1
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Bell BA, Phan ML, Meillère A, Evans JK, Leitner S, Vicario DS, Buchanan KL. Influence of early-life nutritional stress on songbird memory formation. Proc Biol Sci 2018; 285:rspb.2018.1270. [PMID: 30257911 DOI: 10.1098/rspb.2018.1270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
In birds, vocal learning enables the production of sexually selected complex songs, dialects and song copy matching. But stressful conditions during development have been shown to affect song production and complexity, mediated by changes in neural development. However, to date, no studies have tested whether early-life stress affects the neural processes underlying vocal learning, in contrast to song production. Here, we hypothesized that developmental stress alters auditory memory formation and neural processing of song stimuli. We experimentally stressed male nestling zebra finches and, in two separate experiments, tested their neural responses to song playbacks as adults, using either immediate early gene (IEG) expression or electrophysiological response. Once adult, nutritionally stressed males exhibited a reduced response to tutor song playback, as demonstrated by reduced expressions of two IEGs (Arc and ZENK) and reduced neuronal response, in both the caudomedial nidopallium (NCM) and mesopallium (CMM). Furthermore, nutritionally stressed males also showed impaired neuronal memory for novel songs heard in adulthood. These findings demonstrate, for the first time, that developmental conditions affect auditory memories that subserve vocal learning. Although the fitness consequences of such memory impairments remain to be determined, this study highlights the lasting impact early-life experiences can have on cognitive abilities.
Collapse
Affiliation(s)
- B A Bell
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - M L Phan
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - A Meillère
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - J K Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - S Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - D S Vicario
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - K L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
3
|
Scriba MF, Gasparini J, Jacquin L, Mettke-Hofmann C, Rattenborg NC, Roulin A. The effect of food quality during growth on spatial memory consolidation in adult pigeons. ACTA ACUST UNITED AC 2016; 220:573-581. [PMID: 27913599 DOI: 10.1242/jeb.152454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
Poor environmental conditions experienced during early development can have negative long-term consequences on fitness. Animals can compensate for negative developmental effects through phenotypic plasticity by diverting resources from non-vital to vital traits such as spatial memory to enhance foraging efficiency. We tested in young feral pigeons (Columba livia) how diets of different nutritional value during development affect the capacity to retrieve food hidden in a spatially complex environment, a process we refer to as 'spatial memory'. Parents were fed with either high- or low-quality food from egg laying until young fledged, after which all young pigeons received the same high-quality diet until memory performance was tested at 6 months of age. The pigeons were trained to learn a food location out of 18 possible locations in one session, and then their memory of this location was tested 24 h later. Birds reared with the low-quality diet made fewer errors in the memory test. These results demonstrate that food quality during development has long-lasting effects on memory, with a moderate nutritional deficit improving spatial memory performance in a foraging context. It might be that under poor feeding conditions resources are redirected from non-vital to vital traits, or pigeons raised with low-quality food might be better in using environmental cues such as the position of the sun to find where food was hidden.
Collapse
Affiliation(s)
- M F Scriba
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.5, Seewiesen 82319, Germany .,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - J Gasparini
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Paris F-75005, France
| | - L Jacquin
- Laboratoire Evolution & Diversité Biologique (EDB), Université Toulouse 3 Paul Sabatier, UPS; CNRS; ENFA, 118 route de Narbonne, Toulouse 31062, France
| | - C Mettke-Hofmann
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - N C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.5, Seewiesen 82319, Germany
| | - A Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Sewall KB, Soha JA, Peters S, Nowicki S. Potential trade-off between vocal ornamentation and spatial ability in a songbird. Biol Lett 2013; 9:20130344. [PMID: 23697642 DOI: 10.1098/rsbl.2013.0344] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bird song is hypothesized to be a reliable indicator of cognition because it depends on brain structure and function. Song features have been found to correlate positively with measures of cognition, but the relationship between song and cognition is complicated because not all cognitive abilities are themselves positively correlated. If cognition is not a unitary trait, developmental constraints on brain growth could generate trade-offs between some aspects of cognition and song. To further clarify the relationship between song and cognition in song sparrows (Melospiza melodia), we examined repertoire size and performance on a spatial task. We found an inverse relationship between repertoire size and speed of spatial learning and suggest that a developmental trade-off between the hippocampus and song control nuclei could be responsible for this relationship. By attending to male song, females may learn about a suite of cognitive abilities; this study suggests that females may glean information about a male's cognitive weaknesses as well as his strengths.
Collapse
Affiliation(s)
- Kendra B Sewall
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
5
|
Bonaparte KM, Riffle-Yokoi C, Burley NT. Getting a head start: diet, sub-adult growth, and associative learning in a seed-eating passerine. PLoS One 2011; 6:e23775. [PMID: 21949684 PMCID: PMC3176201 DOI: 10.1371/journal.pone.0023775] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/25/2011] [Indexed: 02/02/2023] Open
Abstract
Developmental stress, and individual variation in response to it, can have important fitness consequences. Here we investigated the consequences of variable dietary protein on the duration of growth and associative learning abilities of zebra finches, Taeniopygia guttata, which are obligate graminivores. The high-protein conditions that zebra finches would experience in nature when half-ripe seed is available were mimicked by the use of egg protein to supplement mature seed, which is low in protein content. Growth rates and relative body proportions of males reared either on a low-protein diet (mature seed only) or a high-protein diet (seed plus egg) were determined from body size traits (mass, head width, and tarsus) measured at three developmental stages. Birds reared on the high-protein diet were larger in all size traits at all ages, but growth rates of size traits showed no treatment effects. Relative head size of birds reared on the two diets differed from age day 95 onward, with high-diet birds having larger heads in proportion to both tarsus length and body mass. High-diet birds mastered an associative learning task in fewer bouts than those reared on the low-protein diet. In both diet treatments, amount of sub-adult head growth varied directly, and sub-adult mass change varied inversely, with performance on the learning task. Results indicate that small differences in head growth during the sub-adult period can be associated with substantial differences in adult cognitive performance. Contrary to a previous report, we found no evidence for growth compensation among birds on the low-protein diet. These results have implications for the study of vertebrate cognition, developmental stress, and growth compensation.
Collapse
Affiliation(s)
- Kristina M. Bonaparte
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Christina Riffle-Yokoi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Nancy Tyler Burley
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Boogert NJ, Giraldeau LA, Lefebvre L. Song complexity correlates with learning ability in zebra finch males. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.08.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ames BN. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A 2006; 103:17589-94. [PMID: 17101959 PMCID: PMC1693790 DOI: 10.1073/pnas.0608757103] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Indexed: 12/13/2022] Open
Abstract
Inadequate dietary intakes of vitamins and minerals are widespread, most likely due to excessive consumption of energy-rich, micronutrient-poor, refined food. Inadequate intakes may result in chronic metabolic disruption, including mitochondrial decay. Deficiencies in many micronutrients cause DNA damage, such as chromosome breaks, in cultured human cells or in vivo. Some of these deficiencies also cause mitochondrial decay with oxidant leakage and cellular aging and are associated with late onset diseases such as cancer. I propose DNA damage and late onset disease are consequences of a triage allocation response to micronutrient scarcity. Episodic shortages of micronutrients were common during evolution. Natural selection favors short-term survival at the expense of long-term health. I hypothesize that short-term survival was achieved by allocating scarce micronutrients by triage, in part through an adjustment of the binding affinity of proteins for required micronutrients. If this hypothesis is correct, micronutrient deficiencies that trigger the triage response would accelerate cancer, aging, and neural decay but would leave critical metabolic functions, such as ATP production, intact. Evidence that micronutrient malnutrition increases late onset diseases, such as cancer, is discussed. A multivitamin-mineral supplement is one low-cost way to ensure intake of the Recommended Dietary Allowance of micronutrients throughout life.
Collapse
Affiliation(s)
- Bruce N Ames
- Nutrition and Metabolism Center, Children's Hospital of Oakland Research Institute, Oakland, CA 94609, USA.
| |
Collapse
|