1
|
Hösch NG, Martins BB, Alcantara QA, Bufalo MC, Neto BS, Chudzinki-Tavassi AM, Santa-Cecilia FV, Cury Y, Zambelli VO. Wnt signaling is involved in crotalphine-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol 2023; 959:176058. [PMID: 37739305 DOI: 10.1016/j.ejphar.2023.176058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
The aberrant activation of Wnt/β-catenin and atypical Wnt/Ryk signaling pathways in the spinal cord is critical for the development and maintenance of neuropathic pain. Crotalphine is a structural analog to a peptide first identified in Crotalus durissus terrificus snake venom, which induces antinociception by activating kappa-opioid and CB2 cannabinoid receptors. Consistent with previous data, we showed that the protein levels of the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways are increased in neuropathic rats. Importantly, the administration of crotalphine downregulates these protein levels, including its downstream cascades, such as TCF4 from the canonical pathway and NR2B glutamatergic receptor and Ca2+-dependent signals, via the Ryk receptor. The CB2 receptor antagonist, AM630, abolished the crotalphine-induced atypical Wnt/Ryk signaling pathway activation. However, the selective CB2 agonist affects both canonical and non-canonical Wnt signaling in the spinal cord. Next, we showed that crotalphine blocked hypersensitivity and significantly decreased the concentration of IL-1ɑ, IL-1β, IL-6, IL-10, IL-18, TNF-ɑ, MIP-1ɑ and MIP-2 induced by intrathecal injection of exogenous Wnt-3a agonist. Taken together, our findings show that crotalphine induces analgesia in a neuropathic pain model by down-regulating the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways and, consequently controlling neuroinflammation. This effect is, at least in part, mediated by CB2 receptor activation. These results open a perspective for new approaches that can be used to target Wnt signaling in the context of chronic pain. PERSPECTIVE: Our work identified that crotalphine-induced activation of CB2 receptors plays a critical role in the impairment of Wnt signaling during neuropathic pain. This work suggests that drugs with opioid/cannabinoid activity may be a useful strategy to target Wnt signaling in the context of chronic pain.
Collapse
Affiliation(s)
- Natália G Hösch
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900, São Paulo, Brazil
| | - Bárbara B Martins
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Queren A Alcantara
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michelle Cristiane Bufalo
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Center of Excellence in New Target Discovery (CENTD), Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Beatriz S Neto
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana Marisa Chudzinki-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Innovation and Development Laboratory, Innovation and Development Center, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Flávia V Santa-Cecilia
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Hsu SH, Chuang KT, Wang LT. Role of wnt ligand secretion mediator signaling in cancer development. JOURNAL OF CANCER RESEARCH AND PRACTICE 2023. [DOI: 10.4103/ejcrp.ejcrp-d-22-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
4
|
Choi MR, Jin YB, Kim HN, Lee H, Chai YG, Lee SR, Kim DJ. Differential Gene Expression in the Hippocampi of Nonhuman Primates Chronically Exposed to Methamphetamine, Cocaine, or Heroin. Psychiatry Investig 2022; 19:538-550. [PMID: 35903056 PMCID: PMC9334808 DOI: 10.30773/pi.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Methamphetamine (MA), cocaine, and heroin cause severe public health problems as well as impairments in neural plasticity and cognitive function in the hippocampus. This study aimed to identify the genes differentially expressed in the hippocampi of cynomolgus monkeys in response to these drugs. METHODS After the monkeys were chronically exposed to MA, cocaine, and heroin, we performed large-scale gene expression profiling of the hippocampus using RNA-Seq technology and functional annotation of genes differentially expressed. Some genes selected from RNA-Seq analysis data were validated with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). And the expression changes of ADAM10 protein were assessed using immunohistochemistry. RESULTS The changes in genes related to axonal guidance (PTPRP and KAL1), the cell cycle (TLK2), and the regulation of potassium ions (DPP10) in the drug-treated groups compared to the control group were confirmed using RT-qPCR. Comparative analysis of all groups showed that among genes related to synaptic long-term potentiation, CREBBP and GRIN3A were downregulated in both the MA- and heroin-treated groups compared to the control group. In particular, the mRNA and protein expression levels of ADAM10 were decreased in the MA-treated group but increased in the cocaine-treated group compared to the control group. CONCLUSION These results provide insights into the genes that are upregulated and downregulated in the hippocampus by the chronic administration of MA, cocaine, or heroin and basic information for developing novel drugs for the treatment of hippocampal impairments caused by drug abuse.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Na Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Heejin Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sadat‐Shirazi M, Nouri Zadeh‐Tehrani S, Akbarabadi A, Mokri A, Taleb Zadeh Kasgari B, Zarrindast M. Exercise can restore behavioural and molecular changes of intergenerational morphine effects. Addict Biol 2022; 27:e13122. [PMID: 34931742 DOI: 10.1111/adb.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022]
Abstract
In our previous studies, the offspring of morphine-exposed parents (MEO) showed pharmacological tolerance to the morphine's reinforcing effect. According to the role of exercise in treatment of morphine addiction, the current study was designed to utilize exercise to improve the effect of parental morphine exposure on the morphine's reinforcing effect. Male and female rats received morphine for 10 days and were drug-free for another 10 days. Each morphine-exposed animal was allowed to mate either with a drug-naïve or a morphine-exposed rat. The offspring were divided into two groups: (1) offspring that were subjected to treadmill exercise and (2) offspring that were not subjected to exercise. The reinforcing effect of morphine was evaluated using conditioned place preference (CPP) and two-bottle choice (TBC) tests. Levels of dopamine receptors (D1DR and D2DR), μ-opioid receptor (MOR), and ΔFosB were evaluated in the nucleus accumbens. The MEO obtained lower preference scores in CPP and consumed morphine more than the control group in TBC. After 3 weeks of exercise, the reinforcing effect of morphine in the MEO was similar to the control. D1DR, D2DR, and MOR were increased in MEO compared with the controls before exercise. Levels of D1DR and MOR were decreased after exercise in the MEO; however, D1DR was increased in control. D2DR level did not change after exercise in MEO, but it increased in control group. Moreover, the level of ΔFosB was decreased among MEO while it was increased after exercise. In conclusion, exercise might modulate the reinforcing effect of morphine via alteration in levels of D1DR, MOR, and ΔFosB.
Collapse
Affiliation(s)
| | | | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
| | - Azarakhsh Mokri
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- Roozbeh Hospital Tehran University of Medical Sciences Tehran Iran
| | - Bahar Taleb Zadeh Kasgari
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- School of Biology, College of Science University of Tehran Tehran Iran
| | - Mohammad‐Reza Zarrindast
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Islamic Azad University Tehran Iran
- Endocrinology and Metabolism Research Institute Tehran University of Medical Science Tehran Iran
| |
Collapse
|
6
|
Individual differences in dopamine uptake in the dorsomedial striatum prior to cocaine exposure predict motivation for cocaine in male rats. Neuropsychopharmacology 2021; 46:1757-1767. [PMID: 33953341 PMCID: PMC8357974 DOI: 10.1038/s41386-021-01009-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/08/2022]
Abstract
A major theme of addiction research has focused on the neural substrates of individual differences in the risk for addiction; however, little is known about how vulnerable populations differ from those that are relatively protected. Here, we prospectively measured dopamine (DA) neurotransmission prior to cocaine exposure to predict the onset and course of cocaine use. Using in vivo voltammetry, we first generated baseline profiles of DA release and uptake in the dorsomedial striatum (DMS) and nucleus accumbens of drug-naïve male rats prior to exposing them to cocaine using conditioned place preference (CPP) or operant self-administration. We found that the innate rate of DA uptake in the DMS strongly predicted motivation for cocaine and drug-primed reinstatement, but not CPP, responding when "price" was low, or extinction. We then assessed the impact of baseline variations in DA uptake on cocaine potency in the DMS using ex vivo voltammetry in naïve rats and in rats with DA transporter (DAT) knockdown. DA uptake in the DMS of naïve rats predicted the neurochemical response to cocaine, such that rats with innately faster rates of DA uptake demonstrated higher cocaine potency at the DAT and rats with DAT knockdown displayed reduced potency compared to controls. Together, these data demonstrate that inherent variability in DA uptake in the DMS predicts the behavioral response to cocaine, potentially by altering the apparent potency of cocaine.
Collapse
|
7
|
Suchanecka A, Chmielowiec J, Chmielowiec K, Masiak J, Sipak-Szmigiel O, Sznabowicz M, Czarny W, Michałowska-Sawczyn M, Trybek G, Grzywacz A. Dopamine Receptor DRD2 Gene rs1076560, Personality Traits and Anxiety in the Polysubstance Use Disorder. Brain Sci 2020; 10:brainsci10050262. [PMID: 32365807 PMCID: PMC7287957 DOI: 10.3390/brainsci10050262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Development of an addiction is conditioned by many factors. The dopaminergic system has been shown to be the key element in this process. In this paper, we analyzed the influence of dopamine receptor 2 polymorphism rs1076560 in two groups—polysubstance-dependent male patients (n = 299) and the controls matched for age (n = 301). In both groups, we applied the same questionnaires for testing—Mini-international neuropsychiatric interview, the NEO Five-Factor Inventory, and the State–Trait Anxiety Inventory. The real-time PCR method was used for genotyping. When we compared the controls with the case group subjects, we observed significantly higher scores in the second group on both the state and trait scales of anxiety, as well as on the Neuroticism and Openness scales of the NEO-FFI; and lower scores on the scales of Extraversion and Agreeability of the NEO-FFI. The model 2 × 3 factorial ANOVA of the addicted subjects and controls was performed, and the DRD2 rs1076560 variant interaction was found for the anxiety state and trait scales, and for the NEO-FFI Neuroticism scale. The observed associations allow noticing that analysis of psychological factors in combination with genetic data opens new possibilities in addiction research.
Collapse
Affiliation(s)
- Aleksandra Suchanecka
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Olimpia Sipak-Szmigiel
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, 48 Żołnierska St., 71-210 Szczecin, Poland;
| | - Mariusz Sznabowicz
- Indywidual Medical Practice MD M Sznabowicz, Lutówko 14, 74-320 Barlinek, Poland;
| | - Wojciech Czarny
- Faculty of Physical Education, University of Rzeszów, Towarnickiego 3 St., 35-959 Rzeszów, Poland;
| | - Monika Michałowska-Sawczyn
- Faculty of Physical Culture, Gdańsk University of Physical Education and Sport, Kazimierza Górskiego 1 St., 80-336 Gdańsk, Poland;
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. St., 70-111 Szczecin, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
8
|
Tsou CC, Chou HW, Ho PS, Kuo SC, Chen CY, Huang CC, Liang CS, Lu RB, Huang SY. DRD2 and ANKK1 genes associate with late-onset heroin dependence in men. World J Biol Psychiatry 2019; 20:605-615. [PMID: 28854834 DOI: 10.1080/15622975.2017.1372630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objectives: Dopamine plays an important role in reward system of heroin dependence (HD), and dopaminergic D2 receptor (DRD2) gene is a candidate for the aetiology of HD. Ankyrin repeat and kinase domain containing 1 (ANKK1) gene is proximal to DRD2 and may influence its expression. We explored whether DRD2 and ANKK1 associate with occurrence of HD, and whether the genetic variants influence personality traits in male patients with HD.Methods:DRD2/ANKK1 polymorphisms were analysed in 950 unrelated Han Chinese male participants (601 HD patients and 349 healthy controls). All participants were screened using the same assessment tools and all patients met the diagnostic criteria of HD. Personality traits were assessed in 274 patients and 142 controls using the Tridimensional Personality Questionnaire.Results: According to the allele, genotype and haplotype frequency analysis, we observed an association between HD and several DRD2/ANKK1 polymorphisms (rs1800497, rs1800498, rs1079597 and rs4648319); this was most notable in the late-onset HD subgroup. However, these DRD2/ANKK1 polymorphisms did not associate with specific personality traits in HD patients and controls.Conclusions:DRD2/ANKK1 may play an important role in occurrence of late-onset HD, but does not mediate the relationship between personality traits and HD in Han Chinese male population.
Collapse
Affiliation(s)
- Chang-Chih Tsou
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Han-Wei Chou
- Department of Psychiatry, Hsinchu Armed Force Hospital, Hsinchu, Taiwan, R.O.C
| | - Pei-Shen Ho
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shin-Chang Kuo
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chun-Yen Chen
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chang-Chih Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Department of Psychiatry, Buddhist Tzu Chi General Hospital, Taipei, Taiwan, R.O.C
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Ru-Band Lu
- Department of Psychiatry, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, R.O.C
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
9
|
Walker DM, Cates HM, Loh YHE, Purushothaman I, Ramakrishnan A, Cahill KM, Lardner CK, Godino A, Kronman HG, Rabkin J, Lorsch ZS, Mews P, Doyle MA, Feng J, Labonté B, Koo JW, Bagot RC, Logan RW, Seney ML, Calipari ES, Shen L, Nestler EJ. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain's Reward Circuitry. Biol Psychiatry 2018; 84:867-880. [PMID: 29861096 PMCID: PMC6202276 DOI: 10.1016/j.biopsych.2018.04.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Global changes in gene expression underlying circuit and behavioral dysregulation associated with cocaine addiction remain incompletely understood. Here, we show how a history of cocaine self-administration (SA) reprograms transcriptome-wide responses throughout the brain's reward circuitry at baseline and in response to context and/or cocaine re-exposure after prolonged withdrawal (WD). METHODS We assigned male mice to one of six groups: saline/cocaine SA + 24-hour WD or saline/cocaine SA + 30-day WD + an acute saline/cocaine challenge within the previous drug-paired context. RNA sequencing was conducted on six interconnected brain reward regions. Using pattern analysis of gene expression and factor analysis of behavior, we identified genes that are strongly associated with addiction-related behaviors and uniquely altered by a history of cocaine SA. We then identified potential upstream regulators of these genes. RESULTS We focused on three patterns of gene expression that reflect responses to 1) acute cocaine, 2) context re-exposure, and 3) drug + context re-exposure. These patterns revealed region-specific regulation of gene expression. Further analysis revealed that each of these gene expression patterns correlated with an addiction index-a composite score of several addiction-like behaviors during cocaine SA-in a region-specific manner. Cyclic adenosine monophosphate response element binding protein and nuclear receptor families were identified as key upstream regulators of genes associated with such behaviors. CONCLUSIONS This comprehensive picture of transcriptome-wide regulation in the brain's reward circuitry by cocaine SA and prolonged WD provides new insight into the molecular basis of cocaine addiction, which will guide future studies of the key molecular pathways involved.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hannah M Cates
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yong-Hwee E Loh
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kelly M Cahill
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Casey K Lardner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hope G Kronman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacqui Rabkin
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zachary S Lorsch
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philipp Mews
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marie A Doyle
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jian Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ja Wook Koo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rosemary C Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan W Logan
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
10
|
Groenewald CB, Law EF, Fisher E, Beals-Erickson SE, Palermo TM. Associations Between Adolescent Chronic Pain and Prescription Opioid Misuse in Adulthood. THE JOURNAL OF PAIN 2018; 20:28-37. [PMID: 30098405 DOI: 10.1016/j.jpain.2018.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022]
Abstract
Prescription opioid misuse is a serious public health concern, yet antecedent factors are poorly described. Using data from the National Longitudinal Study of Adolescent to Adult Health (N = 14,784), we examined the longitudinal relationship between a history of adolescent chronic pain and the odds of misusing prescription opioids in adulthood. The primary predictor variable was chronic pain status during adolescence. The primary outcome variables were prescription opioid misuse during early adulthood and adulthood. Multivariate models controlled for known risk factors of opioid misuse, including sociodemographics (sex, race, and ethnicity), adolescent mental health symptoms (anxiety, depression), adolescent self-reported physical health status, adolescent substance use/abuse, childhood trauma, and adult legitimate opioid use. We found that adults with a history of adolescent chronic pain were more likely to misuse opioids than those without history of chronic pain, even after controlling for other known risk factors. Further, we found that among individuals with history of adolescent chronic pain that race (white), other substance use, and exposure to trauma were risk factors for later opioid misuse. Longitudinal associations between adolescent chronic pain and subsequent adult prescription opioid misuse highlight the need for early targeted screening and prevention efforts that may reduce later opioid misuse. Perspective: Using a large, nationally representative sample, we found that chronic pain during adolescence was an independent risk factor for opioid misuse in adulthood, over and above other known risk factors. Furthermore, among those individuals with adolescent chronic pain, substance use, exposure to trauma, and race were associated with opioid misuse.
Collapse
Affiliation(s)
- Cornelius B Groenewald
- Departments of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Emily F Law
- Departments of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Emma Fisher
- Department for Health, University of Bath, Claverton Down, Bath, UK
| | - Sarah E Beals-Erickson
- Division of Developmental and Behavioral Sciences, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Tonya M Palermo
- Departments of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington; Pediatrics, University of Washington School of Medicine, Seattle, Washington; Psychiatry, University of Washington School of Medicine, Seattle, Washington; Division of Developmental and Behavioral Sciences, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
11
|
Grigson PS. Addiction: A multi-determined chronic disease. Brain Res Bull 2018; 138:1-4. [DOI: 10.1016/j.brainresbull.2017.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Identifying novel members of the Wntless interactome through genetic and candidate gene approaches. Brain Res Bull 2017; 138:96-105. [PMID: 28734904 DOI: 10.1016/j.brainresbull.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes.
Collapse
|
13
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Jenney CB, Alexander DN, Jones BC, Unger EL, Grigson PS. Preweaning iron deficiency increases non-contingent responding during cocaine self-administration in rats. Physiol Behav 2016; 167:282-288. [PMID: 27640134 PMCID: PMC5663288 DOI: 10.1016/j.physbeh.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 11/27/2022]
Abstract
Iron deficiency (ID) is the most prevalent single-nutrient deficiency worldwide. There is evidence that ID early in development (preweaning in rat) causes irreversible neurologic, behavioral, and motor development deficits. Many of these effects have been attributed to damage to dopamine systems, including ID-induced changes in transporter and receptor numbers in the striatum and nucleus accumbens. These mesolimbic dopaminergic neurons are, in part, responsible for mediating reward and thus play a key role in addiction. However, there has been relatively little investigation into the behavioral effects of ID on drug addiction. In 2002, we found that rats made ID from weaning (postnatal day 21) and throughout the experiment acquired cocaine self-administration significantly more slowly than controls and failed to increase responding when the dose of the drug was decreased. In the present study, we assessed addiction for self-administered cocaine in rats with a history of preweaning ID only during postnatal days 4 through 21, and iron replete thereafter. The results showed that while ID did not affect the number of cocaine infusions or the overall addiction-like behavior score, ID rats scored higher on a measure of continued responding for drug than did iron replete controls. This increase in responding, however, was less goal-directed as ID rats also responded more quickly to the non-rewarded manipulandum than did control rats. Thus, while ID early in infancy did not significantly increase addiction-like behaviors for cocaine in this small study, the pattern of data suggests a possible underlying learning or performance impairment. Future studies will be needed to elucidate the exact neuro-behavioral deficits that lead to the increase in indiscriminate responding for drug in rats with a history of perinatal ID.
Collapse
Affiliation(s)
- Christopher B Jenney
- Neural and Behavioral Sciences, Penn State Hershey College of Medicine, The Pennsylvania State University, United States
| | - Danielle N Alexander
- Neural and Behavioral Sciences, Penn State Hershey College of Medicine, The Pennsylvania State University, United States
| | - Byron C Jones
- Department of Biobehavioral Health, The Pennsylvania State University, United States
| | - Erica L Unger
- Department of Biobehavioral Health, The Pennsylvania State University, United States
| | - Patricia S Grigson
- Neural and Behavioral Sciences, Penn State Hershey College of Medicine, The Pennsylvania State University, United States.
| |
Collapse
|
15
|
Imperio CG, Grigson PS. Greater avoidance of a heroin-paired taste cue is associated with greater escalation of heroin self-administration in rats. Behav Neurosci 2016. [PMID: 26214212 DOI: 10.1037/bne0000069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heroin addiction is a disease of chronic relapse affecting over half of its users. Therefore, modeling individual differences in addiction-like behavior is needed to better reflect the human condition. In a rodent model, avoidance of a cocaine-paired saccharin cue is associated with greater cocaine seeking and taking. Here, we tested whether rats would avoid a saccharin cue when paired with the opportunity to self-administer heroin and whether the rats that most greatly avoid the heroin-paired taste cue would exhibit the greatest drug escalation over time, the greatest willingness to work for drug, and the greatest heroin-induced relapse. Adult male Sprague-Dawley rats received 5 min access to a 0.15% saccharin solution followed by the opportunity to self-administer either saline or heroin for 3 hr (short access) or 6 hr (extended access). Following 16 to 18 pairings, terminal saccharin intake was used to categorize the rats into small (>200 licks/5min) or large (<200 licks/5min) suppressors and responding for drug was examined accordingly. Only 5% of the short access rats reached the criteria for large suppressors. This large suppressor did not differ from the small suppressors in drug-taking behavior. On the other hand, 50% of the extended access saccharin-heroin rats were large suppressors and showed the largest escalation of drug intake, drug-loading behavior, and the greatest relapse-like behaviors. Extended access small suppressors displayed drug-taking behaviors that were similar to rats in the short access heroin condition. Avoidance of a heroin-paired taste cue reliably identifies individual differences in addiction-like behavior for heroin using extended drug access.
Collapse
|
16
|
Blum K, Febo M, Fahlke C, Archer T, Berggren U, Demetrovics Z, Dushaj K, Badgaiyan RD. Hypothesizing Balancing Endorphinergic and Glutaminergic Systems to Treat and Prevent Relapse to Reward Deficiency Behaviors: Coupling D-Phenylalanine and N-Acetyl-L-Cysteine (NAC) as a Novel Therapeutic Modality. ACTA ACUST UNITED AC 2015; 2. [PMID: 26900600 PMCID: PMC4760695 DOI: 10.23937/2378-3656/1410076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA; Division of Nutrigenomics, LaVita RDS, LLC, Draper, UT, USA; Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA; Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, Los Gatos, CA, USA; Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA; Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Claudia Fahlke
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - U Berggren
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Budapest, Hungary
| | - Kristina Dushaj
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | | |
Collapse
|
17
|
Jenney CB, Petko J, Ebersole B, Njatcha CVN, Uzamere TO, Alexander DN, Grigson PS, Levenson R. Early avoidance of a heroin-paired taste-cue and subsequent addiction-like behavior in rats. Brain Res Bull 2015; 123:61-70. [PMID: 26494018 DOI: 10.1016/j.brainresbull.2015.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022]
Abstract
The ability to predict individual vulnerability to substance abuse would allow for a better understanding of the progression of the disease and development of better methods for prevention and/or early intervention. Here we use drug-induced devaluation of a saccharin cue in an effort to predict later addiction-like behavior in a model akin to that used by Deroche-Gamonet et al. (2004) and seek to link such vulnerability to changes in expression of various mu opioid receptor and D2 receptor-interacting proteins in brain. The results show that the greatest heroin-induced suppression of intake of a saccharin cue is associated with the greatest vulnerability to later addiction-like behavior and to differences in the expression of WLS, β-catenin, and NCS-1 in brain compared to rats that exhibited the least suppression of intake of the heroin-paired cue and/or saline controls. Finally, because the self-administration model employed produced no significant differences in drug intake between groups, overall, the resultant changes in protein expression can be more closely linked to individual differences in motivation for drug.
Collapse
Affiliation(s)
- Christopher B Jenney
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Jessica Petko
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Brittany Ebersole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Christian V Nzinkeu Njatcha
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Teddy O Uzamere
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Danielle N Alexander
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States.
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|