1
|
Nencheva ML, Nook EC, Thornton MA, Lew-Williams C, Tamir DI. The Emergence of Organized Emotion Dynamics in Childhood. AFFECTIVE SCIENCE 2024; 5:246-258. [PMID: 39391340 PMCID: PMC11461366 DOI: 10.1007/s42761-024-00248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/19/2024] [Indexed: 10/12/2024]
Abstract
Emotions change from one moment to the next. They have a duration from seconds to hours and then transition to other emotions. Here, we describe the early ontology of these key aspects of emotion dynamics. In five cross-sectional studies (N = 904) combining parent surveys and ecological momentary assessment, we characterize how caregivers' perceptions of children's emotion duration and transitions change over the first 5 years of life and how they relate to children's language development. Across these ages, the duration of children's emotions increased, and emotion transitions became increasingly organized by valence, such that children were more likely to transition between similarly valenced emotions. Children with more mature emotion profiles also had larger vocabularies and could produce more emotion labels. These findings advance our understanding of emotion and communication by highlighting their intertwined nature in development and by charting how dynamic features of emotion experiences change over the first years of life. Supplementary Information The online version contains supplementary material available at 10.1007/s42761-024-00248-y.
Collapse
Affiliation(s)
| | - Erik C. Nook
- Department of Psychology, Princeton University, Princeton, USA
| | - Mark A. Thornton
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, USA
| | | | - Diana I. Tamir
- Department of Psychology, Princeton University, Princeton, USA
| |
Collapse
|
2
|
Kramer HJ, Lara KH, Gweon H, Zaki J, Miramontes M, Lagattuta KH. This too shall pass, but when? Children's and adults' beliefs about the time duration of emotions, desires, and preferences. Child Dev 2024; 95:1299-1314. [PMID: 38334228 DOI: 10.1111/cdev.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
This research investigated children's and adults' understanding of the mind by assessing beliefs about the temporal features of mental states. English-speaking North American participants, varying in socioeconomic status (Study 1: N = 50 adults; Study 2: N = 112, 8- to 10-year-olds and adults; and Study 3: N = 116, 5- to 7-year-olds and adults; tested 2017-2022), estimated the duration (seconds to a lifetime) of emotions, desires (wanting), preferences (liking), and control trials (e.g., napping and having eyes). Participants were 56% female and 44% male; 32% Asian, 1% Black, 13% Hispanic/Latino, 38% White (non-Hispanic/Latino), and 16% multiracial or another race/ethnicity. Children and adults judged that preferences last longer than emotions and desires, with age differences in distinguishing specific emotions by duration (η p 2 s > .03 ). By 5 to 7 years, ideas about the mind include consideration of time.
Collapse
Affiliation(s)
- Hannah J Kramer
- University of California, Davis, Davis, California, USA
- Queen's University Belfast, Belfast, UK
| | | | | | - Jamil Zaki
- Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
3
|
Sirois S, Brisson J, Blaser E, Calignano G, Donenfeld J, Hepach R, Hochmann JR, Kaldy Z, Liszkowski U, Mayer M, Ross-Sheehy S, Russo S, Valenza E. The pupil collaboration: A multi-lab, multi-method analysis of goal attribution in infants. Infant Behav Dev 2023; 73:101890. [PMID: 37944367 DOI: 10.1016/j.infbeh.2023.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
The rise of pupillometry in infant research over the last decade is associated with a variety of methods for data preprocessing and analysis. Although pupil diameter is increasingly recognized as an alternative measure of the popular cumulative looking time approach used in many studies (Jackson & Sirois, 2022), an open question is whether the many approaches used to analyse this variable converge. To this end, we proposed a crowdsourced approach to pupillometry analysis. A dataset from 30 9-month-old infants (15 girls; Mage = 282.9 days, SD = 8.10) was provided to 7 distinct teams for analysis. The data were obtained from infants watching video sequences showing a hand, initially resting between two toys, grabbing one of them (after Woodward, 1998). After habituation, infants were shown (in random order) a sequence of four test events that varied target position and target toy. Results show that looking times reflect primarily the familiar path of the hand, regardless of target toy. Gaze data similarly show this familiarity effect of path. The pupil dilation analyses show that features of pupil baseline measures (duration and temporal location) as well as data retention variation (trial and/or participant) due to different inclusion criteria from the various analysis methods are linked to divergences in findings. Two of the seven teams found no significant findings, whereas the remaining five teams differ in the pattern of findings for main and interaction effects. The discussion proposes guidelines for best practice in the analysis of pupillometry data.
Collapse
Affiliation(s)
- Sylvain Sirois
- Département de Psychologie, Université du Québec à Trois-Rivières, Canada.
| | - Julie Brisson
- Centre de Recherche sur les fonctionnements et dysfonctionnements psychologiques (EA7475), Université de Rouen Normandie, France
| | - Erik Blaser
- Department of Psychology, University of Massachusetts Boston, USA
| | - Giulia Calignano
- Department of Developmental and Social Psychology, University of Padova, Italy
| | - Jamie Donenfeld
- Department of Psychology, University of Massachusetts Boston, USA
| | - Robert Hepach
- Department of Experimental Psychology, University of Oxford, UK
| | - Jean-Rémy Hochmann
- CNRS UMR5229 - Institut des Sciences Cognitives Marc Jeannerod, Université Lyon 1, France
| | - Zsuzsa Kaldy
- Department of Psychology, University of Massachusetts Boston, USA
| | - Ulf Liszkowski
- Department of Developmental Psychology, University of Hamburg, Germany
| | - Marlena Mayer
- Department of Developmental Psychology, University of Hamburg, Germany
| | | | - Sofia Russo
- Department of Developmental and Social Psychology, University of Padova, Italy
| | - Eloisa Valenza
- Department of Developmental and Social Psychology, University of Padova, Italy
| |
Collapse
|
4
|
Geangu E, Vuong QC. Seven-months-old infants show increased arousal to static emotion body expressions: Evidence from pupil dilation. INFANCY 2023. [PMID: 36917082 DOI: 10.1111/infa.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Human body postures provide perceptual cues that can be used to discriminate and recognize emotions. It was previously found that 7-months-olds' fixation patterns discriminated fear from other emotion body expressions but it is not clear whether they also process the emotional content of those expressions. The emotional content of visual stimuli can increase arousal level resulting in pupil dilations. To provide evidence that infants also process the emotional content of expressions, we analyzed variations in pupil in response to emotion stimuli. Forty-eight 7-months-old infants viewed adult body postures expressing anger, fear, happiness and neutral expressions, while their pupil size was measured. There was a significant emotion effect between 1040 and 1640 ms after image onset, when fear elicited larger pupil dilations than neutral expressions. A similar trend was found for anger expressions. Our results suggest that infants have increased arousal to negative-valence body expressions. Thus, in combination with previous fixation results, the pupil data show that infants as young as 7-months can perceptually discriminate static body expressions and process the emotional content of those expressions. The results extend information about infant processing of emotion expressions conveyed through other means (e.g., faces).
Collapse
Affiliation(s)
- Elena Geangu
- Department of Psychology, University of York, York, UK
| | - Quoc C Vuong
- Biosciences Institute and School of Psychology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Warda S, Simola J, Terhune DB. Pupillometry tracks errors in interval timing. Behav Neurosci 2022; 136:495-502. [PMID: 36222640 PMCID: PMC9552500 DOI: 10.1037/bne0000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent primate studies suggest a potential link between pupil size and subjectively elapsed duration. Here, we sought to investigate the relationship between pupil size and perceived duration in human participants performing two temporal bisection tasks in the subsecond and suprasecond interval ranges. In the subsecond task, pupil diameter was greater during stimulus processing when shorter intervals were overestimated but also during and after stimulus offset when longer intervals were underestimated. By contrast, in the suprasecond task, larger pupil diameter was observed only in the late stimulus offset phase prior to response prompts when longer intervals were underestimated. This pattern of results suggests that pupil diameter relates to an error monitoring mechanism in interval timing. These results are at odds with a direct relationship between pupil size and the perception of duration but suggest that pupillometric variation might play a key role in signifying errors related to temporal judgments.
Collapse
Affiliation(s)
- Shamini Warda
- Department of Humanities and Social Sciences, Indian Institute of Technology Bombay
| | | | | |
Collapse
|
6
|
Jackson IR, Sirois S. But that’s possible! Infants, pupils, and impossible events. Infant Behav Dev 2022; 67:101710. [DOI: 10.1016/j.infbeh.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
7
|
Wass SV, Perapoch Amadó M, Ives J. Oscillatory entrainment to our early social or physical environment and the emergence of volitional control. Dev Cogn Neurosci 2022; 54:101102. [PMID: 35398645 PMCID: PMC9010552 DOI: 10.1016/j.dcn.2022.101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
An individual's early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment.
Collapse
Affiliation(s)
- S V Wass
- Department of Psychology, University of East London, UK.
| | | | - J Ives
- Department of Psychology, University of East London, UK
| |
Collapse
|
8
|
Young children integrate current observations, priors and agent information to predict others' actions. PLoS One 2019; 14:e0200976. [PMID: 31116742 PMCID: PMC6530825 DOI: 10.1371/journal.pone.0200976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/04/2019] [Indexed: 11/19/2022] Open
Abstract
From early on in life, children are able to use information from their environment to form predictions about events. For instance, they can use statistical information about a population to predict the sample drawn from that population and infer an agent’s preferences from systematic violations of random sampling. We investigated whether and how young children infer an agent’s sampling biases. Moreover, we examined whether pupil data of toddlers follow the predictions of a computational model based on the causal Bayesian network formalization of predictive processing. We formalized three hypotheses about how different explanatory variables (i.e., prior probabilities, current observations, and agent characteristics) are used to predict others’ actions. We measured pupillary responses as a behavioral marker of ‘prediction errors’ (i.e., the perceived mismatch between what one’s model of an agent predicts and what the agent actually does). Pupillary responses of 24-month-olds, but not 18-month-olds, showed that young children integrated information about current observations, priors and agents to make predictions about agents and their actions. These findings shed light on the mechanisms behind toddlers’ inferences about agent-caused events. To our knowledge, this is the first study in which young children's pupillary responses are used as markers of prediction errors, which were qualitatively compared to the predictions by a computational model based on the causal Bayesian network formalization of predictive processing.
Collapse
|
9
|
Thurley K, Schild U. Time and distance estimation in children using an egocentric navigation task. Sci Rep 2018; 8:18001. [PMID: 30573744 PMCID: PMC6302095 DOI: 10.1038/s41598-018-36234-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
Navigation crucially depends on the capability to estimate time elapsed and distance covered during movement. From adults it is known that magnitude estimation is subject to characteristic biases. Most intriguing is the regression effect (central tendency), whose strength depends on the stimulus distribution (i.e. stimulus range), a second characteristic of magnitude estimation known as range effect. We examined regression and range effects for time and distance estimation in eleven-year-olds and young adults, using an egocentric virtual navigation task. Regression effects were stronger for distance compared to time and depended on stimulus range. These effects were more pronounced in children compared to adults due to a more heterogeneous performance among the children. Few children showed veridical estimations similar to adults; most children, however, performed less accurate displaying stronger regression effects. Our findings suggest that children use magnitude processing strategies similar to adults, but it seems that these are not yet fully developed in all eleven-year-olds and are further refined throughout adolescence.
Collapse
Affiliation(s)
- Kay Thurley
- Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany. .,Bernstein Center for Computational Neuroscience Munich, Munich, Germany.
| | - Ulrike Schild
- Developmental Psychology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Coull JT, Droit-Volet S. Explicit Understanding of Duration Develops Implicitly through Action. Trends Cogn Sci 2018; 22:923-937. [DOI: 10.1016/j.tics.2018.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023]
|
11
|
Marinho V, Oliveira T, Bandeira J, Pinto GR, Gomes A, Lima V, Magalhães F, Rocha K, Ayres C, Carvalho V, Velasques B, Ribeiro P, Orsini M, Bastos VH, Gupta D, Teixeira S. Genetic influence alters the brain synchronism in perception and timing. J Biomed Sci 2018; 25:61. [PMID: 30086746 PMCID: PMC6080374 DOI: 10.1186/s12929-018-0463-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Background Studies at the molecular level aim to integrate genetic and neurobiological data to provide an increasingly detailed understanding of phenotypes related to the ability in time perception. Main Text This study suggests that the polymorphisms genetic SLC6A4 5-HTTLPR, 5HTR2A T102C, DRD2/ANKK1-Taq1A, SLC6A3 3’-UTR VNTR, COMT Val158Met, CLOCK genes and GABRB2 A/C as modification factor at neurochemical levels associated with several neurofunctional aspects, modifying the circadian rhythm and built-in cognitive functions in the timing. We conducted a literature review with 102 studies that met inclusion criteria to synthesize findings on genetic polymorphisms and their influence on the timing. Conclusion The findings suggest an association of genetic polymorphisms on behavioral aspects related in timing. However, order to confirm the paradigm of association in the timing as a function of the molecular level, still need to be addressed future research.
Collapse
Affiliation(s)
- Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil. .,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Thomaz Oliveira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Juliete Bandeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Giovanny R Pinto
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Anderson Gomes
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Valéria Lima
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Carla Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Valécia Carvalho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Orsini
- Master's Program in Local Development Program, University Center Augusto Motta - UNISUAM, Rio de Janeiro, Brazil and Health Sciences Applied - Vassouras University, Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
12
|
Magalhães F, Rocha K, Marinho V, Ribeiro J, Oliveira T, Ayres C, Bento T, Leite F, Gupta D, Bastos VH, Velasques B, Ribeiro P, Orsini M, Teixeira S. Neurochemical changes in basal ganglia affect time perception in parkinsonians. J Biomed Sci 2018; 25:26. [PMID: 29554962 PMCID: PMC5858149 DOI: 10.1186/s12929-018-0428-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Parkinson's disease is described as resulting from dopaminergic cells progressive degeneration, specifically in the substantia nigra pars compacta that influence the voluntary movements control, decision making and time perception. AIM This review had a goal to update the relation between time perception and Parkinson's Disease. METHODOLOGY We used the PRISMA methodology for this investigation built guided for subjects dopaminergic dysfunction in the time judgment, pharmacological models with levodopa and new studies on the time perception in Parkinson's Disease. We researched on databases Scielo, Pubmed / Medline and ISI Web of Knowledge on August 2017 and repeated in September 2017 and February 2018 using terms and associations relevant for obtaining articles in English about the aspects neurobiology incorporated in time perception. No publication status or restriction of publication date was imposed, but we used as exclusion criteria: dissertations, book reviews, conferences or editorial work. RESULTS/DISCUSSION We have demonstrated that the time cognitive processes are underlying to performance in cognitive tasks and that many are the brain areas and functions involved and the modulators in the time perception performance. CONCLUSIONS The influence of dopaminergic on Parkinson's Disease is an important research tool in Neuroscience while allowing for the search for clarifications regarding behavioral phenotypes of Parkinson's disease patients and to study the areas of the brain that are involved in the dopaminergic circuit and their integration with the time perception mechanisms.
Collapse
Affiliation(s)
- Francisco Magalhães
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Kaline Rocha
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Victor Marinho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Jéssica Ribeiro
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Thomaz Oliveira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Carla Ayres
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Thalys Bento
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Francisca Leite
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Victor Hugo Bastos
- Laboratory of Brain Mapping and Functionality, Federal University of Piauí, Parnaíba, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory-Motor Integration Laboratory, Psychiatry Institute of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Av. Venceslau Braz, 71 - Botafogo, Rio de Janeiro, RJ, 22290-140, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory-Motor Integration Laboratory, Psychiatry Institute of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Av. Venceslau Braz, 71 - Botafogo, Rio de Janeiro, RJ, 22290-140, Brazil
| | - Marco Orsini
- Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center, Rio de Janeiro, Brazil.,Program Professional Master in Applied Science in Health/UNISUAM, Av. Paris, 84, Bonsucesso, Rio de Janeiro, RJ, 21041-020, Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819, Nossa Sra. de Fátima, Parnaíba, PI, 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
13
|
Addyman C, Rocha S, Fautrelle L, French RM, Thomas E, Mareschal D. Embodiment and the origin of interval timing: kinematic and electromyographic data. Exp Brain Res 2017; 235:923-930. [PMID: 27933358 PMCID: PMC5315706 DOI: 10.1007/s00221-016-4842-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 10/29/2022]
Abstract
Recent evidence suggests that interval timing (the judgment of durations lasting from approximately 500 ms. to a few minutes) is closely coupled to the action control system. We used surface electromyography (EMG) and motion capture technology to explore the emergence of this coupling in 4-, 6-, and 8-month-olds. We engaged infants in an active and socially relevant arm-raising task with seven cycles and response period. In one condition, cycles were slow (every 4 s); in another, they were fast (every 2 s). In the slow condition, we found evidence of time-locked sub-threshold EMG activity even in the absence of any observed overt motor responses at all three ages. This study shows that EMGs can be a more sensitive measure of interval timing in early development than overt behavior.
Collapse
Affiliation(s)
- Caspar Addyman
- Department of Psychology, Goldsmiths, University of London, New Cross, London, SE14 6NW, UK.
| | - Sinead Rocha
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Lilian Fautrelle
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université Paris Ouest, Nanterre La Défense, Nanterre, France
| | - Robert M French
- UMR 5022, Laboratoire d'Etude de l'Apprentissage et du Développement, Centre National de la Recherche Scientifique (CNRS), 21065, Dijon, France
| | - Elizabeth Thomas
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Institut National de la Santé et de la Recherche Médicale (INSERM), U1093, Cognition, Action et Plasticité Sensori Motrice, Université de Bourgogne, Campus Universitaire, 21078, Dijon, France
| | - Denis Mareschal
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| |
Collapse
|
14
|
Spatiotemporal neurodynamics of automatic temporal expectancy in 9-month old infants. Sci Rep 2016; 6:36525. [PMID: 27811953 PMCID: PMC5109914 DOI: 10.1038/srep36525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022] Open
Abstract
Anticipating events occurrence (Temporal Expectancy) is a crucial capacity for survival. Yet, there is little evidence about the presence of cortical anticipatory activity from infancy. In this study we recorded the High-density electrophysiological activity in 9 month-old infants and adults undergoing an audio-visual S1–S2 paradigm simulating a lifelike “Peekaboo” game inducing automatic temporal expectancy of smiling faces. The results indicate in the S2-preceding Contingent Negative Variation (CNV) an early electrophysiological signature of expectancy-based anticipatory cortical activity. Moreover, the progressive CNV amplitude increasing across the task suggested that implicit temporal rule learning is at the basis of expectancy building-up over time. Cortical source reconstruction suggested a common CNV generator between adults and infants in the right prefrontal cortex. The decrease in the activity of this area across the task (time-on-task effect) further implied an early, core role of this region in implicit temporal rule learning. By contrast, a time-on-task activity boost was found in the supplementary motor area (SMA) in adults and in the temporoparietal regions in infants. Altogether, our findings suggest that the capacity of the human brain to translate temporal predictions into anticipatory neural activity emerges ontogenetically early, although the underlying spatiotemporal cortical dynamics change across development.
Collapse
|
15
|
Possible evolutionary and developmental mechanisms of mental time travel (and implications for autism). Curr Opin Behav Sci 2016; 8:220-225. [PMID: 27019863 DOI: 10.1016/j.cobeha.2016.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through an interdisciplinary perspective integrating behavior, neurobiology and evolution, we present a cognitive framework underpinning the development of 'time in mind' in animals (phylogeny) and humans (ontogeny). We distinguish between conscious processing of events immediately available (in the present) to those that are hypothetical (in the past or future). The former is present in animals and neonates, whereas the latter emerges later in phylogeny and ontogeny (around 4 years of age in humans) and is related to the development of episodic memory (expanded working memory, complex actions, social-cognitive abilities). We suggest that forms of temporal representation that rely upon current bodily sensation across time, space, and action (through embodied interoceptive and motor systems) may be critical causal factors for the evolution of mental time travel.
Collapse
|
16
|
|
17
|
|
18
|
Newcombe NS, Levine SC, Mix KS. Thinking about quantity: the intertwined development of spatial and numerical cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 6:491-505. [PMID: 26415916 DOI: 10.1002/wcs.1369] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 05/19/2015] [Accepted: 08/04/2015] [Indexed: 01/29/2023]
Abstract
There are many continuous quantitative dimensions in the physical world. Philosophical, psychological, and neural work has focused mostly on space and number. However, there are other important continuous dimensions (e.g., time and mass). Moreover, space can be broken down into more specific dimensions (e.g., length, area, and density) and number can be conceptualized discretely or continuously (i.e., natural vs real numbers). Variation on these quantitative dimensions is typically correlated, e.g., larger objects often weigh more than smaller ones. Number is a distinctive continuous dimension because the natural numbers (i.e., positive integers) are used to quantify collections of discrete objects. This aspect of number is emphasized by teaching of the count word sequence and arithmetic during the early school years. We review research on spatial and numerical estimation, and argue that a generalized magnitude system is the starting point for development in both domains. Development occurs along several lines: (1) changes in capacity, durability, and precision, (2) differentiation of the generalized magnitude system into separable dimensions, (3) formation of a discrete number system, i.e., the positive integers, (4) mapping the positive integers onto the continuous number line, and (5) acquiring abstract knowledge of the relations between pairs of systems. We discuss implications of this approach for teaching various topics in mathematics, including scaling, measurement, proportional reasoning, and fractions.
Collapse
Affiliation(s)
- Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Susan C Levine
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Kelly S Mix
- Department of Counseling, Educational Psychology, and Special Education, Michigan State University, Lansing, MI, USA
| |
Collapse
|