1
|
Chen J, Bornstein AM. The causal structure and computational value of narratives. Trends Cogn Sci 2024; 28:769-781. [PMID: 38734531 PMCID: PMC11305923 DOI: 10.1016/j.tics.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Abstract
Many human behavioral and brain imaging studies have used narratively structured stimuli (e.g., written, audio, or audiovisual stories) to better emulate real-world experience in the laboratory. However, narratives are a special class of real-world experience, largely defined by their causal connections across time. Much contemporary neuroscience research does not consider this key property. We review behavioral and neuroscientific work that speaks to how causal structure shapes comprehension of and memory for narratives. We further draw connections between this work and reinforcement learning, highlighting how narratives help link causes to outcomes in complex environments. By incorporating the plausibility of causal connections between classes of actions and outcomes, reinforcement learning models may become more ecologically valid, while simultaneously elucidating the value of narratives.
Collapse
Affiliation(s)
- Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Aaron M Bornstein
- Department of Cognitive Sciences, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Leshinskaya A, Nguyen MA, Ranganath C. Integration of event experiences to build relational knowledge in the human brain. Cereb Cortex 2023; 33:9997-10012. [PMID: 37492008 DOI: 10.1093/cercor/bhad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated how the human brain integrates experiences of specific events to build general knowledge about typical event structure. We examined an episodic memory area important for temporal relations, anterior-lateral entorhinal cortex, and a semantic memory area important for action concepts, middle temporal gyrus, to understand how and when these areas contribute to these processes. Participants underwent functional magnetic resonance imaging while learning and recalling temporal relations among novel events over two sessions 1 week apart. Across distinct contexts, individual temporal relations among events could either be consistent or inconsistent with each other. Within each context, during the recall phase, we measured associative coding as the difference of multivoxel correlations among related vs unrelated pairs of events. Neural regions that form integrative representations should exhibit stronger associative coding in the consistent than the inconsistent contexts. We found evidence of integrative representations that emerged quickly in anterior-lateral entorhinal cortex (at session 1), and only subsequently in middle temporal gyrus, which showed a significant change across sessions. A complementary pattern of findings was seen with signatures during learning. This suggests that integrative representations are established early in anterior-lateral entorhinal cortex and may be a pathway to the later emergence of semantic knowledge in middle temporal gyrus.
Collapse
Affiliation(s)
- Anna Leshinskaya
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Mitchell A Nguyen
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| |
Collapse
|
3
|
Leshinskaya A, Bajaj M, Thompson-Schill SL. Novel objects with causal event schemas elicit selective responses in tool- and hand-selective lateral occipitotemporal cortex. Cereb Cortex 2023; 33:5557-5573. [PMID: 36469589 PMCID: PMC10152094 DOI: 10.1093/cercor/bhac442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/11/2022] Open
Abstract
Tool-selective lateral occipitotemporal cortex (LOTC) responds preferentially to images of tools (hammers, brushes) relative to non-tool objects (clocks, shoes). What drives these responses? Unlike other objects, tools exert effects on their surroundings. We tested whether LOTC responses are influenced by event schemas that denote different temporal relations. Participants learned about novel objects embedded in different event sequences. Causer objects moved prior to the appearance of an environmental event (e.g. stars), while Reactor objects moved after an event. Visual features and motor association were controlled. During functional magnetic resonance imaging, participants viewed still images of the objects. We localized tool-selective LOTC and non-tool-selective parahippocampal cortex (PHC) by contrasting neural responses to images of familiar tools and non-tools. We found that LOTC responded more to Causers than Reactors, while PHC did not. We also measured responses to images of hands, which elicit overlapping responses with tools. Across inferior temporal cortex, voxels' tool and hand selectivity positively predicted a preferential response to Causers. We conclude that an event schema typical of tools is sufficient to drive LOTC and that category-preferential responses across the temporal lobe may reflect relational event structures typical of those domains.
Collapse
Affiliation(s)
- Anna Leshinskaya
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Stephen A Levin Building, Philadelphia, PA 19104, United States
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Room 209, Davis, CA, United States
| | - Mira Bajaj
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Stephen A Levin Building, Philadelphia, PA 19104, United States
- The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| | - Sharon L Thompson-Schill
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Stephen A Levin Building, Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Sherman BE, Graves KN, Turk-Browne NB. The prevalence and importance of statistical learning in human cognition and behavior. Curr Opin Behav Sci 2020; 32:15-20. [PMID: 32258249 DOI: 10.1016/j.cobeha.2020.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Statistical learning, the ability to extract regularities from the environment over time, has become a topic of burgeoning interest. Its influence on behavior, spanning infancy to adulthood, has been demonstrated across a range of tasks, both those labeled as tests of statistical learning and those from other learning domains that predated statistical learning research or that are not typically considered in the context of that literature. Given this pervasive role in human cognition, statistical learning has the potential to reconcile seemingly distinct learning phenomena and may be an under-appreciated but important contributor to a wide range of human behaviors that are studied as unrelated processes, such as episodic memory and spatial navigation.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| | - Kathryn N Graves
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| | | |
Collapse
|
5
|
Seitz RJ, Angel HF. Belief formation - A driving force for brain evolution. Brain Cogn 2020; 140:105548. [PMID: 32062327 DOI: 10.1016/j.bandc.2020.105548] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/10/2023]
Abstract
The topic of belief has been neglected in the natural sciences for a long period of time. Recent neuroscience research in non-human primates and humans, however, has shown that beliefs are the neuropsychic product of fundamental brain processes that attribute affective meaning to concrete objects and events, enabling individual goal setting, decision making and maneuvering in the environment. With regard to the involved neural processes they can be categorized as empirical, relational, and conceptual beliefs. Empirical beliefs are about objects and relational beliefs are about events as in tool use and in interactions between subjects that develop below the level of awareness and are up-dated dynamically. Conceptual beliefs are more complex being based on narratives and participation in ritual acts. As neural processes are known to require computational space in the brain, the formation of inceasingly complex beliefs demands extra neural resources. Here, we argue that the evolution of human beliefs is related to the phylogenetic enlargement of the brain including the parietal and medial frontal cortex in humans.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Florey Neuroscience Institutes, Melbourne, Australia.
| | - Hans-Ferdinand Angel
- Karl Franzens University Graz, Institute of Catechetic and Pedagogic of Religion, Graz, Austria
| |
Collapse
|
6
|
Leshinskaya A, Thompson-Schill SL. Transformation of Event Representations along Middle Temporal Gyrus. Cereb Cortex 2020; 30:3148-3166. [PMID: 31942943 DOI: 10.1093/cercor/bhz300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When learning about events through visual experience, one must not only identify which events are visually similar but also retrieve those events' associates-which may be visually dissimilar-and recognize when different events have similar predictive relations. How are these demands balanced? To address this question, we taught participants the predictive structures among four events, which appeared in four different sequences, each cued by a distinct object. In each, one event ("cause") was predictably followed by another ("effect"). Sequences in the same relational category had similar predictive structure, while across categories, the effect and cause events were reversed. Using functional magnetic resonance imaging data, we measured "associative coding," indicated by correlated responses between effect and cause events; "perceptual coding," indicated by correlated responses to visually similar events; and "relational category coding," indicated by correlated responses to sequences in the same relational category. All three models characterized responses within the right middle temporal gyrus (MTG), but in different ways: Perceptual and associative coding diverged along the posterior to anterior axis, while relational categories emerged anteriorly in tandem with associative coding. Thus, along the posterior-anterior axis of MTG, the representation of the visual attributes of events is transformed to a representation of both specific and generalizable relational attributes.
Collapse
Affiliation(s)
- Anna Leshinskaya
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|