1
|
Lukashkin AN, Russell IJ, Rybdylova O. Local cochlear mechanical responses revealed through outer hair cell receptor potential measurements. Biophys J 2024; 123:3163-3175. [PMID: 39014895 PMCID: PMC11427782 DOI: 10.1016/j.bpj.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/26/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
Sensory hair cells, including the sensorimotor outer hair cells, which enable the sensitive, sharply tuned responses of the mammalian cochlea, are excited by radial shear between the organ of Corti and the overlying tectorial membrane. It is not currently possible to measure directly in vivo mechanical responses in the narrow cleft between the tectorial membrane and organ of Corti over a wide range of stimulus frequencies and intensities. The mechanical responses can, however, be derived by measuring hair cell receptor potentials. We demonstrate that the seemingly complex frequency- and intensity-dependent behavior of outer hair cell receptor potentials could be qualitatively explained by a two degrees of freedom system with local cochlear partition and tectorial membrane resonances strongly coupled by the outer hair cell stereocilia. A local minimum in the receptor potential below the characteristic frequency should always be observed at a frequency where the tectorial membrane mechanical impedance is minimal, i.e., at the presumed tectorial membrane resonance frequency. The tectorial membrane resonance frequency might, however, shift with stimulus intensity in accordance with a shift in the maximum of the tectorial membrane radial mechanical responses to lower frequencies, as observed in experiments.
Collapse
Affiliation(s)
- Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Applied Science, University of Brighton, Brighton, United Kingdom.
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Applied Science, University of Brighton, Brighton, United Kingdom
| | - Oyuna Rybdylova
- Advanced Engineering Centre, School of Architecture, Technology and Engineering, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
2
|
Lin WC, Macić A, Becker J, Nam JH. Asymmetric vibrations in the organ of Corti by outer hair cells measured from excised gerbil cochlea. Commun Biol 2024; 7:600. [PMID: 38762693 PMCID: PMC11102476 DOI: 10.1038/s42003-024-06293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Pending questions regarding cochlear amplification and tuning are hinged upon the organ of Corti (OoC) active mechanics: how outer hair cells modulate OoC vibrations. Our knowledge regarding OoC mechanics has advanced over the past decade thanks to the application of tomographic vibrometry. However, recent data from live cochlea experiments often led to diverging interpretations due to complicated interaction between passive and active responses, lack of image resolution in vibrometry, and ambiguous measurement angles. We present motion measurements and analyses of the OoC sub-components at the close-to-true cross-section, measured from acutely excised gerbil cochleae. Specifically, we focused on the vibrating patterns of the reticular lamina, the outer pillar cell, and the basilar membrane because they form a structural frame encasing active outer hair cells. For passive transmission, the OoC frame serves as a rigid truss. In contrast, motile outer hair cells exploit their frame structures to deflect the upper compartment of the OoC while minimally disturbing its bottom side (basilar membrane). Such asymmetric OoC vibrations due to outer hair cell motility explain how recent observations deviate from the classical cochlear amplification theory.
Collapse
Affiliation(s)
- Wei-Ching Lin
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Anes Macić
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Jonathan Becker
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
3
|
Cho NH, Puria S. Cochlear motion across the reticular lamina implies that it is not a stiff plate. Sci Rep 2022; 12:18715. [PMID: 36333415 PMCID: PMC9636238 DOI: 10.1038/s41598-022-23525-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Within the cochlea, the basilar membrane (BM) is coupled to the reticular lamina (RL) through three rows of piezo-like outer hair cells (OHCs) and supporting cells that endow mammals with sensitive hearing. Anatomical differences across OHC rows suggest differences in their motion. Using optical coherence tomography, we measured in vivo and postmortem displacements through the gerbil round-window membrane from approximately the 40-47 kHz best-frequency (BF) regions. Our high spatial resolution allowed measurements across the RL surface at the tops of the three rows of individual OHCs and their bottoms, and across the BM. RL motion varied radially; the third-row gain was more than 3 times greater than that of the first row near BF, whereas the OHC-bottom motions remained similar. This implies that the RL mosaic, comprised of OHC and phalangeal-process tops joined together by adhesion molecules, is much more flexible than the Deiters' cells connected to the OHCs at their bottom surfaces. Postmortem, the measured points moved together approximately in phase. These imply that in vivo, the RL does not move as a stiff plate hinging around the pillar-cell heads near the first row as has been assumed, but that its mosaic-like structure may instead bend and/or stretch.
Collapse
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Sunil Puria
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Levic S, Lukashkina VA, Simões P, Lukashkin AN, Russell IJ. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification. J Neurosci 2022; 42:7875-7884. [PMID: 36261265 PMCID: PMC9617611 DOI: 10.1523/jneurosci.2241-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Cochlear amplification enables the enormous dynamic range of hearing through amplifying cochlear responses to low- to moderate-level sounds and compressing them to loud sounds. Amplification is attributed to voltage-dependent electromotility of mechanosensory outer hair cells (OHCs) driven by changing voltages developed across their cell membranes. At low frequencies, these voltage changes are dominated by intracellular receptor potentials (RPs). However, OHC membranes have electrical low-pass filter properties that attenuate high-frequency RPs, which should potentially attenuate amplification of high-frequency cochlear responses and impede high-frequency hearing. We made in vivo intracellular and extracellular electrophysiological measurements from the organ of Corti of male and female mice of the CBA/J strain, with excellent high-frequency hearing, and from the CD-1 mouse strain, which has sensitive hearing below 12 kHz but loses high-frequency hearing within a few weeks postpartum. The CD-1 mouse strain was transfected with an A88V mutation of the connexin 30 gap-junction protein. By blocking the action of the GJ protein to reduce input resistance, the mutation increased the OHC extracellular RP (ERP) magnitude and rescued high-frequency hearing. However, by increasing the organ of Corti resistance, the mutation rescued high-frequency hearing through preserving the OHC extracellular RP (ERP) magnitude. We measured the voltage developed across the basolateral membranes of OHCs, which controls their electromotility, for low- to high-frequency sounds in male and female mice of the CD-1 strain that expressed the A88V mutation. We demonstrate that ERPs, not RPs, drive OHC motility and cochlear amplification at high frequencies because at high frequencies, ERPs are not frequency attenuated, exceed RPs in magnitude, and are appropriately timed to provide cochlear amplification.SIGNIFICANCE STATEMENT Cochlear amplification, which enables the enormous dynamic range of hearing, is attributed to voltage-dependent electromotility of the mechanosensory outer hair cells (OHCs) driven by sound-induced voltage changes across their membranes. OHC intracellular receptor potentials are electrically low-pass filtered, which should hinder high-frequency hearing. We measured the intracellular and extracellular voltages that control OHC electromotility in vivo in a mouse strain with impaired high-frequency hearing. A gap-junction mutation of the strain rescued high-frequency hearing, increased organ of Corti resistance, and preserved large OHC extracellular receptor potentials but reduced OHC intracellular receptor potentials and impaired low-frequency hearing. We concluded intracellular potentials drive OHC motility at low frequencies and extracellular receptor potentials drive OHC motility and cochlear amplification at high frequencies.
Collapse
Affiliation(s)
- Snezana Levic
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, United Kingdom
| | - Victoria A Lukashkina
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Patricio Simões
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
5
|
Altoè A, Dewey JB, Charaziak KK, Oghalai JS, Shera CA. Overturning the mechanisms of cochlear amplification via area deformations of the organ of Corti. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2227. [PMID: 36319240 PMCID: PMC9578757 DOI: 10.1121/10.0014794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The mammalian ear embeds a cellular amplifier that boosts sound-induced hydromechanical waves as they propagate along the cochlea. The operation of this amplifier is not fully understood and is difficult to disentangle experimentally. In the prevailing view, cochlear waves are amplified by the piezo-electric action of the outer hair cells (OHCs), whose cycle-by-cycle elongations and contractions inject power into the local motion of the basilar membrane (BM). Concomitant deformations of the opposing (or "top") side of the organ of Corti are assumed to play a minor role and are generally neglected. However, analysis of intracochlear motions obtained using optical coherence tomography calls this prevailing view into question. In particular, the analysis suggests that (i) the net local power transfer from the OHCs to the BM is either negative or highly inefficient; and (ii) vibration of the top side of the organ of Corti plays a primary role in traveling-wave amplification. A phenomenological model derived from these observations manifests realistic cochlear responses and suggests that amplification arises almost entirely from OHC-induced deformations of the top side of the organ of Corti. In effect, the model turns classic assumptions about spatial impedance relations and power-flow direction within the sensory epithelium upside down.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - James B Dewey
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
6
|
He W, Burwood G, Fridberger A, Nuttall AL, Ren T. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification. Hear Res 2022; 423:108407. [PMID: 34922772 PMCID: PMC9156726 DOI: 10.1016/j.heares.2021.108407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022]
Abstract
It is a common belief that the mammalian cochlea achieves its exquisite sensitivity, frequency selectivity, and dynamic range through an outer hair cell-based active process, or cochlear amplification. As a sound-induced traveling wave propagates from the cochlear base toward the apex, outer hair cells at a narrow region amplify the low level sound-induced vibration through a local feedback mechanism. This widely accepted theory has been tested by measuring sound-induced sub-nanometer vibrations within the organ of Corti in the sensitive living cochleae using heterodyne low-coherence interferometry and optical coherence tomography. The aim of this short review is to summarize experimental findings on the cochlear active process by the authors' group. Our data show that outer hair cells are able to generate substantial forces for driving the cochlear partition at all audible frequencies in vivo. The acoustically induced reticular lamina vibration is larger and more broadly tuned than the basilar membrane vibration. The reticular lamina and basilar membrane vibrate approximately in opposite directions at low frequencies and in the same direction at the best frequency. The group delay of the reticular lamina is larger than that of the basilar membrane. The magnitude and phase differences between the reticular lamina and basilar membrane vibration are physiologically vulnerable. These results contradict predictions based on the local feedback mechanism but suggest a global hydromechanical mechanism for cochlear amplification. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Wenxuan He
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - George Burwood
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - Anders Fridberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alfred L Nuttall
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - Tianying Ren
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States.
| |
Collapse
|
7
|
Cochlear microphonic latency predicts outer hair cell function in animal models and clinical populations. Hear Res 2020; 398:108094. [PMID: 33099252 DOI: 10.1016/j.heares.2020.108094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
As recently reported, electrocochleography recorded in cochlear implant recipients showed reduced amplitude and shorter latency in patients with more severe high-frequency hearing loss compared with those with some residual hearing. As the response is generated primarily by receptor currents in outer hair cells, these variations in amplitude and latency may indicate outer hair cell function after cochlear implantation. We propose that an absence of latency shift when the cochlear microphonic is measured on two adjacent electrodes indicates an absence or dysfunction of outer hair cells between these electrodes. We test this preclinically in noise deafened guinea pigs (2 h of a 124 dB HL, 16-24 kHz narrow-band noise), and clinically, in electrocochleographic recordings made in cochlear implant recipients immediately after implantation. We found that normal hearing guinea pigs showed a progressive increase in latency from basal to apical electrodes. In contrast, guinea pigs with significantly elevated high-frequency hearing thresholds showed no change in cochlear microphonic latency measured on basal electrodes (located approximately at the 16-24 kHz location in the cochlea).. In the clinical cohort, a significant negative correlation existed between cochlear microphonic latency shifts and hearing thresholds at 1-, 2-, & 4 kHz when tested on electrodes located at the relevant cochlear tonotopic place. This reduction in latency shift was such that patients with no measurable hearing also had no detectable latency shift (place assessed by CT scan, r's of -.70 to -.83). These findings suggest that electrocochleography can be used as a diagnostic tool to detect cochlear regions with functioning hair cells, which may be important for defining cross-over point for electro-acoustic stimulation.
Collapse
|
8
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
9
|
Burwood GWS, Fridberger A, Wang RK, Nuttall AL. Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography. Quant Imaging Med Surg 2019; 9:858-881. [PMID: 31281781 PMCID: PMC6571188 DOI: 10.21037/qims.2019.05.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 01/17/2023]
Abstract
Optical coherence tomography (OCT) has revolutionized physiological studies of the hearing organ, the vibration and morphology of which can now be measured without opening the surrounding bone. In this review, we provide an overview of OCT as used in the otological research, describing advances and different techniques in vibrometry, angiography, and structural imaging.
Collapse
Affiliation(s)
- George W. S. Burwood
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| | - Anders Fridberger
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
- Department of Clinical and Experimental Medicine, Section for Neurobiology, Linköping University, Linköping, Sweden
| | - Ruikang K. Wang
- Department of Bioengineering and Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfred L. Nuttall
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
He W, Kemp D, Ren T. Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. eLife 2018; 7:37625. [PMID: 30183615 PMCID: PMC6125122 DOI: 10.7554/elife.37625] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Auditory sensory outer hair cells are thought to amplify sound-induced basilar membrane vibration through a feedback mechanism to enhance hearing sensitivity. For optimal amplification, the outer hair cell-generated force must act on the basilar membrane at an appropriate time at every cycle. However, the temporal relationship between the outer hair cell-driven reticular lamina vibration and the basilar membrane vibration remains unclear. By measuring sub-nanometer vibrations directly from outer hair cells using a custom-built heterodyne low-coherence interferometer, we demonstrate in living gerbil cochleae that the reticular lamina vibration occurs after, not before, the basilar membrane vibration. Both tone- and click-induced responses indicate that the reticular lamina and basilar membrane vibrate in opposite directions at the cochlear base and they oscillate in phase near the best-frequency location. Our results suggest that outer hair cells enhance hearing sensitivity through a global hydromechanical mechanism, rather than through a local mechanical feedback as commonly supposed. What is the quietest sound the ear can detect? All sounds begin as vibrating air molecules, which enter the ear and cause the eardrum to vibrate. We can detect vibrations that move the eardrum by a distance of less than one picometer. That’s one thousandth of a nanometer, or about 100 times smaller than a hydrogen atom. But how does the ear achieve this level of sensitivity? Vibrations of the eardrum cause three small bones within the middle ear to vibrate. The vibrations then spread to the cochlea, a fluid-filled spiral structure in the inner ear. Tiny hair cells lining the cochlea move as a result of the vibrations. There are two types of hair cells: inner and outer. Outer hair cells amplify the vibrations. It is this amplification that enables us to detect such small movements of the eardrum. Inner hair cells then convert the amplified vibrations into electrical signals, which travel via the auditory nerve to the brain. The bases of outer hair cells are connected to a structure called the basilar membrane, while their tops are anchored to a structure called the reticular lamina. It was generally assumed that outer hair cells amplify vibrations of the basilar membrane via a local positive feedback mechanism that requires the hair cells to vibrate first. But by comparing the timing of reticular lamina and basilar membrane vibrations in gerbils, He et al. show that this is not the case. Outer hair cells vibrate after the basilar membrane, not before. This indicates that outer hair cells use a mechanism other than commonly assumed local feedback to amplify sounds. The results presented by He et al. change our understanding of how the cochlea works, and may help bioengineers to design better hearing aids and cochlea implants. Millions of patients worldwide who suffer from hearing loss may ultimately stand to benefit.
Collapse
Affiliation(s)
- Wenxuan He
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, United States
| | - David Kemp
- University College London Ear Institute, University College London, London, United Kingdom
| | - Tianying Ren
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
11
|
Ni G, Elliott SJ, Baumgart J. Finite-element model of the active organ of Corti. J R Soc Interface 2016; 13:20150913. [PMID: 26888950 DOI: 10.1098/rsif.2015.0913] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback.
Collapse
Affiliation(s)
- Guangjian Ni
- Institute of Sound and Vibration Research, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Stephen J Elliott
- Institute of Sound and Vibration Research, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Johannes Baumgart
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
12
|
Ren T, He W, Barr-Gillespie PG. Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry. Nat Commun 2016; 7:10282. [PMID: 26732830 PMCID: PMC4729828 DOI: 10.1038/ncomms10282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
It is generally believed that the remarkable sensitivity and frequency selectivity of mammalian hearing depend on outer hair cell-generated force, which amplifies sound-induced vibrations inside the cochlea. This 'reverse transduction' force production has never been demonstrated experimentally, however, in the living ear. Here by directly measuring microstructure vibrations inside the cochlear partition using a custom-built interferometer, we demonstrate that electrical stimulation can evoke both fast broadband and slow sharply tuned responses of the reticular lamina, but only a slow tuned response of the basilar membrane. Our results indicate that outer hair cells can generate sufficient force to drive the reticular lamina over all audible frequencies in living cochleae. Contrary to expectations, the cellular force causes a travelling wave rather than an immediate local vibration of the basilar membrane; this travelling wave vibrates in phase with the reticular lamina at the best frequency, and results in maximal vibration at the apical ends of outer hair cells.
Collapse
Affiliation(s)
- Tianying Ren
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Wenxuan He
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
13
|
Abstract
The detection of sound by the mammalian hearing organ involves a complex mechanical interplay among different cell types. The inner hair cells, which are the primary sensory receptors, are stimulated by the structural vibrations of the entire organ of Corti. The outer hair cells are thought to modulate these sound-evoked vibrations to enhance hearing sensitivity and frequency resolution, but it remains unclear whether other structures also contribute to frequency tuning. In the current study, sound-evoked vibrations were measured at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate the presence of multiple vibration modes as well as significant differences in frequency tuning and response phase among different cell types. In particular, the frequency tuning at the inner hair cells differs from other cell types, causing the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea compared with the outer hair cells. These observations show that additional processing and filtering of acoustic signals occur within the organ of Corti before inner hair cell excitation, representing a departure from established theories.
Collapse
|
14
|
Palghat Udayashankar A, Kössl M, Nowotny M. Lateralization of travelling wave response in the hearing organ of bushcrickets. PLoS One 2014; 9:e86090. [PMID: 24465889 PMCID: PMC3897617 DOI: 10.1371/journal.pone.0086090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Travelling waves are the physical basis of frequency discrimination in many vertebrate and invertebrate taxa, including mammals, birds, and some insects. In bushcrickets (Tettigoniidae), the crista acustica is the hearing organ that has been shown to use sound-induced travelling waves. Up to now, data on mechanical characteristics of sound-induced travelling waves were only available along the longitudinal (proximal-distal) direction. In this study, we use laser Doppler vibrometry to investigate in-vivo radial (anterior-posterior) features of travelling waves in the tropical bushcricket Mecopoda elongata. Our results demonstrate that the maximum of sound-induced travelling wave amplitude response is always shifted towards the anterior part of the crista acustica. This lateralization of the travelling wave response induces a tilt in the motion of the crista acustica, which presumably optimizes sensory transduction by exerting a shear motion on the sensory cilia in this hearing organ.
Collapse
Affiliation(s)
- Arun Palghat Udayashankar
- AK Neurobiologie und Biosensorik, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
| | - Manfred Kössl
- AK Neurobiologie und Biosensorik, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
| | - Manuela Nowotny
- AK Neurobiologie und Biosensorik, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
15
|
Fisher JAN, Nin F, Reichenbach T, Uthaiah RC, Hudspeth AJ. The spatial pattern of cochlear amplification. Neuron 2013; 76:989-97. [PMID: 23217746 PMCID: PMC3721062 DOI: 10.1016/j.neuron.2012.09.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces.
Collapse
Affiliation(s)
- Jonathan A N Fisher
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
16
|
Zha D, Chen F, Ramamoorthy S, Fridberger A, Choudhury N, Jacques SL, Wang RK, Nuttall AL. In vivo outer hair cell length changes expose the active process in the cochlea. PLoS One 2012; 7:e32757. [PMID: 22496736 PMCID: PMC3322117 DOI: 10.1371/journal.pone.0032757] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/30/2012] [Indexed: 11/28/2022] Open
Abstract
Background Mammalian hearing is refined by amplification of the sound-evoked vibration of the cochlear partition. This amplification is at least partly due to forces produced by protein motors residing in the cylindrical body of the outer hair cell. To transmit power to the cochlear partition, it is required that the outer hair cells dynamically change their length, in addition to generating force. These length changes, which have not previously been measured in vivo, must be correctly timed with the acoustic stimulus to produce amplification. Methodology/Principal Findings Using in vivo optical coherence tomography, we demonstrate that outer hair cells in living guinea pigs have length changes with unexpected timing and magnitudes that depend on the stimulus level in the sensitive cochlea. Conclusions/Significance The level-dependent length change is a necessary condition for directly validating that power is expended by the active process presumed to underlie normal hearing.
Collapse
Affiliation(s)
- Dingjun Zha
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi, People's Republic of China
| | - Fangyi Chen
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Sripriya Ramamoorthy
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Anders Fridberger
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, M1 Karolinska University Hospital, Stockholm, Sweden
| | - Niloy Choudhury
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States of America
| | - Steven L. Jacques
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Alfred L. Nuttall
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
17
|
Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc Natl Acad Sci U S A 2011; 108:18390-5. [PMID: 22025702 DOI: 10.1073/pnas.1110036108] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application.
Collapse
|
18
|
Measurement of cochlear power gain in the sensitive gerbil ear. Nat Commun 2011; 2:216. [PMID: 21364555 DOI: 10.1038/ncomms1226] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/16/2023] Open
Abstract
The extraordinary sensitivity of the mammalian ear is commonly attributed to the cochlear amplifier, a cellular process thought to locally boost responses of the cochlear partition to soft sounds. However, cochlear power gain has not been measured directly. Here we use a scanning laser interferometer to determine the volume displacement and volume velocity of the cochlear partition by measuring its transverse vibration along and across the partition. We show the transverse displacement at the peak-response location can be >1,000 times greater than the displacement of the stapes, whereas the volume displacement of an area centred at this location is approximately tenfold greater than that of the stapes. Using the volume velocity and cochlear-fluid impedance, we discover that power at the peak-response area is >100-fold greater than that at the stapes. These results demonstrate experimentally that the cochlea amplifies soft sounds, offering insight into the mechanism responsible for the cochlear sensitivity.
Collapse
|
19
|
Adelman C, Weinberger JM, Sohmer H. How are the inner hair cells and auditory nerve fibers activated without the mediation of the outer hair cells and the cochlear amplifier? J Basic Clin Physiol Pharmacol 2010; 21:231-240. [PMID: 21166271 DOI: 10.1515/jbcpp.2010.21.3.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The present study was designed to assess whether, in the presence of a depression of the cochlear amplifier i.e. a sensorineural hearing loss (SNHL), the inner hair cells (IHCs) require the presence of a normal endocochlear potential for transduction. An SNHL was induced by injecting salicylic acid (which binds to the motor protein prestin in the outer hair cells), and then furosemide (which depresses the endocochlear potential) was injected. Furosemide did not cause an additional elevation of the threshold of the auditory nerve brainstem evoked response (ABR) over that induced by the salicylic acid injection. Exposure to noise was also used to induce a SNHL in other mice, and then furosemide was injected. Here too furosemide did not cause an additional ABR threshold elevation over that induced by the noise. These results show that the IHCs (and the auditory nerve) can be excited in the presence of a SNHL (i.e. without the cochlear amplifier) and in the absence of an endocochlear potential. Possible mechanisms of excitation in such a state are discussed.
Collapse
Affiliation(s)
- Cahtia Adelman
- Speech & Hearing Center, Institute for Medical Research - Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem
| | | | | |
Collapse
|
20
|
Variation in the phase of response to low-frequency pure tones in the guinea pig auditory nerve as functions of stimulus level and frequency. J Assoc Res Otolaryngol 2008; 10:233-50. [PMID: 19093151 PMCID: PMC2674197 DOI: 10.1007/s10162-008-0151-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 11/14/2008] [Indexed: 11/02/2022] Open
Abstract
The directionality of hair cell stimulation combined with the vibration of the basilar membrane causes the auditory nerve fiber action potentials, in response to low-frequency stimuli, to occur at a particular phase of the stimulus waveform. Because direct mechanical measurements at the cochlear apex are difficult, such phase locking has often been used to indirectly infer the basilar membrane motion. Here, we confirm and extend earlier data from mammals using sine wave stimulation over a wide range of sound levels (up to 90 dB sound pressure level). We recorded phase-locked responses to pure tones over a wide range of frequencies and sound levels of a large population of auditory nerve fibers in the anesthetized guinea pig. The results indicate that, for a constant frequency of stimulation, the phase lag decreases with increases in the characteristic frequency (CF) of the nerve fiber. The phase lag decreases up to a CF above the stimulation frequency, beyond which it decreases at a much slower rate. Such phase changes are consistent with known basal cochlear mechanics. Measurements from individual fibers showed smaller but systematic variations in phase with sound level, confirming previous reports. We found a "null" stimulation frequency at which little variation in phase occurred with sound level. This null frequency was often not at the CF. At stimulation frequencies below the null, there was a progressive lag with sound level and a progressive lead for stimulation frequencies above the null. This was maximally 0.2 cycles.
Collapse
|
21
|
Liao Z, Feng S, Popel AS, Brownell WE, Spector AA. Outer hair cell active force generation in the cochlear environment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2215-25. [PMID: 17902857 DOI: 10.1121/1.2776154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Outer hair cells are critical to the amplification and frequency selectivity of the mammalian ear acting via a fine mechanism called the cochlear amplifier, which is especially effective in the high-frequency region of the cochlea. How this mechanism works under physiological conditions and how these cells overcome the viscous (mechanical) and electrical (membrane) filtering has yet to be fully understood. Outer hair cells are electromotile, and they are strategically located in the cochlea to generate an active force amplifying basilar membrane vibration. To investigate the mechanism of this cell's active force production under physiological conditions, a model that takes into account the mechanical, electrical, and mechanoelectrical properties of the cell wall (membrane) and cochlear environment is proposed. It is shown that, despite the mechanical and electrical filtering, the cell is capable of generating a frequency-tuned force with a maximal value of about 40 pN. It is also found that the force per unit basilar membrane displacement stays essentially the same (40 pNnm) for the entire linear range of the basilar membrane responses, including sound pressure levels close to hearing threshold. Our findings can provide a better understanding of the outer hair cell's role in the cochlear amplifier.
Collapse
Affiliation(s)
- Zhijie Liao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
22
|
Bell A. Tuning the cochlea: wave-mediated positive feedback between cells. BIOLOGICAL CYBERNETICS 2007; 96:421-38. [PMID: 17216524 DOI: 10.1007/s00422-006-0134-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 11/02/2006] [Indexed: 05/13/2023]
Abstract
Frequency analysis by the mammalian cochlea is traditionally thought to occur via a hydrodynamically coupled 'travelling wave' along the basilar membrane. A persistent difficulty with this picture is how sharp tuning can emerge. This paper proposes, and models, a supplementary or alternative mechanism: it supposes that the cochlea analyses sound by setting up standing waves between parallel rows of outer hair cells. In this scheme, multiple cells mutually interact through positive feedback of wave-borne energy. Analytical modelling and numerical evaluation presented here demonstrate that this can provide narrow-band frequency analysis. Graded cochlear tuning will then rely on the distance between rows becoming greater as distance from the base increases (as exhibited by the actual cochlea) and on the wave's phase velocity becoming slower. In effect, tuning is now a case of varying the feedback delay between the rows, and a prime candidate for a wave exhibiting suitably graded phase velocity-a short-wavelength 'squirting wave'-is identified and used in the modelling. In this way, resonance between rows could supply both amplification and high Q, characteristics underlying the 'cochlear amplifier'-the device whose action has long been evident to auditory science but whose anatomical basis and mode of operation are still obscure.
Collapse
Affiliation(s)
- Andrew Bell
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
23
|
Karavitaki KD, Mountain DC. Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of corti. Biophys J 2007; 92:3284-93. [PMID: 17277193 PMCID: PMC1852340 DOI: 10.1529/biophysj.106.084087] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Outer hair cell (OHC) somatic motility plays a key role in mammalian cochlear frequency selectivity and hearing sensitivity, but the mechanism of cochlear amplification is not well understood and remains a matter of controversy. We have visualized and quantified the effects of electrically evoked OHC somatic motility within the gerbil organ of Corti using an excised cochlear preparation. We found that OHC motility induces oscillatory motion of the medial olivocochlear fibers where they cross the tunnel of Corti (ToC) in their course to innervate the OHCs. We show that this motion is present at physiologically relevant frequencies and remains at locations distal to the OHC excitation point. We interpret this fiber motion to be the result of oscillatory fluid flow in the ToC. We show, using a simple one-dimensional hydromechanical model of the ToC, that a fluid wave within the tunnel can travel without significant attenuation for distances larger than the wavelength of the cochlear traveling wave at its peak. This ToC fluid wave could interact with the cochlear traveling wave to amplify the motion of the basilar membrane. The ToC wave could also provide longitudinal coupling between adjacent sections of the basilar membrane, and such coupling may be critical for cochlear amplification.
Collapse
Affiliation(s)
- K Domenica Karavitaki
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Speech and Hearing Bioscience and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
24
|
Karavitaki KD, Mountain DC. Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea. Biophys J 2007; 92:3294-316. [PMID: 17277194 PMCID: PMC1852364 DOI: 10.1529/biophysj.106.083634] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at approximately 2-6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL.
Collapse
Affiliation(s)
- K Domenica Karavitaki
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Speech and Hearing Bioscience and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
25
|
Nowotny M, Gummer AW. Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci U S A 2006; 103:2120-5. [PMID: 16461888 PMCID: PMC1413757 DOI: 10.1073/pnas.0511125103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Indexed: 11/18/2022] Open
Abstract
The stereocilia of the cochlear inner hair cells (IHCs) transduce vibrations into the sensory receptor current. Until now, mechanisms for deflecting these stereocilia have not been identified experimentally. Here, we identify a mechanism by using the electromechanical properties of the soma of the outer hair cell to produce an intracochlear, mechanical force stimulus. It is known that the soma of this cell generates mechanical force in response to a change of its transmembrane potential. In the present experiments, the force was induced by intracochlear electrical stimulation at frequencies that covered the entire functionally relevant range of 50 kHz. Vibration responses were measured in the transverse direction with a laser Doppler vibrometer. For frequencies up to approximately 3 kHz in the first three turns of the guinea-pig cochlea, the apical surface of the IHC and the opposing surface of the tectorial membrane were found to vibrate with similar amplitudes but opposite phases. At high frequencies, there was little relative motion between these surfaces in the transverse direction. The counterphasic motion up to approximately 3 kHz results in a pulsatile motion of the fluid surrounding the stereocilia of the IHCs. Based on physical principles of fluid flow between narrowly spaced elastic plates, we show that radial fluid motion is amplified relative to transverse membrane motion and that the radial motion is capable of bending the stereocilia. In conclusion, for frequencies up to at least 3 kHz, there appears to be direct fluid coupling between outer hair cells and IHCs.
Collapse
Affiliation(s)
- Manuela Nowotny
- Department of Otolaryngology, Tübingen Hearing Research Centre, Section of Physiological Acoustics and Communication, University of Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| | - Anthony W. Gummer
- Department of Otolaryngology, Tübingen Hearing Research Centre, Section of Physiological Acoustics and Communication, University of Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Guinan JJ, Lin T, Cheng H. Medial-olivocochlear-efferent inhibition of the first peak of auditory-nerve responses: evidence for a new motion within the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:2421-33. [PMID: 16266164 PMCID: PMC1810352 DOI: 10.1121/1.2017899] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite the insights obtained from click responses, the effects of medial-olivocochlear (MOC) efferents on click responses from single-auditory-nerve (AN) fibers have not been reported. We recorded responses of cat single AN fibers to randomized click level series with and without electrical stimulation of MOC efferents. MOC stimulation inhibited (1) the whole response at low sound levels, (2) the decaying part of the response at all sound levels, and (3) the first peak of the response at moderate to high sound levels. The first two effects were expected from previous reports using tones and are consistent with a MOC-induced reduction of cochlear amplification. The inhibition of the AN first peak, which was strongest in the apex and middle of the cochlea, was unexpected because the first peak of the classic basilar-membrane (BM) traveling wave receives little or no amplification. In the cochlear base, the click data were ambiguous, but tone data showed particularly short group delays in the tail-frequency region that is strongly inhibited by MOC efferents. Overall, the data support the hypothesis that there is a motion that bends inner-hair-cell stereocilia and can be inhibited by MOC efferents, a motion that is present through most, or all, of the cochlea and for which there is no counterpart in the classic BM traveling wave.
Collapse
Affiliation(s)
- John J Guinan
- Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114-3002, USA.
| | | | | |
Collapse
|
27
|
Chan DK, Hudspeth AJ. Mechanical responses of the organ of corti to acoustic and electrical stimulation in vitro. Biophys J 2005; 89:4382-95. [PMID: 16169985 PMCID: PMC1367002 DOI: 10.1529/biophysj.105.070474] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detection of sound by the cochlea involves a complex mechanical interplay among components of the cochlear partition. An in vitro preparation of the second turn of the jird's cochlea provides an opportunity to measure cochlear responses with subcellular resolution under controlled mechanical, ionic, and electrical conditions that simulate those encountered in vivo. Using photodiode micrometry, laser interferometry, and stroboscopic video microscopy, we have assessed the mechanical responses of the cochlear partition to acoustic and electrical stimuli near the preparation's characteristic frequency. Upon acoustic stimulation, the partition responds principally as a rigid plate pivoting around its insertion along the spiral lamina. The radial motion at the reticular lamina greatly surpasses that of the tectorial membrane, giving rise to shear that deflects the mechanosensitive hair bundles. Electrically evoked mechanical responses are qualitatively dissimilar from their acoustically evoked counterparts and suggest the recruitment of both hair-bundle- and soma-based electromechanical transduction processes. Finally, we observe significant changes in the stiffness of the cochlear partition upon tip-link destruction and tectorial-membrane removal, suggesting that these structures contribute considerably to the system's mechanical impedance and that hair-bundle-based forces can drive active motion of the cochlear partition.
Collapse
Affiliation(s)
- Dylan K Chan
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10021-6399, USA
| | | |
Collapse
|
28
|
Aranyosi AJ, Freeman DM. Two modes of motion of the alligator lizard cochlea: measurements and model predictions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:1585-92. [PMID: 16240819 DOI: 10.1121/1.1993147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Measurements of motion of an in vitro preparation of the alligator lizard basilar papilla in response to sound demonstrate elliptical trajectories. These trajectories are consistent with the presence of both a translational and rotational mode of motion. The translational mode is independent of frequency, and the rotational mode has a displacement peak near 5 kHz. These measurements can be explained by a simple mechanical system in which the basilar papilla is supported asymmetrically on the basilar membrane. In a quantitative model, the translational admittance is compliant while the rotational admittance is second order. Best-fit model parameters are consistent with estimates based on anatomy and predict that fluid flow across hair bundles is a primary source of viscous damping. The model predicts that the rotational mode contributes to the high-frequency slopes of auditory nerve fiber tuning curves, providing a physical explanation for a low-pass filter required in models of this cochlea. The combination of modes makes the sensitivity of hair bundles more uniform with radial position than that which would result from pure rotation. A mechanical analogy with the organ of Corti suggests that these two modes of motion may also be present in the mammalian cochlea.
Collapse
Affiliation(s)
- A J Aranyosi
- Speech and Hearing Biosciences and Technology Program, Harvard-MIT Division of Health Sciences and Technology and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
29
|
|
30
|
Fridberger A, Widengren J, Boutet de Monvel J. Measuring hearing organ vibration patterns with confocal microscopy and optical flow. Biophys J 2004; 86:535-43. [PMID: 14695298 PMCID: PMC1303822 DOI: 10.1016/s0006-3495(04)74132-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A new method for visualizing vibrating structures is described. The system provides a means to capture very fast repeating events by relatively minor modifications to a standard confocal microscope. An acousto-optic modulator was inserted in the beam path, generating brief pulses of laser light. Images were formed by summing consecutive frames until every pixel of the resulting image had been exposed to a laser pulse. Images were analyzed using a new method for optical flow computation; it was validated through introducing artificial displacements in confocal images. Displacements in the range of 0.8 to 4 pixels were measured with 5% error or better. The lower limit for reliable motion detection was 20% of the pixel size. These methods were used for investigating the motion pattern of the vibrating hearing organ. In contrast to standard theory, we show that the organ of Corti possesses several degrees of freedom during sound-evoked vibration. Outer hair cells showed motion indicative of deformation. After acoustic overstimulation, supporting cells contracted. This slowly developing structural change was visualized during simultaneous intense sound stimulation and its speed measured with the optical flow technique.
Collapse
Affiliation(s)
- Anders Fridberger
- Center for Hearing and Communication Research and Department of Otolaryngology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Homer M, Champneys A, Hunt G, Cooper N. Mathematical modeling of the radial profile of basilar membrane vibrations in the inner ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:1025-1034. [PMID: 15376669 DOI: 10.1121/1.1771571] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Motivated by recent experimental results, an explanation is sought for the asymmetry in the radial profile of basilar membrane vibrations in the inner ear. A sequence of one-dimensional beam models is studied which take into account variations in the bending stiffness of the basilar membrane as well as the potential presence of structural hinges. The results suggest that the main cause of asymmetry is likely to be differences between the boundary conditions at the two extremes of the basilar membrane's width. This has fundamental implications for more detailed numerical simulations of the entire cochlea.
Collapse
Affiliation(s)
- Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol BS7 8EX, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Cai H, Shoelson B, Chadwick RS. Evidence of tectorial membrane radial motion in a propagating mode of a complex cochlear model. Proc Natl Acad Sci U S A 2004; 101:6243-8. [PMID: 15067120 PMCID: PMC395954 DOI: 10.1073/pnas.0401395101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Indexed: 11/18/2022] Open
Abstract
Knowledge of vibratory patterns in the cochlea is crucial to understanding the stimulation of mechanosensory cells. Experiments to determine the motion of the cochlear partition and surrounding fluid are extremely challenging. As a result, the motion data are incomplete and often contradictory. The bending mechanism of hair bundles, thought to be related to the shear motion and endolymphatic flow between the tectorial membrane (TM) and reticular lamina (RL), is controversial. We, therefore, extend the frequency range of our previous hybrid analytical-finite-element approach to model the basal as well as apical regions of the guinea pig cochlea. We solve the fluid-solid interaction eigenvalue problem for the axial wavenumber, fluid pressure, and vibratory relative motions of the cochlear partition as a function of frequency. A simple monophasic vibratory mode of the basilar membrane is found at both ends of the cochlea. However, this simple movement is associated with a complex frequency-dependent relative deformation between the TM and the RL. We provide evidence of a radial component of TM motion that is out of phase with the RL and that facilitates the bending of outer hair cell stereocilia at appropriate frequencies at both the cochlear base and apex.
Collapse
Affiliation(s)
- Hongxue Cai
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
The development of a single frequency place in the mammalian cochlea: the cochlear resonance in the mustached bat Pteronotus parnellii. J Neurosci 2003. [PMID: 14645493 DOI: 10.1523/jneurosci.23-34-10971.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochlear microphonic potentials (CMs) were recorded from the sharply tuned, strongly resonant auditory foveae of 1- to 5-week-old mustached bats that were anesthetized with Rompun and Ketavet. The fovea processes Doppler-shifted echo responses of the constant-frequency component of echolocation calls. During development, the frequency and tuning sharpness of the cochlear resonance increases, and CM ringing persists for longer after the tone. CM is relatively insensitive at tone onset and grows linearly with increased stimulus level. During the tone, the CM is more sensitive and grows compressively with increased stimulus level and phase leads onset CM by 90 degrees for frequencies below the resonance. CM during the ringing is also sensitive and compressive and phase leads onset CM by 180 degrees below the resonance and lags it by 180 degrees above the resonance. Throughout postnatal development, CMs measured during the tone and in the ringing increase both in sensitivity and compression. The cochlear resonance appears to be attributable to interaction between two oscillators. The more broadly tuned oscillator dominates the onset response, and the narrowly tuned oscillator dominates the ringing. Early in development, mechanical coupling between the oscillators results in a relatively broadly tuned system with several frequency modes in the CM at tone onset and in the CM ringing. Beating occurs between the resonance and the stimulus response during the tone and between two components of the narrowly tuned oscillator at tone offset. At maturity, the CM has three modes for frequencies within 10 kHz of the resonance at tone onset and a single, sharply tuned mode in the ringing.
Collapse
|
34
|
Synchronization of a nonlinear oscillator: processing the cf component of the echo-response signal in the cochlea of the mustached bat. J Neurosci 2003. [PMID: 14573530 DOI: 10.1523/jneurosci.23-29-09508.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochlear microphonic potential (CM) was recorded from the CF2 region and the sparsely innervated zone (the mustached bat's cochlea fovea) that is specialized for analyzing the Doppler-shifted echoes of the first-harmonic (approximately 61 kHz) of the constant-frequency component of the echolocation call. Temporal analysis of the CM, which is tuned sharply to the 61 kHz cochlear resonance, revealed that at the resonance frequency, and within 1 msec of tone onset, CM is broadly tuned with linear magnitude level functions. CM measured during the ongoing tone and in the ringing after tone offset is 50 dB more sensitive, is sharply tuned, has compressive level functions, and the phase leads onset CM by 90 degrees: an indication that cochlear responses are amplified during maximum basilar membrane velocity. For high-level tones above the resonance frequency, CM appears at tone onset and after tone offset. Measurements indicate that the two oscillators responsible for the cochlear resonance, presumably the basilar and tectorial membranes, move together in phase during the ongoing tone, thereby minimizing net shear between them and hair cell excitation. For tones within 2 kHz of the cochlear resonance the frequency of CM measured within 2 msec of tone onset is not that of the stimulus but is proportional to it. For tones just below the cochlear resonance region CM frequency is a constant amount below that of the stimulus depending on CM measurement delay from tone onset. The frequency responses of the CM recorded from the cochlear fovea can be accounted for through synchronization between the nonlinear oscillators responsible for the cochlear resonance and the stimulus tone.
Collapse
|
35
|
Lukashkin AN, Lukashkina VA, Legan PK, Richardson GP, Russell IJ. Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild-type and transgenic Tecta(deltaENT/deltaENT) mice. J Neurophysiol 2003; 91:163-71. [PMID: 14523068 DOI: 10.1152/jn.00680.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Distortion product otoacoustic emissions (DPOAE) were recorded from wild-type mice and mutant Tecta(deltaENT/deltaENT) mice with detached tectorial membranes (TM) under combined ketamine/xylaxine anesthesia. In Tecta(deltaENT/deltaENT) mice, DPOAEs could be detected above the noise floor only when the levels of the primary tones exceeded 65 dB SPL. DPOAE amplitude decreased with increasing frequency of the primaries in Tecta(deltaENT/deltaENT) mice. This was attributed to hair cell excitation via viscous coupling to the surrounding fluid and not by interaction with the TM as in the wild-type mice. Local minima and corresponding phase transitions in the DPOAE growth functions occurred at higher DPOAE levels in wild-type than in Tecta(deltaENT/deltaENT) mice. In less-sensitive Tecta(deltaENT/deltaENT) mice, the position of the local minima varied nonsystematically with frequency or no minima were observed. A bell-like dependence of the DPOAE amplitude on the ratio of the primaries was recorded in both wild-type and Tecta(deltaENT/deltaENT) mice. However, the pattern of this dependence was different in the wild-type and Tecta(deltaENT/deltaENT) mice, an indication that the bell-like shape of the DPOAE was produced by a combination of different mechanisms. A nonlinear low-frequency resonance, revealed by nonmonotonicity of the phase behavior, was seen in the wild-type but not in Tecta(deltaENT/deltaENT) mice.
Collapse
Affiliation(s)
- Andrei N Lukashkin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom.
| | | | | | | | | |
Collapse
|
36
|
Fridberger A, de Monvel JB. Sound-induced differential motion within the hearing organ. Nat Neurosci 2003; 6:446-8. [PMID: 12692558 DOI: 10.1038/nn1047] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 03/07/2003] [Indexed: 11/09/2022]
Affiliation(s)
- Anders Fridberger
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
37
|
Nuttall AL, Ren T, de Boer E, Zheng J, Parthasarathi A, Grosh K, Guo M, Dolan D. In vivo micromechanical measurements of the organ of Corti in the basal cochlear turn. Audiol Neurootol 2002; 7:21-6. [PMID: 11914521 DOI: 10.1159/000046858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cochlear mechanical measurements of organ of Corti motion are generally accomplished in the apical or basal turn as in vivo or in vitro studies. In the apex it is possible to observe and measure tectorial membrane vibration as well as vibrations of structures such as the reticular lamina or the basilar membrane (BM). However, compared to the basal turn, cochlear amplification and nonlinearity are not strong in the apex. Basal turn studies have typically been limited to point location measurements of the BM but improved technology for laser interferometry is now making possible the spatial mapping of BM motion. The 'complexity' of BM motion in the radial direction (particularly the phase variation) is important to new models of cochlear wave amplification. In future work it may be possible to learn about vibration of structures within the organ of Corti.
Collapse
Affiliation(s)
- Alfred L Nuttall
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health Sciences University, Portland, Oreg., USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gummer AW, Meyer J, Frank G, Scherer MP, Preyer S. Mechanical transduction in outer hair cells. Audiol Neurootol 2002; 7:13-6. [PMID: 11914519 DOI: 10.1159/000046856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The outer hair cells are responsible for the exquisite sensitivity, frequency selectivity and dynamic range of the cochlea. These cells are part of a mechanical feedback system involving the basilar membrane and tectorial membrane. Transverse displacement of the basilar membrane results in relative motion between the tectorial membrane and the reticular lamina, causing deflection of the stereocilia and modulation of the open probability of their transduction channels. The resulting current causes a change of membrane potential, which in turn produces mechanical force, that is fed back into the motion of the basilar membrane. Experiments were conducted to address mechanical transduction mechanisms in both the stereocilia and the basolateral cell membrane, as well as modes of coupling of the outer hair cell force to the organ of Corti.
Collapse
Affiliation(s)
- Antony W Gummer
- Department of Otolaryngology, Section Physiological Acoustics and Communication, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Understanding how the cochlea works as a system has become increasingly important. We need to know this before integrating new information from genetic, physiological and clinical sources. This chapter will show how the cochlea should be seen as a device for carrying out a frequency analysis built from cells that have been adapted for specialist purposes. Sensory hair cells convert mechanical displacements into the neural code. The transducer channel remains to be identified. The biomechanics of the cochlear duct depends on an energy-dependent feedback from the sensory outer hair cells. The molecular basis for outer hair cell feedback depends on a protein that has recently been identified. The auditory signal encoded by the cochlea is further modified by membrane properties of the hair cells and cochlear supporting cells. The interplay between techniques of genetics, molecular biology and cell physiology has started to reveal which ion channels and transporters in the cochlea are mutated in certain forms of deafness. The interpretation of these mutations requires the cell physiology of the cochlear partition to be better characterised in the future.
Collapse
|
40
|
Abstract
In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the "base" of the cochlea (near the stapes) and low-frequency waves approaching the "apex" of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the "cochlear amplifier." This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers.
Collapse
Affiliation(s)
- L Robles
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Programa Disciplinario de Fisiología y Biofísica, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
41
|
Ruggero MA, Narayan SS, Temchin AN, Recio A. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proc Natl Acad Sci U S A 2000; 97:11744-50. [PMID: 11050204 PMCID: PMC34344 DOI: 10.1073/pnas.97.22.11744] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We review the mechanical origin of auditory-nerve excitation, focusing on comparisons of the magnitudes and phases of basilar-membrane (BM) vibrations and auditory-nerve fiber responses to tones at a basal site of the chinchilla cochlea with characteristic frequency approximately 9 kHz located 3.5 mm from the oval window. At this location, characteristic frequency thresholds of fibers with high spontaneous activity correspond to magnitudes of BM displacement or velocity in the order of 1 nm or 50 microm/s. Over a wide range of stimulus frequencies, neural thresholds are not determined solely by BM displacement but rather by a function of both displacement and velocity. Near-threshold, auditory-nerve responses to low-frequency tones are synchronous with peak BM velocity toward scala tympani but at 80-90 dB sound pressure level (in decibels relative to 20 microPascals) and at 100-110 dB sound pressure level responses undergo two large phase shifts approaching 180 degrees. These drastic phase changes have no counterparts in BM vibrations. Thus, although at threshold levels the encoding of BM vibrations into spike trains appears to involve only relatively minor signal transformations, the polarity of auditory-nerve responses does not conform with traditional views of how BM vibrations are transmitted to the inner hair cells. The response polarity at threshold levels, as well as the intensity-dependent phase changes, apparently reflect micromechanical interactions between the organ of Corti, the tectorial membrane and the subtectorial fluid, and/or electrical and synaptic processes at the inner hair cells.
Collapse
Affiliation(s)
- M A Ruggero
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
42
|
Nilsen KE, Russell IJ. The spatial and temporal representation of a tone on the guinea pig basilar membrane. Proc Natl Acad Sci U S A 2000; 97:11751-8. [PMID: 11050205 PMCID: PMC34345 DOI: 10.1073/pnas.97.22.11751] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the mammalian cochlea, the basilar membrane's (BM) mechanical responses are amplified, and frequency tuning is sharpened through active feedback from the electromotile outer hair cells (OHCs). To be effective, OHC feedback must be delivered to the correct region of the BM and introduced at the appropriate time in each cycle of BM displacement. To investigate when OHCs contribute to cochlear amplification, a laser-diode interferometer was used to measure tone-evoked BM displacements in the basal turn of the guinea pig cochlea. Measurements were made at multiple sites across the width of the BM, which are tuned to the same characteristic frequency (CF). In response to CF tones, the largest displacements occur in the OHC region and phase lead those measured beneath the outer pillar cells and adjacent to the spiral ligament by about 90 degrees. Postmortem, responses beneath the OHCs are reduced by up to 65 dB, and all regions across the width of the BM move in unison. We suggest that OHCs amplify BM responses to CF tones when the BM is moving at maximum velocity. In regions of the BM where OHCs contribute to its motion, the responses are compressive and nonlinear. We measured the distribution of nonlinear compressive vibrations along the length of the BM in response to a single frequency tone and estimated that OHC amplification is restricted to a 1.25- to 1.40-mm length of BM centered on the CF place.
Collapse
Affiliation(s)
- K E Nilsen
- School of Biological Sciences, University of Sussex, Falmer Brighton, BN1 9QG, United Kingdom
| | | |
Collapse
|