1
|
Nemati SS, Sadeghi L, Dehghan G, Sheibani N. Lateralization of the hippocampus: A review of molecular, functional, and physiological properties in health and disease. Behav Brain Res 2023; 454:114657. [PMID: 37683813 DOI: 10.1016/j.bbr.2023.114657] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The hippocampus is a part of the brain's medial temporal lobe that is located under the cortex. It belongs to the limbic system and helps to collect and transfer information from short-term to long-term memory, as well as spatial orientation in each mammalian brain hemisphere. After more than two centuries of research in brain asymmetry, the hippocampus has attracted much attention in the study of brain lateralization. The hippocampus is very important in cognitive disorders, related to seizures and dementia, such as epilepsy and Alzheimer's disease. In addition, the motivation to study the hippocampus has increased significantly due to the asymmetry in the activity of the left and right hippocampi in healthy people, and its disruption during some neurological diseases. After a general review of the hippocampal structure and its importance in related diseases, the asymmetry in the brain with a focus on the hippocampus during the growth and maturation of healthy people, as well as the differences created in patients at the molecular, functional, and physiological levels are discussed. Most previous work indicates that the hippocampus is lateralized in healthy people. Also, lateralization at different levels remarkably changes in patients, and it appears that the most complex cognitive disorder is caused by a new dominant asymmetric system.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
2
|
Georgelin M, Ferreira VHB, Cornilleau F, Meurisse M, Poissenot K, Beltramo M, Keller M, Lansade L, Dardente H, Calandreau L. Short photoperiod modulates behavior, cognition and hippocampal neurogenesis in male Japanese quail. Sci Rep 2023; 13:951. [PMID: 36653419 PMCID: PMC9849226 DOI: 10.1038/s41598-023-28248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying the photoperiodic control of reproduction in mammals and birds have been recently clarified. In contrast, the potential impact of photoperiod on more complex, integrative processes, such as cognitive behaviors, remains poorly characterized. Here, we investigated the impact of contrasted long and short photoperiods (LP, 16 h light/day and SP, 8 h light/day, respectively) on learning, spatial orientation abilities, and emotional reactivity in male Japanese quail. In addition, we quantified cell proliferation and young cell maturation/migration within the hippocampus, a brain region involved in spatial orientation. Our study reveals that, in male quail, SP increases emotional responses and spatial orientation abilities, compared to LP. Behaviorally, SP birds were found to be more fearful than LP birds, exhibiting more freezing in the open field and taking longer to exit the dark compartment in the emergence test. Furthermore, SP birds were significantly less aggressive than LP birds in a mirror test. Cognitively, SP birds were slower to habituate and learn a spatial orientation task compared to LP birds. However, during a recall test, SP birds performed better than LP birds. From a neuroanatomical standpoint, SP birds had a significantly lower density of young neurons, and also tended to have a lower density of mature neurons within the hippocampus, compared to LP birds. In conclusion, our data reveal that, beyond breeding control, photoperiod also exerts a profound influence on behavior, cognition, and brain plasticity, which comprise the seasonal program of this species.
Collapse
Affiliation(s)
- Marion Georgelin
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Kévin Poissenot
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Massimiliano Beltramo
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
3
|
Gagliardo A, Pollonara E, Casini G, Bingman VP. Unilateral hippocampal lesions and the navigational performance of homing pigeons as revealed by GPS-tracking. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
4
|
Hough GE. Neural Substrates of Homing Pigeon Spatial Navigation: Results From Electrophysiology Studies. Front Psychol 2022; 13:867939. [PMID: 35465504 PMCID: PMC9020565 DOI: 10.3389/fpsyg.2022.867939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 12/25/2022] Open
Abstract
Over many centuries, the homing pigeon has been selectively bred for returning home from a distant location. As a result of this strong selective pressure, homing pigeons have developed an excellent spatial navigation system. This system passes through the hippocampal formation (HF), which shares many striking similarities to the mammalian hippocampus; there are a host of shared neuropeptides, interconnections, and its role in the storage and manipulation of spatial maps. There are some notable differences as well: there are unique connectivity patterns and spatial encoding strategies. This review summarizes the comparisons between the avian and mammalian hippocampal systems, and the responses of single neurons in several general categories: (1) location and place cells responding in specific areas, (2) path and goal cells responding between goal locations, (3) context-dependent cells that respond before or during a task, and (4) pattern, grid, and boundary cells that increase firing at stable intervals. Head-direction cells, responding to a specific compass direction, are found in mammals and other birds but not to date in pigeons. By studying an animal that evolved under significant adaptive pressure to quickly develop a complex and efficient spatial memory system, we may better understand the comparative neurology of neurospatial systems, and plot new and potentially fruitful avenues of comparative research in the future.
Collapse
Affiliation(s)
- Gerald E Hough
- Department of Biological Sciences, Rowan University, Glassboro, NJ, United States.,Department of Psychology, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
5
|
Damphousse CC, Miller N, Marrone DF. Dissociation of spatial and object memory in the hippocampal formation of Japanese quail. iScience 2022; 25:103805. [PMID: 35243216 PMCID: PMC8859546 DOI: 10.1016/j.isci.2022.103805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian temporal cortex can be functionally segregated into regions that encode spatial information and others that are predominantly responsible for object recognition. In the present study, we report comparable functional segregation in the avian brain. Using Japanese quail, we find that bilateral lesions of the hippocampus (Hp) produce robust deficits in performance in a foraging array (FA) spatial memory task, while sparing spontaneous object recognition (SOR). In contrast, lesions to the adjacent area parahippocampalis (APH) compromise both SOR and FA. These observations demonstrate a functional dissociation between Hp and APH that is comparable to the distinctions seen in mammals between the hippocampus and surrounding temporal cortex. Are spatial and object information separable in the avian hippocampal formation? Quail with lesions to the hippocampus are impaired in a spatial foraging task Lesions to area parahippocampalis also selectively impair object recognition Like mammals, bird hippocampus shows functional gradients in information processing
Collapse
Affiliation(s)
- Chelsey C Damphousse
- Department of Psychology, Wilfrid Laurier University, 75 University Avenue W, Waterloo, ON N2L 3C5, Canada
| | - Noam Miller
- Department of Psychology, Wilfrid Laurier University, 75 University Avenue W, Waterloo, ON N2L 3C5, Canada
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, 75 University Avenue W, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
6
|
Ben-Yishay E, Krivoruchko K, Ron S, Ulanovsky N, Derdikman D, Gutfreund Y. Directional tuning in the hippocampal formation of birds. Curr Biol 2021; 31:2592-2602.e4. [PMID: 33974847 DOI: 10.1016/j.cub.2021.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Birds strongly rely on spatial memory and navigation. Therefore, it is of utmost interest to reveal how space is represented in the avian brain. Here we used tetrodes to record neurons from the hippocampal formation of Japanese quails-a ground-dwelling species-while the quails roamed in an open-field arena. Whereas spatially modulated cells (place cells, grid cells, border cells) were generally not encountered, the firing rate of about 12% of the neurons was unimodally and significantly modulated by the head azimuth-i.e., these were head-direction cells (HD cells). Typically, HD cells were maximally active at one preferred direction and minimally at the opposite null direction, with preferred directions spanning all 360° across the population. The preferred direction was independent of the animal's position and speed and was stable during the recording session. The HD tuning was broader compared to that of HD cells in rodents, and most cells had non-zero baseline firing in all directions. However, similar to findings in rodents, the HD tuning usually rotated with the rotation of a salient visual cue in the arena. Thus, these findings support the existence of an allocentric HD representation in the quail hippocampal formation and provide the first demonstration of HD cells in birds.
Collapse
Affiliation(s)
- Elhanan Ben-Yishay
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Ksenia Krivoruchko
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Shaked Ron
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dori Derdikman
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Yoram Gutfreund
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel.
| |
Collapse
|
7
|
Lormant F, Ferreira VHB, Meurisse M, Lemarchand J, Constantin P, Morisse M, Cornilleau F, Parias C, Chaillou E, Bertin A, Lansade L, Leterrier C, Lévy F, Calandreau L. Emotionality modulates the impact of chronic stress on memory and neurogenesis in birds. Sci Rep 2020; 10:14620. [PMID: 32884096 PMCID: PMC7471904 DOI: 10.1038/s41598-020-71680-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic stress is a strong modulator of cognitive processes, such as learning and memory. There is, however, great within-individual variation in how an animal perceives and reacts to stressors. These differences in coping with stress modulate the development of stress-induced memory alterations. The present study investigated whether and how chronic stress and individual emotionality interrelate and influence memory performances and brain neurogenesis in birds. For that, we used two lines of Japanese quail (Coturnix japonica) with divergent emotionality levels. Highly (E+) and less (E-) emotional quail were submitted to chronic unpredictable stress (CUS) for 3 weeks and trained in a spatial task and a discrimination task, a form of cue-based memory. E + and E- birds were also used to assess the impact of CUS and emotionality on neurogenesis within the hippocampus and the striatum. CUS negatively impacted spatial memory, and cell proliferation, and survival in the hippocampus. High emotionality was associated with a decreased hippocampal neurogenesis. CUS improved discrimination performances and favored the differentiation of newborn cells into mature neurons in the striatum, specifically in E+ birds. Our results provide evidence that CUS consequences on memory and neural plasticity depends both on the memory system and individual differences in behavior.
Collapse
Affiliation(s)
- Flore Lormant
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France.,Yncréa Hauts-de-France, ISA Lille, 48 bd Vauban, 59046, Lille Cedex, France
| | - Maryse Meurisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Julie Lemarchand
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Paul Constantin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Mélody Morisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Fabien Cornilleau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Céline Parias
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Elodie Chaillou
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Aline Bertin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Léa Lansade
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Christine Leterrier
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Frédéric Lévy
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Ludovic Calandreau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France. .,CNRS, UMR 7247, 37380, Nouzilly, France. .,Université François Rabelais, 37041, Tours, France. .,IFCE, 37380, Nouzilly, France.
| |
Collapse
|
8
|
Jordan JT. The rodent hippocampus as a bilateral structure: A review of hemispheric lateralization. Hippocampus 2019; 30:278-292. [DOI: 10.1002/hipo.23188] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/24/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jake T. Jordan
- Department of BiologyThe Graduate Center, City University of New York New York New York
- Department of PsychologyQueens College, City University of New York Flushing New York
- Department of NeuroscienceAlbert Einstein College of Medicine Bronx NY 10461
| |
Collapse
|
9
|
Coppola VJ, Bingman VP. c-Fos revealed lower hippocampal participation in older homing pigeons when challenged with a spatial memory task. Neurobiol Aging 2019; 87:98-107. [PMID: 31889558 DOI: 10.1016/j.neurobiolaging.2019.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
Abstract
Homing pigeons experience age-related spatial-cognitive decline similar to that seen in mammals. In contrast to mammals, however, previous studies have shown the hippocampal formation (HF) of old, cognitively impaired pigeons to be greater in volume and neuron number compared with young pigeons. As a partial explanation of the cognitive decline in older birds, it was hypothesized that older pigeons have reduced HF activation during spatial learning. The present study compared HF activation (via the activity-dependent expression of the immediate early gene c-Fos) between younger and older pigeons during learning of a spatial, delayed nonmatch-to-sample task. On the last day of training, c-Fos activation significantly correlated with behavioral performance in the young, but not old, pigeons suggesting more HF engagement by the young pigeons in solving the task. The behavioral correlation was additionally associated with consistently higher, but insignificant c-Fos activation across practically every HF subdivision in the young compared with the old pigeons. In sum, the results of the present study are consistent with the hypothesis that age-related decline in the spatial cognitive ability of homing pigeons is in part a result of an older HF being less responsive to the processing of spatial information. However, alternative interpretations of the data are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA
| |
Collapse
|
10
|
The orientation of homing pigeons (Columba livia f.d.) with and without navigational experience in a two-dimensional environment. PLoS One 2017; 12:e0188483. [PMID: 29176875 PMCID: PMC5703563 DOI: 10.1371/journal.pone.0188483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
Homing pigeons are known for their excellent homing ability, and their brains seem to be functionally adapted to homing. It is known that pigeons with navigational experience show a larger hippocampus and also a more lateralised brain than pigeons without navigational experience. So we hypothesized that experience may have an influence also on orientation ability. We examined two groups of pigeons (11 with navigational experience and 17 without) in a standard operant chamber with a touch screen monitor showing a 2-D schematic of a rectangular environment (as “geometric” information) and one uniquely shaped and colored feature in each corner (as “landmark” information). Pigeons were trained first for pecking on one of these features and then we examined their ability to encode geometric and landmark information in four tests by modifying the rectangular environment. All tests were done under binocular and monocular viewing to test hemispheric dominance. The number of pecks was counted for analysis. Results show that generally both groups orientate on the basis of landmarks and the geometry of environment, but landmark information was preferred. Pigeons with navigational experience did not perform better on the tests but showed a better conjunction of the different kinds of information. Significant differences between monocular and binocular viewing were detected particularly in pigeons without navigational experience on two tests with reduced information. Our data suggest that the conjunction of geometric and landmark information might be integrated after processing separately in each hemisphere and that this process is influenced by experience.
Collapse
|
11
|
Gleich T, Lorenz RC, Gallinat J, Kühn S. Functional changes in the reward circuit in response to gaming-related cues after training with a commercial video game. Neuroimage 2017; 152:467-475. [DOI: 10.1016/j.neuroimage.2017.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/03/2017] [Accepted: 03/16/2017] [Indexed: 11/17/2022] Open
|
12
|
Liu X, Wan H, Li S, Shang Z, Shi L. The role of nidopallium caudolaterale in the goal-directed behavior of pigeons. Behav Brain Res 2017; 326:112-120. [DOI: 10.1016/j.bbr.2017.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
13
|
Lee CH, Ryu J, Lee SH, Kim H, Lee I. Functional cross-hemispheric shift between object-place paired associate memory and spatial memory in the human hippocampus. Hippocampus 2016; 26:1061-77. [PMID: 27009679 PMCID: PMC5074286 DOI: 10.1002/hipo.22587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Choong-Hee Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Jungwon Ryu
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Hakjin Kim
- Department of Psychology, Korea University, Seoul, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
14
|
Cauchoix M, Chaine AS. How Can We Study the Evolution of Animal Minds? Front Psychol 2016; 7:358. [PMID: 27014163 PMCID: PMC4791388 DOI: 10.3389/fpsyg.2016.00358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
During the last 50 years, comparative cognition and neurosciences have improved our understanding of animal minds while evolutionary ecology has revealed how selection acts on traits through evolutionary time. We describe how cognition can be subject to natural selection like any other biological trait and how this evolutionary approach can be used to understand the evolution of animal cognition. We recount how comparative and fitness methods have been used to understand the evolution of cognition and outline how these approaches could extend our understanding of cognition. The fitness approach, in particular, offers unprecedented opportunities to study the evolutionary mechanisms responsible for variation in cognition within species and could allow us to investigate both proximate (i.e., neural and developmental) and ultimate (i.e., ecological and evolutionary) underpinnings of animal cognition together. We highlight recent studies that have successfully shown that cognitive traits can be under selection, in particular by linking individual variation in cognition to fitness. To bridge the gap between cognitive variation and fitness consequences and to better understand why and how selection can occur on cognition, we end this review by proposing a more integrative approach to study contemporary selection on cognitive traits combining socio-ecological data, minimally invasive neuroscience methods and measurement of ecologically relevant behaviors linked to fitness. Our overall goal in this review is to build a bridge between cognitive neuroscientists and evolutionary biologists, illustrate how their research could be complementary, and encourage evolutionary ecologists to include explicit attention to cognitive processes in their studies of behavior.
Collapse
Affiliation(s)
| | - Alexis S Chaine
- Institute for Advanced Study in ToulouseToulouse, France; Station for Experimental Ecology in Moulis, CNRSMoulis, France
| |
Collapse
|
15
|
Hecht D. Cerebral lateralization of pro- and anti-social tendencies. Exp Neurobiol 2014; 23:1-27. [PMID: 24737936 PMCID: PMC3984952 DOI: 10.5607/en.2014.23.1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/18/2014] [Accepted: 02/17/2014] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence suggest that the right-hemisphere (RH) has a relative advantage, over the left-hemisphere (LH), in mediating social intelligence - identifying social stimuli, understanding the intentions of other people, awareness of the dynamics in social relationships, and successful handling of social interactions. Furthermore, a review and synthesis of the literature suggest that pro-social attitudes and behaviors are associated with physiological activity in the RH, whereas unsocial and anti-social tendencies are mediated primarily by the LH. This hemispheric asymmetry is rooted in several neurobiological and functional differences between the two hemispheres. (I) Positive social interactions often require inhibiting one's immediate desires and considering the perspectives and needs of others. Given that self-control is mediated by the RH, pro-social emotions and behaviors are, therefore, inherently associated with the RH as it subserves the brain's self-restraint mechanisms. (II) The RH mediates experiences of vulnerability. It registers the relative clumsiness and motor weakness of the left limbs, and it is involved, more than the LH, in processing threats and mediating fear. Emotional states of vulnerability trigger the need for affiliation and sociality, therefore the RH has a greater role in mediating pro-social attitudes and behaviors. (III) The RH mediates a holistic mode of representing the world. Holistic perception emphasizes similarities rather than differences, takes a long-term perspective, is associated with divergent thinking and seeing other points-of-view, and it mediates a personal mode of relating to people. All these features of holistic perception facilitate a more empathetic attitude toward others and pro-social behaviors.
Collapse
Affiliation(s)
- David Hecht
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
16
|
Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol Psychiatry 2014; 19:265-71. [PMID: 24166407 DOI: 10.1038/mp.2013.120] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/08/2013] [Indexed: 01/23/2023]
Abstract
Video gaming is a highly pervasive activity, providing a multitude of complex cognitive and motor demands. Gaming can be seen as an intense training of several skills. Associated cerebral structural plasticity induced has not been investigated so far. Comparing a control with a video gaming training group that was trained for 2 months for at least 30 min per day with a platformer game, we found significant gray matter (GM) increase in right hippocampal formation (HC), right dorsolateral prefrontal cortex (DLPFC) and bilateral cerebellum in the training group. The HC increase correlated with changes from egocentric to allocentric navigation strategy. GM increases in HC and DLPFC correlated with participants' desire for video gaming, evidence suggesting a predictive role of desire in volume change. Video game training augments GM in brain areas crucial for spatial navigation, strategic planning, working memory and motor performance going along with evidence for behavioral changes of navigation strategy. The presented video game training could therefore be used to counteract known risk factors for mental disease such as smaller hippocampus and prefrontal cortex volume in, for example, post-traumatic stress disorder, schizophrenia and neurodegenerative disease.
Collapse
|
17
|
Kühn S, Gallinat J. Segregating cognitive functions within hippocampal formation: a quantitative meta-analysis on spatial navigation and episodic memory. Hum Brain Mapp 2013; 35:1129-42. [PMID: 23362184 DOI: 10.1002/hbm.22239] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 10/03/2012] [Accepted: 11/07/2012] [Indexed: 11/11/2022] Open
Abstract
The most important cognitive domains where hippocampal formation is crucially involved are navigation and memory. Some evidence suggests that different hippocampal subregions mediate these domains. However, a quantitative meta-analysis on neuroimaging studies of spatial navigation versus memory is lacking. By means of activation likelihood estimation (ALE), we investigate concurrence of brain regions activated during spatial navigation encoding and retrieval as well as during episodic memory encoding and retrieval tasks in humans. During encoding in spatial navigation, activity was located in more posterior regions of the hippocampal formation, whereas episodic memory encoding was located in more anterior regions. Retrieval in spatial navigation was more strongly lateralized to the right compared to episodic memory retrieval. Within studies on spatial navigation retrieval, immediate recall was located more posterior and delayed recall more anterior. Overlap between concurrence of activation in spatial navigation and episodic memory was rather limited in comparison to uniquely involved regions. This argues in favor of two distinct networks, one for spatial navigation the other for episodic memory within the hippocampal formation.
Collapse
Affiliation(s)
- Simone Kühn
- Faculty of Psychology and Educational Sciences, Department of Experimental Psychology and Ghent Institute for Functional and Metabolic Imaging, Ghent University Henri Dunantlaan 2, Gent, Belgium; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, Germany
| | | |
Collapse
|
18
|
Hou G, Yang X, Yuan TF. Hippocampal asymmetry: differences in structures and functions. Neurochem Res 2013; 38:453-60. [PMID: 23283696 DOI: 10.1007/s11064-012-0954-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 12/12/2022]
Abstract
The structural asymmetry of bilateral hippocampus in mammals has been well recognized. Recent findings highlighted the accompanying functional asymmetries, as well as the molecular differences of the hippocampus. The present paper summarized these recent advances in understanding the hippocampal asymmetries at molecular, circuit and functional levels. Additionally, the addition of new neurons to the hippocampal circuit during adulthood is asymmetrical. We conclude that these differences in molecules and structures of bilateral hippocampus determined the variances in functionality between the two sides.
Collapse
Affiliation(s)
- Gonglin Hou
- Centre of Cognitive Research, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | | | | |
Collapse
|
19
|
Peterson RM, Bingman VP. Septal area lesions impair spatial working memory in homing pigeons (Columba livia). Neurobiol Learn Mem 2011; 96:353-60. [DOI: 10.1016/j.nlm.2011.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/02/2011] [Accepted: 06/17/2011] [Indexed: 11/26/2022]
|
20
|
Chancellor LV, Roth TC, LaDage LD, Pravosudov VV. The effect of environmental harshness on neurogenesis: a large-scale comparison. Dev Neurobiol 2011; 71:246-52. [PMID: 20949526 PMCID: PMC3092529 DOI: 10.1002/dneu.20847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Harsh environmental conditions may produce strong selection pressure on traits, such as memory, that may enhance fitness. Enhanced memory may be crucial for survival in animals that use memory to find food and, thus, particularly important in environments where food sources may be unpredictable. For example, animals that cache and later retrieve their food may exhibit enhanced spatial memory in harsh environments compared with those in mild environments. One way that selection may enhance memory is via the hippocampus, a brain region involved in spatial memory. In a previous study, we established a positive relationship between environmental severity and hippocampal morphology in food-caching black-capped chickadees (Poecile atricapillus). Here, we expanded upon this previous work to investigate the relationship between environmental harshness and neurogenesis, a process that may support hippocampal cytoarchitecture. We report a significant and positive relationship between the degree of environmental harshness across several populations over a large geographic area and (1) the total number of immature hippocampal neurons, (2) the number of immature neurons relative to the hippocampal volume, and (3) the number of immature neurons relative to the total number of hippocampal neurons. Our results suggest that hippocampal neurogenesis may play an important role in environments where increased reliance on memory for cache recovery is critical.
Collapse
Affiliation(s)
| | - Timothy C. Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lara D. LaDage
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
21
|
Salwiczek LH, Watanabe A, Clayton NS. Ten years of research into avian models of episodic-like memory and its implications for developmental and comparative cognition. Behav Brain Res 2010; 215:221-34. [PMID: 20600352 DOI: 10.1016/j.bbr.2010.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/05/2010] [Accepted: 06/09/2010] [Indexed: 11/20/2022]
Abstract
Episodic memory refers to the ability to remember specific personal events from the past. Ever since Tulving first made the distinction between episodic memory and other forms of declarative memory in 1972, most cognitive psychologists and neuroscientists have assumed that episodic recall is unique to humans. The seminal paper on episodic-like memory in Western scrub-jays (Aphelocoma californica) by Clayton and Dickinson [4] has inspired a number of studies and in a wide range of species over the past 10 years. Here we shall first review the avian studies of what-where-when memory, namely in the Western scrub-jays, magpies, black-capped chickadees and pigeons; we shall then present an alternative approach to studying episodic-like memory also tested in pigeons. In the second and third section we want to draw attention to topics where we believe the bird model could prove highly valuable, namely studying development of episodic-memory in pre-verbal children, and the evolution and ontogeny of brain areas subserving episodic(-like) memory.
Collapse
Affiliation(s)
- Lucie H Salwiczek
- Department of Physiological Sciences, University of California-Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
22
|
Mehlhorn J, Rehkämper G. Homing pigeons as a model for the influence of experience on brain composition-including considerations on evolutionary theory. Commun Integr Biol 2010; 3:592-3. [DOI: 10.4161/cib.3.6.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022] Open
|
23
|
Mehlhorn J, Haastert B, Rehkämper G. Asymmetry of different brain structures in homing pigeons with and without navigational experience. J Exp Biol 2010; 213:2219-24. [DOI: 10.1242/jeb.043208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Homing pigeons (Columba livia f.d.) are well-known for their homing abilities, and their brains seem to be functionally adapted to homing as exemplified, e.g. by their larger hippocampi and olfactory bulbs. Their hippocampus size is influenced by navigational experience, and, as in other birds, functional specialisation of the left and right hemispheres (‘lateralisation’) occurs in homing pigeons. To show in what way lateralisation is reflected in brain structure volume, and whether some lateralisation or asymmetry in homing pigeons is caused by experience, we compared brains of homing pigeons with and without navigational experience referring to this. Fourteen homing pigeons were raised under identical constraints. After fledging, seven of them were allowed to fly around the loft and participated successfully in races. The other seven stayed permanently in the loft and thus did not share the navigational experiences of the first group. After reaching sexual maturity, all individuals were killed and morphometric analyses were carried out to measure the volumes of five basic brain parts and eight telencephalic brain parts. Measurements of telencephalic brain parts and optic tectum were done separately for the left and right hemispheres. The comparison of left/right quotients of both groups reveal that pigeons with navigational experience show a smaller left mesopallium in comparison with the right mesopallium and pigeons without navigational experience a larger left mesopallium in comparison with the right one. Additionally, there are significant differences between left and right brain subdivisions within the two pigeon groups, namely a larger left hyperpallium apicale in both pigeon groups and a larger right nidopallium, left hippocampus and right optic tectum in pigeons with navigational experience. Pigeons without navigational experience did not show more significant differences between their left and right brain subdivisions. The results of our study confirm that the brain of homing pigeons is an example for mosaic evolution and indicates that lateralisation is correlated with individual life history (experience) and not exclusively based on heritable traits.
Collapse
Affiliation(s)
- Julia Mehlhorn
- C. and O. Vogt Institute of Brain Research, University of Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | - Gerd Rehkämper
- C. and O. Vogt Institute of Brain Research, University of Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Klur S, Muller C, Pereira de Vasconcelos A, Ballard T, Lopez J, Galani R, Certa U, Cassel JC. Hippocampal-dependent spatial memory functions might be lateralized in rats: An approach combining gene expression profiling and reversible inactivation. Hippocampus 2009; 19:800-16. [DOI: 10.1002/hipo.20562] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Chaudhury S, Wadhwa S. Prenatal auditory stimulation alters the levels of CREB mRNA, p-CREB and BDNF expression in chick hippocampus. Int J Dev Neurosci 2009; 27:583-90. [PMID: 19559781 DOI: 10.1016/j.ijdevneu.2009.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 06/17/2009] [Indexed: 01/23/2023] Open
Abstract
Prenatal auditory stimulation influences the development of the chick auditory pathway and the hippocampus showing an increase in various morphological parameters as well as expression of calcium-binding proteins. Calcium regulates the activity of cyclic adenosine monophosphate-response element binding (CREB) protein. CREB is known to play a role in development, undergo phosphorylation with neural activity as well as regulate transcription of BDNF. BDNF is important for the survival of neurons and regulates synaptic strength. Hence in the present study, we have evaluated the levels of CREB mRNA and protein along with p-CREB protein as well as BDNF mRNA and protein levels in the chick hippocampus at embryonic days (E) 12, E16, E20 and post-hatch day (PH) 1 following activation by prenatal auditory stimulation. Fertilized eggs were exposed to species-specific sound or sitar music (frequency range: 100-6300Hz) at 65dB levels for 15min/h over 24h from E10 till hatching. The control chick hippocampus showed higher CREB mRNA and p-CREB protein in the early embryonic stages, which later decline whereas BDNF mRNA and BDNF protein levels increase until PH1. The CREB mRNA and p-CREB protein were significantly increased at E12, E16 and PH1 in the auditory stimulated groups as compared to control group. A significant increase in the level of BDNF mRNA was observed from E12 and the protein expression from E16 onwards in both auditory stimulated groups. Therefore, enhanced phosphorylation of CREB during development following prenatal sound stimulation may be responsible for cell survival. Increased levels of p-CREB again at PH1 may trigger synthesis of proteins necessary for synaptic plasticity. Further, the increased levels of BDNF may also help in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|
26
|
Mehlhorn J, Rehkämper G. Neurobiology of the homing pigeon--a review. Naturwissenschaften 2009; 96:1011-25. [PMID: 19488733 DOI: 10.1007/s00114-009-0560-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/24/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
Homing pigeons are well known as good homers, and the knowledge of principal parameters determining their homing behaviour and the neurological basis for this have been elucidated in the last decades. Several orientation mechanisms and parameters-sun compass, earth's magnetic field, olfactory cues, visual cues-are known to be involved in homing behaviour, whereas there are still controversial discussions about their detailed function and their importance. This paper attempts to review and summarise the present knowledge about pigeon homing by describing the known orientation mechanisms and factors, including their pros and cons. Additionally, behavioural features like motivation, experience, and track preferences are discussed. All behaviour has its origin in the brain and the neuronal basis of homing and the neuroanatomical particularities of homing pigeons are a main topic of this review. Homing pigeons have larger brains in comparison to other non-homing pigeon breeds and particularly show increased size of the hippocampus. This underlines our hypothesis that there is a relationship between hippocampus size and spatial ability. The role of the hippocampus in homing and its plasticity in response to navigational experience are discussed in support of this hypothesis.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Study Group Behaviour and Brain, C.&O. Vogt, Institute of Brain Research, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
27
|
Chaudhury S, Nag TC, Wadhwa S. Effect of prenatal auditory stimulation on numerical synaptic density and mean synaptic height in the posthatch Day 1 chick hippocampus. Synapse 2009; 63:152-9. [PMID: 19021205 DOI: 10.1002/syn.20585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies on prenatal auditory stimulation by species-specific sound or sitar music showed enhanced morphological and biochemical changes in chick hippocampus, which plays an important role in learning and memory. Changes in the efficiency of synapses, synaptic morphology and de novo synapse formation affects learning and memory. Therefore, in the present study, we set out to investigate the mean synaptic density and mean synaptic height at posthatch Day 1 in dorsal and ventral part of chick hippocampus following prenatal auditory stimulation. Fertilized 0 day eggs of domestic chick incubated under normal conditions were exposed to patterned sounds of species-specific and sitar music at 65 dB levels for 15 min/h round the clock (frequency range: 100-6300 Hz) from embryonic Day 10 till hatching. The synapses identified under transmission electron microscope were estimated for their numerical density by physical disector method and also the mean synaptic height calculated. Our results demonstrate a significant increase in mean synaptic density with no alterations in the mean synaptic height following both types of auditory stimulation in the dorsal as well as ventral part of the hippocampus. The observed increase in mean synaptic density suggests enhanced synaptic substrate to strengthen hippocampal function.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | |
Collapse
|
28
|
Wilzeck C, Prior H, Kelly DM. Geometry and landmark representation by pigeons: evidence for species-differences in the hemispheric organization of spatial information processing? Eur J Neurosci 2009; 29:813-22. [DOI: 10.1111/j.1460-9568.2009.06626.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Manns M, Güntürkün O. Dual coding of visual asymmetries in the pigeon brain: the interaction of bottom-up and top-down systems. Exp Brain Res 2009; 199:323-32. [DOI: 10.1007/s00221-009-1702-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/02/2009] [Indexed: 11/25/2022]
|
30
|
Response properties of avian hippocampal formation cells in an environment with unstable goal locations. Behav Brain Res 2008; 191:153-63. [DOI: 10.1016/j.bbr.2008.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 11/23/2022]
|
31
|
Chaudhury S, Nag TC, Wadhwa S. Calbindin D-28K and parvalbumin expression in embryonic chick hippocampus is enhanced by prenatal auditory stimulation. Brain Res 2007; 1191:96-106. [PMID: 18096144 DOI: 10.1016/j.brainres.2007.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/28/2007] [Accepted: 11/12/2007] [Indexed: 12/20/2022]
Abstract
Calcium-binding proteins (CaBPs) buffer excess of cytosolic Ca(2+), which accompanies neuronal activity following external stimuli. Prenatal auditory stimulation by species-specific sound and music influences early maturation of the auditory pathway and the behavioral responses in chicks. In this study, we determined the volume, total number of neurons, proportion of calbindin D-28K and parvalbumin-positive neurons along with their levels of expression in the developing chick hippocampus following prenatal auditory stimulation. Fertilized eggs of domestic chicks were exposed to sounds of either species-specific calls or sitar music at 65 dB for 15 min/h round the clock from embryonic day (E) 10 until hatching. Hippocampi of developmental stages (E12, E16 and E20) were examined. With an increase in embryonic age during normal development, the hippocampus showed an increase in its volume, total number of neurons as well as in the neuron proportions and levels of expression of calbindin D-28K and parvalbumin. A significant increase of volume at E20 was noted only in the music-stimulated group compared to that of their age-matched control (p<0.05). On the other hand, both auditory-stimulated groups showed a significant increase in the proportion of immunopositive neurons and the levels of expression of calbindin D-28K and parvalbumin as compared to the control at all developmental stages studied (p<0.003). The increase in proportions of CaBP neurons during development and in the sound-enriched groups suggests an activity-dependent increase in Ca(2+) influx. The enhanced expression of CaBPs may help in cell survival by preventing excitotoxic death of neurons during development and may also be involved in long-term potentiation.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
32
|
Yamazaki Y, Aust U, Huber L, Hausmann M, Güntürkün O. Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition 2007; 104:315-44. [PMID: 16905127 DOI: 10.1016/j.cognition.2006.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 11/17/2022]
Abstract
This study was aimed at revealing which cognitive processes are lateralized in visual categorizations of "humans" by pigeons. To this end, pigeons were trained to categorize pictures of humans and then tested binocularly or monocularly (left or right eye) on the learned categorization and for transfer to novel exemplars (Experiment 1). Subsequent tests examined whether they relied on memorized features or on a conceptual strategy, using stimuli composed of new combinations of familiar and novel humans and backgrounds (Experiment 2), whether the hemispheres processed global or local information, using pictures with different levels of scrambling (Experiment 3), and whether they attended to configuration, using distorted human figures (Experiment 4). The results suggest that the left hemisphere employs a category strategy and concentrates on local features, while the right hemisphere uses an exemplar strategy and relies on configuration. These cognitive dichotomies of the cerebral hemispheres are largely shared by humans, suggesting that lateralized cognitive systems already defined the neural architecture of the common ancestor of birds and mammals.
Collapse
Affiliation(s)
- Y Yamazaki
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
33
|
Gülbetekin E, Güntürkün O, Dural S, Cetinkaya H. Asymmetry of visually guided sexual behaviour in adult Japanese quail (Coturnix japonica). Laterality 2007; 12:321-31. [PMID: 17558814 DOI: 10.1080/13576500701307080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sexually active adult Japanese quail (Coturnix coturnix japonica) were trained to run across either a left- or a right-turning runway to obtain sexual access to a conspecific of the opposite sex. The birds tested with only their right eye in use showed significantly higher latencies to complete the runway task than the birds tested binocularly and those using the left eye. In all of the three experimental conditions, male birds were significantly faster than their female counterparts. Generally, these findings are compatible with previous evidence for lateralisation in sexually motivated behaviour in birds. However, unlike the previous findings that suggested a loss of lateralisation in pattern discrimination in quail during adulthood, the present study shows that asymmetries in visually guided sexual behaviour persist in adult quail. Thus, our study implies that ontogenetic and lateralised changes within the visual system can be differently organised for different output pathways.
Collapse
|
34
|
Manns M, Freund N, Patzke N, Güntürkün O. Organization of telencephalotectal projections in pigeons: Impact for lateralized top-down control. Neuroscience 2007; 144:645-53. [PMID: 17084536 DOI: 10.1016/j.neuroscience.2006.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 11/27/2022]
Abstract
Birds display hemispheric specific modes of visual processing with a dominance of the right eye/left hemisphere for detailed visual object analysis. In pigeons, this behavioral lateralization is accompanied by morphological left-right differences in the ascending tectofugal pathway. This system is also asymmetrically modulated by descending telencephalotectal input whereby the left forebrain displays a much more pronounced physiological control over ipsilateral left and contralateral right visual thalamic processes. In the present study we aimed to answer the question if this top-down asymmetry that up to now had been demonstrated in single cell recording studies is due to anatomical asymmetries in the size of the fiber systems descending from the telencephalon to the tectum. We approached this question by means of a quantitative retrograde tracing study. Cholera toxin subunit B (CtB) was injected unilaterally into either the left or right optic tectum of adult pigeons. After immunohistochemical detection of CtB-positive cells, the number of ipsi- and contralaterally projecting neurons was estimated. Retrogradely labeled cells were located within the arcopallium, the hyperpallium apicale (HA) and the temporo-parieto-occipital area (TPO). Descending projections from HA, arcopallium, and TPO were mainly or exclusively ipsilateral with the contralateral projection being extremely small. Moreover, there was no difference between left and right hemispheric projections. These anatomical data sharply contrast with behavioral and electrophysiological ones which reveal an asymmetric and bilateral top down control. Therefore, contralateral and lateralized forebrain influences onto tectofugal processing are possibly not the direct result of asymmetrical descending axon numbers. Those influences emerge by a lateralized intra- and/or interhemispheric integration of ascending and descending input onto the rotundus.
Collapse
Affiliation(s)
- M Manns
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Universitätstr 150, 44780 Bochum, Germany.
| | | | | | | |
Collapse
|
35
|
Pravosudov VV, Kitaysky AS, Omanska A. The relationship between migratory behaviour, memory and the hippocampus: an intraspecific comparison. Proc Biol Sci 2006; 273:2641-9. [PMID: 17002950 PMCID: PMC1635458 DOI: 10.1098/rspb.2006.3624] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been hypothesized that memory-demanding ecological conditions might result in enhanced memory and an enlarged hippocampus, an area of the brain involved in memory processing, either via extensive memory experience or through evolutionary changes. Avian migration appears to represent one of such memory-demanding ecological conditions. We compared two subspecies of the white-crowned sparrow: migratory Zonotrichia leucophrys gambelii and non-migratory Z. l. nuttalli. Compared to non-migratory Z. l. nuttalli, migratory Z. l. gambelii showed better memory performance on spatial one-trial associative learning tasks and had more hippocampal neurons. Migratory subspecies also had larger hippocampi relative to the remainder of the telencephalon but not relative to body mass. In adults, the differences between migratory and non-migratory sparrows were especially pronounced in the right hippocampus. Juvenile migratory Z. l. gambelii had relatively larger hippocampal volume compared to juvenile non-migratory Z. l. nuttalli. Adult migratory Z. l. gambelii had more neurons in their right hippocampus compared to juveniles but such differences were not found in non-migratory Z. l. nuttalli. Our results suggest that migratory behaviour might be related to enhanced spatial memory and an enlarged hippocampus with more neurons, and that differences in the hippocampus between migratory and non-migratory sparrows might be experience-dependent. Furthermore, for the first time our results suggest that the right hippocampus, which encodes global spatial information, might be involved in migratory behaviour.
Collapse
|
36
|
Chaudhury S, Nag TC, Wadhwa S. Prenatal acoustic stimulation influences neuronal size and the expression of calcium-binding proteins (calbindin D-28K and parvalbumin) in chick hippocampus. J Chem Neuroanat 2006; 32:117-26. [PMID: 16962286 DOI: 10.1016/j.jchemneu.2006.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/18/2022]
Abstract
Prenatal auditory enrichment by species-specific sounds and sitar music enhances the expression of immediate early genes, synaptic proteins and calcium binding proteins (CaBPs) as well as modifies the structural components of the brainstem auditory nuclei and auditory imprinting area in chicks. There is also facilitation of postnatal auditory preference of the chicks to maternal calls following both types of sound stimulation indicating prenatal perceptual learning. To examine whether the sound enrichment protocol also affects the areas related to learning and memory, we assessed morphological changes in the hippocampus at post-hatch day 1 of control and prenatally sound-stimulated chicks. Additionally, the proportions of neurons containing calbindin D-28K and parvalbumin immunoreactivity as well as their protein levels were determined. Fertilized eggs of domestic chick were incubated under normal conditions of temperature, humidity, forced draft of air as well as light and dark (12:12h) photoperiods. They were exposed to patterned sounds of species-specific and sitar music at 65 dB for 15 min per hour over a day/night cycle from day 10 of incubation till hatching. The hippocampal volume, neuronal nuclear size and total number of neurons showed a significant increase in the music-stimulated group as compared to the species-specific sound-stimulated and control groups. However, in both the auditory-stimulated groups the protein levels of calbindin and parvalbumin as well as the percentage of the immunopositive neurons were increased. The enhanced proportion of CaBPs in the sound-enriched groups suggests greater Ca(2+) influx, which may influence long-term potentiation and short-term memory.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
37
|
Cheng K, Spetch ML, Kelly DM, Bingman VP. Small-scale spatial cognition in pigeons. Behav Processes 2006; 72:115-27. [PMID: 16481125 DOI: 10.1016/j.beproc.2005.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Roberts and Van Veldhuizen's [Roberts, W.A., Van Veldhuizen, N., 1985. Spatial memory in pigeons on the radial maze. J. Exp. Psychol.: Anim. Behav. Proc. 11, 241-260] study on pigeons in the radial maze sparked research on landmark use by pigeons in lab-based tasks as well as variants of the radial-maze task. Pigeons perform well on open-field versions of the radial maze, with feeders scattered on the laboratory floor. Pigeons can also be trained to search precisely for buried food. The search can be based on multiple landmarks, but is sometimes controlled by just one or two landmarks, with the preferred landmarks varying across individuals. Findings are similar in landmark-based searching on a computer monitor and on a lab floor, despite many differences between the two kinds of tasks. A number of general learning principles are found in landmark-based searching, such as cue competition, generalization and peak shift, and selective attention. Pigeons also learn the geometry of the environment in which they are searching. Neurophysiological studies have implicated the hippocampal formation (HF) in avian spatial cognition, with the right hippocampus hypothesized to play a more important role in the spatial recognition of goal locations. Most recently, single-cell recording from the pigeon's hippocampal formation has revealed cells with different properties from the classic 'place' cells of rats, as well as differences in the two sides of the hippocampus.
Collapse
Affiliation(s)
- Ken Cheng
- Centre for the Integrative Study of Animal Behaviour, Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | |
Collapse
|
38
|
Siegel JJ, Nitz D, Bingman VP. Lateralized functional components of spatial cognition in the avian hippocampal formation: evidence from single-unit recordings in freely moving homing pigeons. Hippocampus 2006; 16:125-40. [PMID: 16281290 DOI: 10.1002/hipo.20139] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research has revealed that the functional components of spatial cognition are lateralized in the forebrain of birds, including the hippocampal formation (HF). To investigate how HF cells in the left and right avian brain may differentially participate in representations of space, we recorded single-units from the HF of homing pigeons as they ran a plus maze for food. The rate maps of left HF cells often displayed elongated regions of increased activity in the center of the maze and along the maze corridors, whereas right HF cells tended to display patches at the ends of maze arms at/near goal locations. Left HF cells displayed a higher degree of spatial-specificity compared with right HF cells, including higher patch-specificity, higher reliability, and a higher incidence of location-correlated activity. Analysis of speed-correlated and trajectory-dependent activity also revealed significant HF-lateralized differences. Right HF cells tended to display significant negative correlations between spike rate and speed, although speed-dependent rate maps indicate that this relationship did not explain their space-specific activity. Left HF cells displayed a significantly higher incidence of trajectory-dependent space-specific activity than was observed in the right HF, suggesting that left HF cells may participate in navigating among goal locations. Differences in the correlates of left and right pigeon HF cells are consistent with unilateral HF-lesion data suggesting that the functional components of spatial cognition are lateralized in the avian brain, and furthermore, provide a basis for hypotheses regarding how the left and right HF support different aspects of spatial cognition.
Collapse
Affiliation(s)
- Jennifer J Siegel
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio, USA.
| | | | | |
Collapse
|
39
|
Hoffman AM, Robakiewicz PE, Tuttle EM, Rogers LJ. Behavioural lateralisation in the Australian magpie (Gymnorhina tibicen). Laterality 2006; 11:110-21. [PMID: 16513572 DOI: 10.1080/13576500500376674] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In many vertebrates, the brain is lateralised such that each hemisphere is specialised to serve specific functions. This may translate into lateralisation in behaviour through preferential use of receptors or appendages associated with a particular hemisphere (e.g., handedness) or in differential responses to stimuli perceived on the animal's left or right side. In this study, we investigated behavioural laterality in the Australian magpie, Gymnorhina tibicen. We found that, while the birds did not have a population bias for one antipredator behaviour (visual inspection of an approaching human), there were biases for another (alarm calling); those birds that used their left eye more relative to their right eye gave alarm calls more frequently. We also observed that juvenile birds begged for food on the right side of parents significantly more frequently than on the left side. These trends are consistent with trends in behavioural laterality that have been recorded in captive and lab-reared species. Ours is one of the few studies to observe patterns of laterality in a wild species.
Collapse
Affiliation(s)
- A M Hoffman
- Dept. of Life Sciences, Indiana State University, Terre Haute, IN 47809, USA.
| | | | | | | |
Collapse
|
40
|
Nikolakopoulou AM, Davies HA, Stewart MG. Passive avoidance training decreases synapse density in the hippocampus of the domestic chick. Eur J Neurosci 2006; 23:1054-62. [PMID: 16519670 DOI: 10.1111/j.1460-9568.2006.04619.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bird hippocampus (Hp), although lacking the cellular lamination of the mammalian Hp, possesses comparable roles in spatial orientation and is implicated in passive avoidance learning. As in rodents it can be divided into dorsal and ventral regions based on immunocytochemical, tracing and electrophysiological studies. To study the effects of passive avoidance learning on synapse morphometry in the Hp, spine and shaft synapse densities of 1-day-old domestic chicks were determined in dorsal and ventral Hp of each hemisphere by electron microscopy, 6 and 24 h following training to avoid pecking at a bead coated with a bitter-tasting substance, methyl anthranilate (MeA). The density of asymmetric spine and shaft synapses in MeA-trained birds at 6 h post-training was significantly lower in the dorsal and ventral Hp of the right hemisphere relative to control (untrained) chicks, but by 24 h this difference was absent. A hemispheric asymmetry was apparent in the ventral Hp where the water-trained group showed enhanced shaft and spine synapse density in the left hemisphere, whilst in the MeA-trained group only asymmetric shaft synapses follow the same pattern in relation to the right hemisphere. There were no differences in asymmetric shaft synapses in the dorsal Hp at 6 h post-training, but at 24 h post-training there was a reduction in the density of shaft synapses in the right hemisphere in MeA compared with control birds. These data are discussed in relation to the pruning effects of stress and learning on synapse density in chick Hp.
Collapse
Affiliation(s)
- A M Nikolakopoulou
- The Open University, Biological Sciences, Walton Hall, Milton Keynes MK7 6AA, UK.
| | | | | |
Collapse
|
41
|
Vauclair J, Yamazaki Y, Güntürkün O. The study of hemispheric specialization for categorical and coordinate spatial relations in animals. Neuropsychologia 2006; 44:1524-34. [PMID: 16516247 DOI: 10.1016/j.neuropsychologia.2006.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reviews some of the most representative studies in the animal literature pertaining to the processing of categorical and coordinate spatial relations and of their hemispheric control. Although the processing of coordinate and categorical cognition has been studied directly with nonhuman primates, experiments on cerebral asymmetries in avian spatial orientation are also reviewed. It turns out that Kosslyn's model concerning the existence of two types of spatial representations each with a specific lateralization pattern has received some support in nonhuman primates and is only weakly verified in the avian studies. Procedural differences might explain some but certainly not all of the discrepancies between the human and the animal literature. It is especially the laterality hypothesis of a left hemisphere advantage in relational cognition and a right hemispheric superiority in judging absolute distances that is not supported by the animal data. Studies specifically addressing Kosslyn's hypotheses and bearing on the use of similar stimuli, procedures and methods between the species tested are needed in order to lead to firm conclusions about the existence of coordinate versus categorical processing systems in animals.
Collapse
Affiliation(s)
- Jacques Vauclair
- Research Center in Psychology of Cognition, Language and Emotion, Department of Psychology, University of Provence, 29 av. R. Schuman, 13621 Aix-en-Provence Cedex 1, France.
| | | | | |
Collapse
|
42
|
Bingman VP, Gagliardo A. Of Birds and Men: Convergent Evolution in Hippocampal Lateralization and Spatial Cognition. Cortex 2006; 42:99-100. [PMID: 16509116 DOI: 10.1016/s0010-9452(08)70329-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | |
Collapse
|
43
|
Watanabe S. Effects of Partial Hippocampal Lesions by IbotenicAcid on Repeated Acquisition of Spatial Discrimination in Pigeons. Rev Neurosci 2006; 17:29-41. [PMID: 16703941 DOI: 10.1515/revneuro.2006.17.1-2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pigeons were trained on a spatial discrimination task using a repeated acquisition procedure. In this procedure, the pigeons were trained to discriminate between the positions of three keys. One of them was designated the correct key. When the subjects reached the criterion, the discrimination task was changed, with one of two previously incorrect keys now being made the correct key. This procedure was repeated at least 15 times. Then, lesions to the whole hippocampus, the medial hippocampus or to the lateral hippocampus were made by injections of ibotenic acid (Experiment 1). Only the subjects with damage to the whole hippocampus showed deficits in learning after the lesions. The deficits were similar to those caused by aspiration lesions /37/. Knife cuts separating the medial and lateral hippocampi were made in Experiment 2. The subjects did not show deficits in the spatial discrimination task after the sections. Although studies of the connectivity in the avian hippocampus suggested functional differences between the medial and lateral hippocampi, the present results show that pigeons can learn spatial discrimination with the medial and lateral parts of hippocampus separated.
Collapse
|
44
|
Gagliardo A, Vallortigara G, Nardi D, Bingman VP. A lateralized avian hippocampus: preferential role of the left hippocampal formation in homing pigeon sun compass-based spatial learning. Eur J Neurosci 2005; 22:2549-59. [PMID: 16307597 DOI: 10.1111/j.1460-9568.2005.04444.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hippocampal formation (HF) plays a crucial role in amniote spatial cognition. There are also indications of functional lateralization in the contribution of the left and right HF in processes that enable birds to navigate space. The experiments described in this study were designed to examine left and right HF differences in a task of sun compass-based spatial learning in homing pigeons (Columba livia). Control, left (HFL) and right (HFR) HF lesioned pigeons were trained in an outdoor arena to locate a food reward using their sun compass in the presence or absence of alternative feature cues. Subsequent to training, the pigeons were subjected to test sessions to determine if they learned to represent the goal location with their sun compass and the relative importance of the sun compass vs. feature cues. Under all test conditions, the control pigeons demonstrated preferential use of the sun compass in locating the goal. By contrast, the HFL pigeons demonstrated no ability to locate the goal by the sun compass but an ability to use the feature cues. The behaviour of the HFR pigeons demonstrated that an intact left HF is sufficient to support sun compass-based learning, but in conflict situations and in contrast to controls, they often relied on feature cues. In conclusion, only the left HF is capable of supporting sun compass-based learning. However, preferential use of the sun compass for learning requires an intact right HF. The data support the hypothesis that the left and right HF make different but complementary contributions toward avian spatial cognition.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Ethology Ecology and Evolution, University of Pisa, Via Volta 6, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
45
|
Chiandetti C, Regolin L, Rogers LJ, Vallortigara G. Effects of light stimulation of embryos on the use of position-specific and object-specific cues in binocular and monocular domestic chicks (Gallus gallus). Behav Brain Res 2005; 163:10-7. [PMID: 15927280 DOI: 10.1016/j.bbr.2005.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/23/2005] [Accepted: 03/29/2005] [Indexed: 11/20/2022]
Abstract
Chicks hatched from eggs incubated in the dark (D-chicks) or from eggs exposed to light during the last 3 days before hatching (L-chicks) were trained on day 4 to peck at small cones for food reinforcement. The cones had different patterns (checked or striped) and were located in different positions (either on the left or on the right of a rectangular arena) so as both object-specific (pattern) and position-specific cues could be used to discriminate cones that contained or that did not contain food. After learning, the position of the cones was reversed so that object- and position-specific cues provided contradictory information. No effect of light incubation was observed in binocular chicks that chose cones on the basis of object-specific cues. Monocular D-chicks also tended to approach and peck the cones with the correct pattern in the wrong position, whereas monocular L-chicks did not show any clear choice. Initial choices for one side or other of the arena were mostly determined by the first side visible through the non-occluded eye in D-chicks, particularly when using their left eye. These results suggest that light exposure of the embryo makes neural mechanisms that do not receive direct visual input (i.e., those of the occluded side) more available to be used in assessment of novelty.
Collapse
Affiliation(s)
- Cinzia Chiandetti
- Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, Via S. Anastasio 12, 34123 Trieste, Italy.
| | | | | | | |
Collapse
|
46
|
Folta K, Diekamp B, Güntürkün O. Asymmetrical modes of visual bottom-up and top-down integration in the thalamic nucleus rotundus of pigeons. J Neurosci 2005; 24:9475-85. [PMID: 15509734 PMCID: PMC6730148 DOI: 10.1523/jneurosci.3289-04.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to separate bottom-up and top-down influences within cerebral asymmetries. This was studied in the lateralized visual system of pigeons by recording from single units of the left and right diencephalic nucleus rotundus of the tectofugal pathway while visually stimulating the ipsilateral and/or contralateral eye. Analyses of response latencies revealed rotundal neurons with short and/or late response components. Cells with short latencies very likely represent bottom-up neurons participating in the ascending retinotectorotundal system. Because lidocaine injections into the visual Wulst produced a significant reduction of late response components only, neurons with long latencies were probably activated via a top-down telencephalotectorotundal system. The distribution and response characteristics of bottom-up and top-down neurons provided insight into several asymmetries of ascending and descending pathways. Asymmetries of the ascending retinotectorotundal system (bottom-up) were characterized by longer periods of tonic activation in the left and shorter response latencies in the right rotundus. Left-right differences in these responses probably facilitate faster access to visual input to the right hemisphere and a prolonged processing of this input in the left. The descending telencephalotectorotundal system (top-down) revealed a completely different lateralized organization. This system was characterized by long latency responses that exclusively derived from the left hemisphere, regardless of whether recordings took place in the left or the right rotundus. We assume that asymmetrical modes of visual processing within both hemispheres of the ascending tectofugal system are ultimately directed to left hemispheric forebrain mechanisms that subsequently generate executive control over sensory and motor structures.
Collapse
Affiliation(s)
- Kristian Folta
- Institute for Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr-University Bochum, D-44780 Bochum, Germany.
| | | | | |
Collapse
|
47
|
Zhu Y, Dong Z, Weng X, Chen Y. Functional brain laterality for sequential movements: Impact of transient practice. CHINESE SCIENCE BULLETIN-CHINESE 2005. [DOI: 10.1007/bf02897533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Hough GE, Bingman VP. Spatial response properties of homing pigeon hippocampal neurons: correlations with goal locations, movement between goals, and environmental context in a radial-arm arena. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:1047-62. [PMID: 15449093 DOI: 10.1007/s00359-004-0562-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 11/24/2022]
Abstract
The amniote hippocampal formation plays an evolutionarily-conserved role in the neural representation of environmental space. However, species differences in spatial ecology nurture the expectation of species differences in how hippocampal neurons represent space. To determine the spatial response properties of homing pigeon ( Columba livia) HFneurons, we recorded from isolated units in birds freely navigating a radial arena in search of food present at four goal locations. Fifty of 76 neurons displayed firing rate variations that could be placed into three response categories. Location cells ( n=25) displayed higher firing rates at restricted locations in the arena space, often in proximity to goal locations. Path cells ( n=13) displayed higher firing rates as a pigeon moved between a subset of goal locations. Arena-off cells ( n=12) were more active when a pigeon was in a baseline holding space compared to inside the arena. Overall, reliability and coherence scores of the recorded neurons were lower compared to rat place cells. The differences in the spatial response profiles of pigeon hippocampal formation neurons, when compared to rats, provide a departure point for better understanding the relationship between spatial behavior and how hippocampal formation neurons participate in the representation of space.
Collapse
Affiliation(s)
- Gerald E Hough
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | |
Collapse
|
49
|
Shimizu T, Bowers AN, Budzynski CA, Kahn MC, Bingman VP. What Does a Pigeon (Columba livia) Brain Look Like During Homing? Selective Examination of ZENK Expression. Behav Neurosci 2004; 118:845-51. [PMID: 15301610 DOI: 10.1037/0735-7044.118.4.845] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lesion studies have shown that the avian hippocampus plays a crucial role in homing pigeon (Columba livia) navigation. Using the expression of the immediate early gene protein ZENK in intact pigeons, the authors found regional variation in hippocampal activation as a consequence of homing and, necessarily, the behavior and internal states that accompany it. Specifically, pigeons that homed displayed a significant increase in the number of ZENK-labeled cells in the lateral hippocampal formation compared with pigeons that did not home, whereas no difference was seen in the medial hippocampus. Significant changes in ZENK expression were also found in the medial striatum, which resembles the mammalian ventral striatum. The results identify portions of the hippocampal formation and the medial striatum as sites of plasticity associated with homing.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Psychology, University of South Florida, Tampa, FL, US.
| | | | | | | | | |
Collapse
|