1
|
Buhusi CV, Matthews AR, Buhusi M. mPFC catecholamines modulate attentional capture by appetitive distracters and attention to time in a peak-interval procedure in rats. Behav Neurosci 2022; 136:418-429. [PMID: 35834191 PMCID: PMC9617693 DOI: 10.1037/bne0000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The behavioral and neural mechanisms by which distracters delay interval timing behavior are currently unclear. Distracters delay timing in a considerable dynamic range: Some distracters have no effect on timing ("run"), whereas others seem to "stop" timing; some distracters restart ("reset") the entire timing mechanisms at their offset, whereas others seem to capture attentional resources long after their termination ("over-reset"). While the run-reset range of delays is accounted for by the Time-Sharing Hypothesis (Buhusi, 2003, 2012), the behavioral and neural mechanisms of "over-resetting" are currently uncertain. We investigated the role of novelty (novel/familiar) and significance (consequential/inconsequential) in the time-delaying effect of distracters and the role of medial prefrontal cortex (mPFC) catecholamines by local infusion of norepinephrine-dopamine reuptake inhibitor (NDRI) nomifensine in a peak-interval (PI) procedure in rats. Results indicate differences in time delay between groups, suggesting a role for both novelty and significance: inconsequential, familiar distracters "stopped" timing, novel distracters "reset" timing, whereas appetitively conditioned distracters "over-reset" timing. mPFC infusion of nomifensine modulated attentional capture by appetitive distracters in a "U"-shaped fashion, reduced the delay after novel distracters, but had no effects after inconsequential, familiar distracters. These results were not due to nomifensine affecting either timing accuracy, precision, or peak response rate. Results may help elucidate the behavioral and physiological mechanisms underlying interval timing and attention to time and may contribute to developing new treatment strategies for disorders of attention. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
2
|
Eudave-Patiño M, Alcalá E, Dos Santos CV, Buriticá J. Similar attention and performance in female and male CD1 mice in the peak procedure. Behav Processes 2021; 189:104443. [PMID: 34139283 DOI: 10.1016/j.beproc.2021.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Inaccurate and distorted timing are associated with neurodegenerative disorders such as Alzheimer's disease and schizophrenia in humans, which generates interest in the discovery and understanding of the factors behind such timing difficulties. Timing research in mice has taken an important role, because the availability of genetically-altered strains allows establishing the causal role of specific genes on such neurodegenerative disorders. Nevertheless, few studies have considered mice's sex and some have found sex differences in timing, although results are not yet conclusive. We tested female and male CD1 mice, an outbred strain not yet studied in a peak procedure. By varying the percentage of peak trials and the presence of a gap and/or a distractor in the tests, we found no sex differences in accuracy, precision, or attention. Both females and males followed a stop-clock strategy after distractor and gap + distractor trials. This suggests that both male and female CD1 mice may be exposed to a peak procedure to study factors associated to neurotoxicology or neurogenesis.
Collapse
Affiliation(s)
| | - Emmanuel Alcalá
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, Mexico; Research Laboratory on Optimal Design, Devices and Advanced Materials, Department of Mathematics and Physics, ITESO, Tlaquepaque, Jalisco, 45604, Mexico
| | | | - Jonathan Buriticá
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, Mexico.
| |
Collapse
|
3
|
Matthews AR, Buhusi M, Buhusi CV. Blockade of Catecholamine Reuptake in the Prelimbic Cortex Decreases Top-down Attentional Control in Response to Novel, but Not Familiar Appetitive Distracters, within a Timing Paradigm. NEUROSCI 2020; 1:99-114. [PMID: 35036990 PMCID: PMC8758100 DOI: 10.3390/neurosci1020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Emotionally charged distracters delay timing behavior. Increasing catecholamine levels within the prelimbic cortex has beneficial effects on timing by decreasing the delay after aversive distracters. We examined whether increasing catecholamine levels within the prelimbic cortex also protects against the deleterious timing delays caused by novel distracters or by familiar appetitive distracters. Rats were trained in a peak-interval procedure and tested in trials with either a novel (unreinforced) distracter, a familiar appetitive (food-reinforced) distracter, or no distracter after being locally infused within the prelimbic cortex with catecholamine reuptake blocker nomifensine. Prelimbic infusion of nomifensine did not alter timing accuracy and precision. However, it increased the delay caused by novel distracters in an inverted-U dose-dependent manner, while being ineffective for appetitive distracters. Together with previous data, these results suggest that catecholaminergic modulation of prelimbic top-down attentional control of interval timing varies with distracter’s valence: prelimbic catecholamines increase attentional control when presented with familiar aversive distracters, have no effect on familiar neutral or familiar appetitive distracters, and decrease it when presented with novel distracters. These findings detail complex interactions between catecholaminergic modulation of attention to timing and nontemporal properties of stimuli, which should be considered when developing therapeutic methods for attentional or affective disorders.
Collapse
|
4
|
Barrón E, García-Leal Ó, Camarena HO, Ávila-Chauvet L. The distractor intensity is related to the rightward shift of the response rate distribution in a peak procedure in pigeons. Behav Processes 2020; 179:104190. [PMID: 32623013 DOI: 10.1016/j.beproc.2020.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
The expected effect of interrupting the light that signals the to-be-estimated fixed Interval in a peak procedure is a shift rightward of the peak time. Nevertheless, it has not been studied the effect of inserting a distractor using a peak procedure in pigeons. In this experiment, two lights of different intensities were used as distractors (i.e., 10 and 50 luxes). They elapsed for 5 s, during a to-be-estimated interval of 30 s. It was observed an immediate decrease of the response rate as the distractor was inserted and a rightward shift of the response rate distribution, both related to the distractor intensity. Our results support other findings using different species and with different stimuli modalities,suggesting that rats, mice, and pigeons could share a common timing mechanism.
Collapse
Affiliation(s)
- Erick Barrón
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, México
| | - Óscar García-Leal
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, México.
| | - Héctor O Camarena
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, México
| | - Laurent Ávila-Chauvet
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, México
| |
Collapse
|
5
|
Buhusi M, Bartlett MJ, Buhusi CV. Sex differences in interval timing and attention to time in C57Bl/6J mice. Behav Brain Res 2017; 324:96-99. [PMID: 28212945 DOI: 10.1016/j.bbr.2017.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 01/27/2023]
Abstract
Interval timing is crucial for decision-making and motor control and is impaired in many neuropsychiatric disorders. Previous studies examined timing in various strains or genetically-altered mice, but not in parallel in male and female mice in the same experimental setting. We investigated timing and attention to time in male and female C57Bl/6J mice, when presented with gaps in the timed stimulus, novel auditory distracters presented during the un-interrupted timed stimulus, and gap+distracter combinations. No sex differences were found in regard to timing accuracy and precision. However, presentation of the gap+distracter combination over-reset timing in males but had a much smaller effect in females. The over-reset strategy was reported previously with emotional distracters (e.g., previously paired with footshock) but not with neutral distracters. These results reveal sex differences in attentional gating/switching or working memory for time.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan, UT, United States.
| | - Mitchell J Bartlett
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
6
|
Oprisan SA, Dix S, Buhusi CV. Phase resetting and its implications for interval timing with intruders. Behav Processes 2014; 101:146-53. [PMID: 24113026 PMCID: PMC7034539 DOI: 10.1016/j.beproc.2013.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 11/29/2022]
Abstract
Time perception in the second-to-minutes range is crucial for fundamental cognitive processes like decision making, rate calculation, and planning. We used a striatal beat frequency (SBF) computational model to predict the response of an interval timing network to intruders, such as gaps in conditioning stimulus (CS), or distracters presented during the uninterrupted CS. We found that, depending on the strength of the input provided to neural oscillators by the intruder, the SBF model can either ignore it or reset timing. The significant delays in timing produced by emotionally charged distracters were numerically simulated by a strong phase resetting of all neural oscillators involved in the SBF network for the entire duration of the evoked response. The combined effect of emotional distracter and pharmacological manipulations was modeled in our SBF model by modulating the firing frequencies of neural oscillators after they are released from inhibition due to emotional distracters. This article is part of a Special Issue entitled: SI: Associative and Temporal Learning.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, USA.
| | - Steven Dix
- Department of Computer Science, College of Charleston, Charleston, SC, USA
| | | |
Collapse
|
7
|
Buhusi CV, Matthews AR. Effect of distracter preexposure on the reset of an internal clock. Behav Processes 2014; 101:72-80. [PMID: 24056240 PMCID: PMC3943936 DOI: 10.1016/j.beproc.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/03/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
Abstract
Interruptions and unfamiliar events (distracters) during a timed signal disrupt (delay) timing in humans and other animals. We hypothesized that repeated exposure to a stimulus may reduce its subsequent time-disrupting properties. To test this hypothesis rats were trained in a reversed peak-interval (RPI) procedure, in which dark timing trials were separated by illuminated inter-trial intervals. Rats were then repeatedly exposed to an auditory stimulus (noise) in either dark (DARK group), or illuminated chambers (LIGHT group); control rats were not exposed to the noise (NOVEL group). Afterwards, the time-resetting properties of the noise were tested by presenting it unexpectedly during the (dark) RPI trials. The noise reset timing in NOVEL rats, but stopped timing in DARK rats, suggesting that preexposure reduces the time-resetting effects of distracters. However, in LIGHT rats, the noise stopped timing when the presented early in the RPI trial, but reset when presented late, suggesting that exposure to noise was only partly effective in overriding other relevant variables, such as distracter location. These results suggest that the effect of distracter preexposure on the reset of an internal clock depends on complex associative and temporal interactions which require further investigations. This article is part of a Special Issue entitled: Associative and Temporal Learning.
Collapse
Affiliation(s)
- Catalin V Buhusi
- Utah State University, USTAR BioInnovations Center, Department of Psychology, Logan, UT, United States.
| | - Alexander R Matthews
- Utah State University, USTAR BioInnovations Center, Department of Psychology, Logan, UT, United States
| |
Collapse
|
8
|
Matthews AR, He OH, Buhusi M, Buhusi CV. Dissociation of the role of the prelimbic cortex in interval timing and resource allocation: beneficial effect of norepinephrine and dopamine reuptake inhibitor nomifensine on anxiety-inducing distraction. Front Integr Neurosci 2012; 6:111. [PMID: 23227004 PMCID: PMC3512209 DOI: 10.3389/fnint.2012.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/05/2012] [Indexed: 11/17/2022] Open
Abstract
Emotional distracters impair cognitive function. Emotional processing is dysregulated in affective disorders such as depression, phobias, schizophrenia, and post-traumatic stress disorder (PTSD). Among the processes impaired by emotional distracters, and whose dysregulation is documented in affective disorders, is the ability to time in the seconds-to-minutes range, i.e., interval timing. Presentation of task-irrelevant distracters during a timing task results in a delay in responding suggesting a failure to maintain subjective time in working memory, possibly due to attentional and working memory resources being diverted away from timing, as proposed by the Relative Time-Sharing (RTS) model. We investigated the role of the prelimbic cortex in the detrimental effect of anxiety-inducing task-irrelevant distracters on the cognitive ability to keep track of time, using local infusions of norepinephrine and dopamine reuptake inhibitor (NDRI) nomifensine in a modified peak-interval procedure with neutral and anxiety-inducing distracters. Given that some anti-depressants have beneficial effects on attention and working memory, e.g., decreasing emotional response to negative events, we hypothesized that nomifensine would improve maintenance of information in working memory in trials with distracters, resulting in a decrease of the disruptive effect of emotional events on the timekeeping abilities. Our results revealed a dissociation of the effects of nomifensine infusion in prelimbic cortex between interval timing and resource allocation, and between neutral and anxiety-inducing distraction. Nomifensine was effective only during trials with distracters, but not during trials without distracters. Nomifensine reduced the detrimental effect of the distracters only when the distracters were anxiety-inducing, but not when they were neutral. Results are discussed in relation to the brain circuits involved in RTS of resources, and the pharmacological management of affective disorders.
Collapse
Affiliation(s)
- Alexander R Matthews
- Department of Psychology, USTAR BioInnovations Center, Utah State University Logan, UT, USA ; Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA
| | | | | | | |
Collapse
|