory systems. Lesions of the anterior thalamic aggregate (AT), which comprises the anterodorsal, anteromedial and anteroventral nuclei produced substantial deficits in both working and reference spatial memory in a radial arm maze task in rats, supporting the view that the AT is an integral part of a hippocampal memory system. Lesions to the lateral thalamic aggregate (LT), which comprises the intralaminar nuclei (centrolateral, paracentral and rostral central medial nuclei) and lateral mediodorsal thalamic nuclei (lateral and paralamellar nuclei) produced a mild working memory impairment only, while lesions to the posteromedial thalamic aggregate (MT), which comprises the central and medial mediodorsal thalamic nuclei and the intermediodorsal nucleus had no effect on radial arm maze performance. In contrast, only MT lesions impaired learning associated with memory for reward value, consistent with the idea that the MT contributes to an amygdala memory system. Compared with chance discrimination, the control and AT groups, but not MT or LT groups, showed evidence for temporal order memory for two recently presented objects; all groups showed intact object recognition for novel vs. familiar objects. These new dissociations show that different medial thalamic aggregates participate in multiple memory systems and reinforce the idea that memory deficits in diencephalic amnesics may vary as a function of the relative involvement of different thalamic regions.
Collapse
Affiliation(s)
- Anna S Mitchell
- Van der Veer Institute for Parkinson's and Brain Research, and Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8001, New Zealand
| | | |
Collapse
|
41
|
Bailey KR, Mair RG. Lesions of Specific and Nonspecific Thalamic Nuclei Affect Prefrontal Cortex-Dependent Aspects of Spatial Working Memory. Behav Neurosci 2005; 119:410-9. [PMID: 15839787 DOI: 10.1037/0735-7044.119.2.410] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three studies compared lesions of specific mediodorsal (MD) and nonspecific midline/intralaminar (M/IL) and ventromedial (VM) thalamic nuclei placed to spare the anterior nuclei. Lesions of MD, M/IL, or VM impaired delayed matching trained with retractable levers, a measure of spatial memory affected by prefrontal cortical lesions. The effects of the MD lesion increased at longer retention intervals and thus appeared delay dependent. The effects of M/IL and VM lesions were delay independent. Even when combined, these lesions had no effect on varying choice radial maze delayed nonmatching, a task sensitive to hippocampal or anterior thalamic (but not prefrontal) lesions. These results demonstrate effects of MD, M/IL, and VM lesions distinct from the contributions of hippocampus or anterior thalamus to spatial memory.
Collapse
Affiliation(s)
- Kathleen R Bailey
- Department of Psychology, University of New Hampshire, Durham, NH 03824, USA
| | | |
Collapse
|
42
|
Gaffan EA, Healey AN, Eacott MJ. Objects and Positions in Visual Scenes: Effects of Perirhinal and Postrhinal Cortex Lesions in the Rat. Behav Neurosci 2004; 118:992-1010. [PMID: 15506882 DOI: 10.1037/0735-7044.118.5.992] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors assessed rats' encoding of the appearance or egocentric position of objects within visual scenes containing 3 objects (Experiment 1) or 1 object (Experiment 2A). Experiment 2B assessed encoding of the shape and fill pattern of single objects, and encoding of configurations (object + position, shape + fill). All were assessed by testing rats' ability to discriminate changes from familiar scenes (constant-negative paradigm). Perirhinal cortex lesions impaired encoding of objects and their shape; postrhinal cortex lesions impaired encoding of egocentric position, but the effect may have been partly due to entorhinal involvement. Neither lesioned group was impaired in detecting configural change. In Experiment 1, both lesion groups were impaired in detecting small changes in relative position of the 3 objects, suggesting that more sensitive tests might reveal configural encoding deficits.
Collapse
Affiliation(s)
- E A Gaffan
- School of Psychology, University of Reading, Reading RG6 6AL, United Kingdom.
| | | | | |
Collapse
|